creat any_2
creat any_3
add varaibles
ggplot(final_master, aes(x = z_score, y = cr_cys)) +
geom_point(size = 2, alpha = 0.7) +
geom_smooth(method = "lm", se = TRUE, color = "blue", linewidth = 1) +
labs(
x = "Z Score",
y = "Creatinine/Cystatin C",
title = " Z Score and Creatinine/Cystatin C"
) +
theme_bw(base_size = 14) +
theme(
plot.title = element_text(hjust = 0.5),
panel.grid = element_blank()
)
## `geom_smooth()` using formula = 'y ~ x'

final_master_sarcopenia cmp_time_any_3
final_master_sarcopenia$cmp_status_any_3 <- as.factor(final_master_sarcopenia$cmp_status_any_3)
tidycmprsk::crr(Surv(cmp_time_any_3,cmp_status_any_3) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
87 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
3.32 |
1.24, 8.88 |
0.017 |
| age |
87 |
1.01 |
0.95, 1.06 |
0.8 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.72 |
0.20, 2.50 |
0.6 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
5.38 |
0.52, 56.0 |
0.2 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.50 |
0.13, 1.99 |
0.3 |
| cockcroft |
87 |
1.00 |
0.98, 1.02 |
>0.9 |
final_master_no_sarcopenia cmp_time_any_3
final_master_no_sarcopenia$cmp_status_any_3 <- as.factor(final_master_no_sarcopenia$cmp_status_any_3)
tidycmprsk::crr(Surv(cmp_time_any_3,cmp_status_any_3) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
371 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
2.34 |
1.33, 4.10 |
0.003 |
| age |
371 |
0.99 |
0.97, 1.02 |
0.6 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.84 |
0.49, 1.45 |
0.5 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.16 |
0.65, 2.06 |
0.6 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
1.13 |
0.69, 1.84 |
0.6 |
| cockcroft |
371 |
1.00 |
0.99, 1.01 |
0.9 |
final_master_sarcopenia cmp_time_hosp
final_master_sarcopenia$cmp_status_hosp <- as.factor(final_master_sarcopenia$cmp_status_hosp)
tidycmprsk::crr(Surv(cmp_time_hosp,cmp_status_hosp) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
87 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
1.68 |
0.80, 3.53 |
0.2 |
| age |
87 |
0.99 |
0.95, 1.03 |
0.6 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.90 |
0.35, 2.33 |
0.8 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
4.00 |
1.11, 14.3 |
0.034 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
1.21 |
0.51, 2.89 |
0.7 |
| cockcroft |
87 |
1.01 |
1.00, 1.02 |
0.13 |
final_master_no_sarcopenia cmp_time_hosp
final_master_no_sarcopenia$cmp_status_hosp <- as.factor(final_master_no_sarcopenia$cmp_status_hosp)
tidycmprsk::crr(Surv(cmp_time_hosp,cmp_status_hosp) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
371 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
1.46 |
0.94, 2.28 |
0.10 |
| age |
371 |
1.00 |
0.98, 1.02 |
>0.9 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.95 |
0.61, 1.48 |
0.8 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.65 |
1.03, 2.63 |
0.036 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.97 |
0.66, 1.42 |
0.9 |
| cockcroft |
371 |
1.00 |
1.00, 1.01 |
0.2 |
final_master_sarcopenia cmp_time_side_effect
final_master_sarcopenia$cmp_status_side_effect <- as.factor(final_master_sarcopenia$cmp_status_side_effect)
tidycmprsk::crr(Surv(cmp_time_side_effect,cmp_status_side_effect) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
87 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
2.08 |
0.87, 4.96 |
0.10 |
| age |
87 |
1.00 |
0.96, 1.04 |
0.9 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.78 |
0.27, 2.26 |
0.7 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
2.78 |
0.77, 10.0 |
0.12 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
1.02 |
0.37, 2.77 |
>0.9 |
| cockcroft |
87 |
1.00 |
0.99, 1.02 |
0.6 |
final_master_no_sarcopenia cmp_time_side_effect
final_master_no_sarcopenia$cmp_status_side_effect <- as.factor(final_master_no_sarcopenia$cmp_status_side_effect)
tidycmprsk::crr(Surv(cmp_time_side_effect,cmp_status_side_effect) ~ cr_cys_7 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
371 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
2.33 |
1.25, 4.34 |
0.008 |
| age |
371 |
0.99 |
0.96, 1.01 |
0.3 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.58 |
0.31, 1.08 |
0.086 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.16 |
0.63, 2.13 |
0.6 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.78 |
0.46, 1.33 |
0.4 |
| cockcroft |
371 |
0.99 |
0.98, 1.00 |
0.3 |
death coxph final_master_sarcopenia
table(final_master_sarcopenia$death_90,final_master_sarcopenia$cancer_stage)
##
## 1 2
## 0 19 59
## 1 0 9
coxph(Surv(time_to_death_90,death_90) ~ cr_cys_7 + age + sex + ecog_score_2 + cockcroft, data = final_master_sarcopenia)%>% tbl_regression(exp = TRUE)%>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
87 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
3.90 |
0.90, 17.0 |
0.069 |
| age |
87 |
0.99 |
0.90, 1.09 |
0.8 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.37 |
0.04, 3.24 |
0.4 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.35 |
0.04, 3.10 |
0.3 |
| cockcroft |
87 |
0.99 |
0.96, 1.02 |
0.4 |
death coxph final_master_no_sarcopenia
coxph(Surv(time_to_death_90,death_90) ~ cr_cys_7 + age + sex + ecog_score_2 + cockcroft, data = final_master_no_sarcopenia)%>% tbl_regression(exp = TRUE)%>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cr_cys_7 |
371 |
|
|
|
| None |
|
— |
— |
|
| 30% |
|
7.04 |
1.72, 28.8 |
0.007 |
| age |
371 |
1.01 |
0.95, 1.09 |
0.7 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.57 |
0.17, 1.90 |
0.4 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.37 |
0.08, 1.75 |
0.2 |
| cockcroft |
371 |
1.01 |
1.00, 1.03 |
0.14 |
new cr_cys_7
new cr_cys_7 color
any_3 final_master_sarcopenia
plot_adj_cif_cr_cys_7(
data = final_master_sarcopenia,
time = cmp_time_any_3,
status = cmp_status_any_3,
title = "any_3 final_master_sarcopenia"
)

any_3 final_master_no_sarcopenia
plot_adj_cif_cr_cys_7_color(
data = final_master_no_sarcopenia,
time = cmp_time_any_3,
status = cmp_status_any_3,
title = "any_3 final_master_no_sarcopenia"
)

side_effect final_master_sarcopenia
plot_adj_cif_cr_cys_7(
data = final_master_sarcopenia,
time = cmp_time_side_effect, # Pass as a quoted string
status = cmp_status_side_effect,
title = "side_effect final_master_sarcopenia"
)

side_effect final_master_no_sarcopenia
plot_adj_cif_cr_cys_7_color(
data = final_master_no_sarcopenia,
time = cmp_time_side_effect, # Pass as a quoted string
status = cmp_status_side_effect,
title = "side_effect final_master_no_sarcopenia"
)

hosp final_master_sarcopenia
plot_adj_cif_cr_cys_7(
data = final_master_sarcopenia,
time = cmp_time_hosp, # Pass as a quoted string
status = cmp_status_hosp,
title = "hosp final_master_sarcopenia"
)

hosp final_master_no_sarcopenia
plot_adj_cif_cr_cys_7_color(
data = final_master_no_sarcopenia,
time = cmp_time_hosp, # Pass as a quoted string
status = cmp_status_hosp,
title = "hosp final_master_no_sarcopenia"
)

#1-KM final_master_sarcopenia 365

#1-KM final_master_sarcopenia 90

#1-KM final_master_no_sarcopenia 365

#1-KM final_master_no_sarcopenia 90

new cys_c_egfr_ge_60
new cys_c_egfr_ge_60 color
any_3 final_master_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60(
data = final_master_sarcopenia,
time = cmp_time_any_3,
status = cmp_status_any_3,
title = "any_3 final_master_sarcopenia"
)

any_3 final_master_no_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60_color(
data = final_master_no_sarcopenia,
time = cmp_time_any_3,
status = cmp_status_any_3,
title = "any_3 final_master_no_sarcopenia"
)

side_effect final_master_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60(
data = final_master_sarcopenia,
time = cmp_time_side_effect, # Pass as a quoted string
status = cmp_status_side_effect,
title = "side_effect final_master_sarcopenia"
)

side_effect final_master_no_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60_color(
data = final_master_no_sarcopenia,
time = cmp_time_side_effect, # Pass as a quoted string
status = cmp_status_side_effect,
title = "side_effect final_master_no_sarcopenia"
)

hosp final_master_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60(
data = final_master_sarcopenia,
time = cmp_time_hosp, # Pass as a quoted string
status = cmp_status_hosp,
title = "hosp final_master_sarcopenia"
)

hosp final_master_no_sarcopenia
plot_adj_cif_cys_c_egfr_ge_60_color(
data = final_master_no_sarcopenia,
time = cmp_time_hosp, # Pass as a quoted string
status = cmp_status_hosp,
title = "hosp final_master_no_sarcopenia"
)

#1-KM final_master_sarcopenia 365

#1-KM final_master_sarcopenia 90

#1-KM final_master_no_sarcopenia 365

#1-KM final_master_no_sarcopenia 90

#1 Grade 3 z score

#2 Death z score

#3 platinum_related_hos

#4 Overall Hospitalization

#Table one ## for cre/cys ratio
##dose_1: carbo-AUC ≥ 5 mg/mL/min, or r cisplatin ≥ 75 mg/m2
table_one <- final_master%>%
dplyr::select(age,age_cat,sex,race,ethnicity,cancer_stage,
ici,Bevacizumab,Paclitaxel,Pemetrexed,Doxorubicin,Etoposide,Gemcitabine,Pertuzumab,Trastuzumab,Docetaxel,Fluorouracil,Methotrexate,Vinblastine,Administered_alone,
dm,htn,cirrhosis,cad,hiv,ppi,ace_arb,diu,steroids,statins,nsaids,smoking,thyroid,
ECOG_Score,ecog_score_2,bmi,bmi_cat,pre_HGB_45days,pre_PLT_45days,pre_ALB_45days,baseline_cystatin_c,baseline_cre,cockcroft,baseline_cre_egfr,baseline_cys_c_egfr,cr_cys_7,sarcopenia)
all_vars <- names(table_one)
num_vars <- c(
"age","bmi","pre_HGB_45days","pre_PLT_45days","pre_ALB_45days",
"baseline_cystatin_c","baseline_cre","cockcroft",
"baseline_cre_egfr","baseline_cys_c_egfr"
)
cat_vars <- setdiff(names(table_one),num_vars)
table_one <- table_one %>% mutate_at(cat_vars,as.factor)
# T1 <- tableone::CreateTableOne(
# vars = all_vars,
# strata = "sarcopenia", # variable to stratify by
# data = table_one,
# factorVars = cat_vars, # specify which variables are factors
# addOverall = TRUE,
# includeNA = FALSE
# )
#
t1 <- table_one %>%
tbl_summary(
by = sarcopenia,
statistic = list(
all_continuous() ~ "{mean} ({sd})",
all_categorical() ~ "{n} ({p}%)"
),
digits = all_continuous() ~ 1,
missing = "ifany"
) %>%
add_overall() %>%
bold_labels()
t1
| Characteristic |
Overall
N = 458 |
0
N = 371 |
1
N = 87 |
| age |
65.2 (12.1) |
63.9 (12.4) |
71.0 (8.4) |
| age_cat |
|
|
|
| 1 |
194 (42%) |
175 (47%) |
19 (22%) |
| 2 |
228 (50%) |
172 (46%) |
56 (64%) |
| 3 |
36 (7.9%) |
24 (6.5%) |
12 (14%) |
| sex |
|
|
|
| 1 |
197 (43%) |
132 (36%) |
65 (75%) |
| 2 |
261 (57%) |
239 (64%) |
22 (25%) |
| race |
|
|
|
| 1 |
370 (81%) |
300 (81%) |
70 (80%) |
| 2 |
18 (3.9%) |
15 (4.0%) |
3 (3.4%) |
| 3 |
18 (3.9%) |
11 (3.0%) |
7 (8.0%) |
| 4 |
16 (3.5%) |
15 (4.0%) |
1 (1.1%) |
| 5 |
36 (7.9%) |
30 (8.1%) |
6 (6.9%) |
| ethnicity |
|
|
|
| 1 |
387 (84%) |
306 (82%) |
81 (93%) |
| 2 |
39 (8.5%) |
37 (10.0%) |
2 (2.3%) |
| 3 |
32 (7.0%) |
28 (7.5%) |
4 (4.6%) |
| cancer_stage |
|
|
|
| 1 |
128 (28%) |
109 (29%) |
19 (22%) |
| 2 |
330 (72%) |
262 (71%) |
68 (78%) |
| ici |
|
|
|
| 0 |
351 (77%) |
298 (80%) |
53 (61%) |
| 1 |
107 (23%) |
73 (20%) |
34 (39%) |
| Bevacizumab |
|
|
|
| 0 |
443 (97%) |
356 (96%) |
87 (100%) |
| 1 |
15 (3.3%) |
15 (4.0%) |
0 (0%) |
| Paclitaxel |
|
|
|
| 0 |
283 (62%) |
224 (60%) |
59 (68%) |
| 1 |
175 (38%) |
147 (40%) |
28 (32%) |
| Pemetrexed |
|
|
|
| 0 |
351 (77%) |
288 (78%) |
63 (72%) |
| 1 |
107 (23%) |
83 (22%) |
24 (28%) |
| Doxorubicin |
|
|
|
| 0 |
447 (98%) |
360 (97%) |
87 (100%) |
| 1 |
11 (2.4%) |
11 (3.0%) |
0 (0%) |
| Etoposide |
|
|
|
| 0 |
413 (90%) |
333 (90%) |
80 (92%) |
| 1 |
45 (9.8%) |
38 (10%) |
7 (8.0%) |
| Gemcitabine |
|
|
|
| 0 |
398 (87%) |
334 (90%) |
64 (74%) |
| 1 |
60 (13%) |
37 (10.0%) |
23 (26%) |
| Pertuzumab |
|
|
|
| 0 |
432 (94%) |
345 (93%) |
87 (100%) |
| 1 |
26 (5.7%) |
26 (7.0%) |
0 (0%) |
| Trastuzumab |
|
|
|
| 0 |
430 (94%) |
343 (92%) |
87 (100%) |
| 1 |
28 (6.1%) |
28 (7.5%) |
0 (0%) |
| Docetaxel |
|
|
|
| 0 |
426 (93%) |
340 (92%) |
86 (99%) |
| 1 |
32 (7.0%) |
31 (8.4%) |
1 (1.1%) |
| Fluorouracil |
|
|
|
| 0 |
455 (99%) |
368 (99%) |
87 (100%) |
| 1 |
3 (0.7%) |
3 (0.8%) |
0 (0%) |
| Methotrexate |
|
|
|
| 0 |
455 (99%) |
368 (99%) |
87 (100%) |
| 1 |
3 (0.7%) |
3 (0.8%) |
0 (0%) |
| Vinblastine |
|
|
|
| 0 |
455 (99%) |
368 (99%) |
87 (100%) |
| 1 |
3 (0.7%) |
3 (0.8%) |
0 (0%) |
| Administered_alone |
|
|
|
| 0 |
433 (95%) |
350 (94%) |
83 (95%) |
| 1 |
25 (5.5%) |
21 (5.7%) |
4 (4.6%) |
| dm |
|
|
|
| 0 |
378 (83%) |
312 (84%) |
66 (76%) |
| 1 |
80 (17%) |
59 (16%) |
21 (24%) |
| htn |
|
|
|
| 0 |
175 (38%) |
154 (42%) |
21 (24%) |
| 1 |
283 (62%) |
217 (58%) |
66 (76%) |
| cirrhosis |
|
|
|
| 0 |
436 (95%) |
356 (96%) |
80 (92%) |
| 1 |
22 (4.8%) |
15 (4.0%) |
7 (8.0%) |
| cad |
|
|
|
| 0 |
330 (72%) |
279 (75%) |
51 (59%) |
| 1 |
128 (28%) |
92 (25%) |
36 (41%) |
| hiv |
|
|
|
| 0 |
434 (95%) |
349 (94%) |
85 (98%) |
| 1 |
24 (5.2%) |
22 (5.9%) |
2 (2.3%) |
| ppi |
|
|
|
| 0 |
305 (67%) |
250 (67%) |
55 (63%) |
| 1 |
153 (33%) |
121 (33%) |
32 (37%) |
| ace_arb |
|
|
|
| 0 |
342 (75%) |
281 (76%) |
61 (70%) |
| 1 |
116 (25%) |
90 (24%) |
26 (30%) |
| diu |
|
|
|
| 0 |
358 (78%) |
292 (79%) |
66 (76%) |
| 1 |
100 (22%) |
79 (21%) |
21 (24%) |
| steroids |
|
|
|
| 0 |
21 (4.6%) |
11 (3.0%) |
10 (11%) |
| 1 |
437 (95%) |
360 (97%) |
77 (89%) |
| statins |
|
|
|
| 0 |
308 (67%) |
256 (69%) |
52 (60%) |
| 1 |
150 (33%) |
115 (31%) |
35 (40%) |
| nsaids |
|
|
|
| 0 |
256 (56%) |
201 (54%) |
55 (63%) |
| 1 |
202 (44%) |
170 (46%) |
32 (37%) |
| smoking |
|
|
|
| 0 |
214 (47%) |
184 (50%) |
30 (34%) |
| 1 |
244 (53%) |
187 (50%) |
57 (66%) |
| thyroid |
|
|
|
| 0 |
385 (84%) |
312 (84%) |
73 (84%) |
| 1 |
73 (16%) |
59 (16%) |
14 (16%) |
| ECOG_Score |
|
|
|
| 0 |
195 (43%) |
162 (44%) |
33 (38%) |
| 1 |
228 (50%) |
182 (49%) |
46 (53%) |
| 2 |
30 (6.6%) |
24 (6.5%) |
6 (6.9%) |
| 3 |
5 (1.1%) |
3 (0.8%) |
2 (2.3%) |
| ecog_score_2 |
|
|
|
| >=1 |
263 (57%) |
209 (56%) |
54 (62%) |
| 1 |
195 (43%) |
162 (44%) |
33 (38%) |
| bmi |
27.1 (5.8) |
27.6 (5.8) |
25.0 (5.2) |
| bmi_cat |
|
|
|
| 1 |
17 (3.7%) |
10 (2.7%) |
7 (8.0%) |
| 2 |
166 (36%) |
125 (34%) |
41 (47%) |
| 3 |
148 (32%) |
121 (33%) |
27 (31%) |
| 4 |
127 (28%) |
115 (31%) |
12 (14%) |
| pre_HGB_45days |
12.5 (1.6) |
12.5 (1.5) |
12.5 (1.9) |
| Unknown |
1 |
0 |
1 |
| pre_PLT_45days |
289.0 (105.7) |
291.2 (101.5) |
279.2 (122.3) |
| Unknown |
1 |
0 |
1 |
| pre_ALB_45days |
4.1 (0.4) |
4.1 (0.4) |
4.0 (0.4) |
| Unknown |
1 |
0 |
1 |
| baseline_cystatin_c |
1.1 (0.4) |
1.1 (0.4) |
1.2 (0.4) |
| baseline_cre |
0.9 (0.3) |
0.8 (0.2) |
1.0 (0.4) |
| cockcroft |
89.2 (35.3) |
92.0 (36.4) |
77.4 (27.4) |
| baseline_cre_egfr |
86.0 (18.4) |
87.0 (18.4) |
81.7 (18.1) |
| baseline_cys_c_egfr |
71.4 (23.6) |
73.7 (23.7) |
61.7 (20.3) |
| cr_cys_7 |
|
|
|
| None |
325 (71%) |
266 (72%) |
59 (68%) |
| 30% |
133 (29%) |
105 (28%) |
28 (32%) |
final_master_sarcopenia cmp_time_any_3
final_master_sarcopenia$cmp_status_any_3 <- as.factor(final_master_sarcopenia$cmp_status_any_3)
tidycmprsk::crr(Surv(cmp_time_any_3,cmp_status_any_3) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
87 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.52 |
0.21, 1.25 |
0.14 |
| age |
87 |
1.01 |
0.95, 1.08 |
0.7 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.00 |
0.28, 3.53 |
>0.9 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
4.39 |
0.44, 43.5 |
0.2 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.36 |
0.09, 1.42 |
0.14 |
| cockcroft |
87 |
1.01 |
0.99, 1.03 |
0.3 |
final_master_no_sarcopenia cmp_time_any_3
final_master_no_sarcopenia$cmp_status_any_3 <- as.factor(final_master_no_sarcopenia$cmp_status_any_3)
tidycmprsk::crr(Surv(cmp_time_any_3,cmp_status_any_3) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
371 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.40 |
0.21, 0.74 |
0.004 |
| age |
371 |
1.00 |
0.97, 1.02 |
0.7 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.13 |
0.68, 1.88 |
0.6 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.08 |
0.59, 1.97 |
0.8 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
1.04 |
0.65, 1.68 |
0.9 |
| cockcroft |
371 |
1.01 |
1.00, 1.02 |
0.2 |
final_master_sarcopenia cmp_time_hosp
final_master_sarcopenia$cmp_status_hosp <- as.factor(final_master_sarcopenia$cmp_status_hosp)
tidycmprsk::crr(Surv(cmp_time_hosp,cmp_status_hosp) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
87 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.56 |
0.23, 1.35 |
0.2 |
| age |
87 |
0.99 |
0.95, 1.03 |
0.6 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.19 |
0.43, 3.28 |
0.7 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
3.65 |
1.04, 12.9 |
0.044 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
1.06 |
0.48, 2.38 |
0.9 |
| cockcroft |
87 |
1.02 |
1.00, 1.03 |
0.034 |
final_master_no_sarcopenia cmp_time_hosp
final_master_no_sarcopenia$cmp_status_hosp <- as.factor(final_master_no_sarcopenia$cmp_status_hosp)
tidycmprsk::crr(Surv(cmp_time_hosp,cmp_status_hosp) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
371 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.96 |
0.58, 1.57 |
0.9 |
| age |
371 |
1.01 |
0.99, 1.02 |
0.6 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.07 |
0.72, 1.60 |
0.7 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.73 |
1.06, 2.80 |
0.027 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.92 |
0.63, 1.34 |
0.7 |
| cockcroft |
371 |
1.01 |
1.00, 1.01 |
0.076 |
final_master_sarcopenia cmp_time_side_effect
final_master_sarcopenia$cmp_status_side_effect <- as.factor(final_master_sarcopenia$cmp_status_side_effect)
tidycmprsk::crr(Surv(cmp_time_side_effect,cmp_status_side_effect) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
87 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.42 |
0.15, 1.16 |
0.094 |
| age |
87 |
1.00 |
0.95, 1.05 |
>0.9 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.17 |
0.39, 3.56 |
0.8 |
| cancer_stage |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
2.51 |
0.72, 8.73 |
0.2 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.88 |
0.36, 2.15 |
0.8 |
| cockcroft |
87 |
1.02 |
1.00, 1.03 |
0.10 |
final_master_no_sarcopenia cmp_time_side_effect
final_master_no_sarcopenia$cmp_status_side_effect <- as.factor(final_master_no_sarcopenia$cmp_status_side_effect)
tidycmprsk::crr(Surv(cmp_time_side_effect,cmp_status_side_effect) ~ cys_c_egfr_ge_60 + age + sex + cancer_stage + ecog_score_2 + cockcroft,failcode=1,cencode=0, data = final_master_no_sarcopenia) %>% tbl_regression(exp = TRUE) %>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
371 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.61 |
0.32, 1.16 |
0.13 |
| age |
371 |
0.99 |
0.97, 1.02 |
0.5 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.78 |
0.45, 1.36 |
0.4 |
| cancer_stage |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
1.17 |
0.61, 2.22 |
0.6 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.71 |
0.42, 1.21 |
0.2 |
| cockcroft |
371 |
1.00 |
0.99, 1.01 |
>0.9 |
death coxph final_master_sarcopenia
table(final_master_sarcopenia$death_90,final_master_sarcopenia$cancer_stage)
##
## 1 2
## 0 19 59
## 1 0 9
coxph(Surv(time_to_death_90,death_90) ~ cys_c_egfr_ge_60 + age + sex + ecog_score_2 + cockcroft, data = final_master_sarcopenia)%>% tbl_regression(exp = TRUE)%>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
87 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.66 |
0.14, 3.21 |
0.6 |
| age |
87 |
1.00 |
0.90, 1.10 |
>0.9 |
| sex |
87 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.47 |
0.05, 4.26 |
0.5 |
| ecog_score_2 |
87 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.23 |
0.03, 1.88 |
0.2 |
| cockcroft |
87 |
1.0 |
0.96, 1.03 |
0.7 |
death coxph final_master_no_sarcopenia
coxph(Surv(time_to_death_90,death_90) ~ cys_c_egfr_ge_60 + age + sex + ecog_score_2 + cockcroft, data = final_master_no_sarcopenia)%>% tbl_regression(exp = TRUE)%>% add_n()
| Characteristic |
N |
HR |
95% CI |
p-value |
| cys_c_egfr_ge_60 |
371 |
|
|
|
| <60 |
|
— |
— |
|
| >=60 |
|
0.09 |
0.02, 0.40 |
0.001 |
| age |
371 |
1.02 |
0.96, 1.09 |
0.6 |
| sex |
371 |
|
|
|
| 1 |
|
— |
— |
|
| 2 |
|
0.96 |
0.31, 3.00 |
>0.9 |
| ecog_score_2 |
371 |
|
|
|
| >=1 |
|
— |
— |
|
| 1 |
|
0.33 |
0.07, 1.53 |
0.2 |
| cockcroft |
371 |
1.03 |
1.01, 1.04 |
<0.001 |