pacman::p_load(dplyr, readxl, tidyverse, raster, vegan, tigris, sf, sp, plotly, ggrepel, kableExtra, brms, parameters, gt, katex, emmeans, bayestestR, cowplot, ggeffects, patchwork)

## Set seed
set.seed(97)

# Tree PCQ Data
tree_data <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
                        sheet = "Tree_PCQ")
tree_data <- tree_data %>%
  filter(Site %in% c("BRSF", "WSF", "Jay"))

# Soil Data
fuel_data <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
                        sheet = "Fuel_Sampling")
fuel_data <- fuel_data %>%
  filter(Site %in% c("BRSF", "WSF", "Jay"))

Seasonal_Fuel_Sampling <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                     sheet = "Fuel_Data")
Seasonal_Fuel_Sampling <- Seasonal_Fuel_Sampling %>%
  filter(Site %in% c("BRSF", "WSF", "Jay"))

# Seasonal Sampling Locations
Seasonal_Sampling_Locations <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                          sheet = "Sites")
Seasonal_Sampling_Locations <- Seasonal_Sampling_Locations %>%
  filter(Site %in% c("BRSF", "WSF", "Jay"))

# Bag Weights
bag_weights <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                          sheet = "Bag_Avg")
## New names:
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
# Site Data
CogonSites <- read_excel("~/Library/CloudStorage/OneDrive-UniversityofFlorida/Desktop/School/PHD/01_Projects/05_SharedData/CogonSites_FL_AL_MS.xlsx")
CogonSites <- CogonSites %>%
  filter(Site %in% c("BRSF", "WSF", "Jay"))

# Only include Florida/Alabama Sites
CogonSites <- CogonSites[CogonSites$Site != "CNF" & CogonSites$Site != "DSNF", ]

Filter All data to only include specified species (Per PLANTS database)

Filter all data to only include species found at 3% of all sites

#Fuel Dynamics ## Combine seasonal fuel data

Net Weight Method

Live

Comb_Live_Data_Net <- Combined_Data_Net %>%
  mutate(
    Live_Bag = as.numeric(Live_Bag),
    Live_Weight_Post = as.numeric(Live_Weight_Post),
    Live_Weight_Initial = as.numeric(Live_Weight_Initial),
    Live_Height = as.numeric(Height),
    Net_Live = as.numeric(Net_Live),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Live_Height = as.numeric(Height)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  mutate(biomass = Net_Live)

Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  filter(biomass >= 0)

Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Live_Weight_Initial - Live_Bag) - Net_Live) / Net_Live * 100, NA))

avg_live_values_Net <- Comb_Live_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_live_biomass = mean(biomass, na.rm = TRUE),
            avg_live_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            avg_height = mean(Live_Height, na.rm = TRUE) / 100,
            .groups = "drop")

Dead

Comb_Dead_Data_Net <- Combined_Data_Net %>%
  mutate(
    Dead_Bag = as.numeric(Dead_Bag),
    Dead_Weight_Post = as.numeric(Dead_Weight_Post),
    Dead_Weight_Initial = as.numeric(Dead_Weight_Initial),
    Net_Dead = as.numeric(Net_Dead),
    Status = as.character(Status)  # Status as a character
  )

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  mutate(biomass = Net_Dead)

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  filter(biomass >= 0)

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Dead_Weight_Initial - Dead_Bag) - Net_Dead) / Net_Dead * 100, NA))

avg_dead_values_Net <- Comb_Dead_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_dead_biomass = mean(biomass, na.rm = TRUE),
            avg_dead_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Litter

Comb_Litter_Data_Net <- Combined_Data_Net %>%
  mutate(
    Litter_Bag = as.numeric(Litter_Bag),
    Litter_Weight_Post = as.numeric(Litter_Weight_Post),
    Litter_Weight_Initial = as.numeric(Litter_Weight_Initial),
    Net_Litter = as.numeric(Net_Litter),
    Status = as.character(Status)  # Status as a character
  )

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  mutate(biomass = Net_Litter)

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  filter(biomass >= 0)

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Litter_Weight_Initial - Litter_Bag) - Net_Litter) / Net_Litter * 100, NA))

avg_litter_values_Net <- Comb_Litter_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_litter_biomass = mean(biomass, na.rm = TRUE),
            avg_litter_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Average Bag Weight Method

Live

Comb_Live_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Live_Bag = as.numeric(Live_Bag),
    Live_Weight_Post = as.numeric(Live_Weight_Post),
    Live_Weight_Initial = as.numeric(Live_Weight_Initial),
    Live_Height = as.numeric(Height),
    Dry_LiveBag = as.numeric(Dry_LiveBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There were 2 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `Live_Height = as.numeric(Height)`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  mutate(biomass = Live_Weight_Post - Dry_LiveBag)

Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  filter(biomass >= 0)

Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Live_Weight_Initial - Live_Weight_Post) / biomass * 100, NA))

avg_live_values_Avg <- Comb_Live_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_live_biomass = mean(biomass, na.rm = TRUE),
            avg_live_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            avg_height = mean(Live_Height, na.rm = TRUE) / 100,
            .groups = "drop")

Dead

Comb_Dead_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Dead_Bag = as.numeric(Dead_Bag),
    Dead_Weight_Post = as.numeric(Dead_Weight_Post),
    Dead_Weight_Initial = as.numeric(Dead_Weight_Initial),
    Dry_DeadBag = as.numeric(Dry_DeadBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Dry_DeadBag = as.numeric(Dry_DeadBag)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  mutate(biomass = Dead_Weight_Post - Dry_DeadBag)

Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  filter(biomass >= 0)

Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Dead_Weight_Initial - Dead_Weight_Post) / biomass * 100, NA))

avg_dead_values_Avg <- Comb_Dead_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_dead_biomass = mean(biomass, na.rm = TRUE),
            avg_dead_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Litter

Comb_Litter_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Litter_Bag = as.numeric(Litter_Bag),
    Litter_Weight_Post = as.numeric(Litter_Weight_Post),
    Litter_Weight_Initial = as.numeric(Litter_Weight_Initial),
    Dry_LitterBag = as.numeric(Dry_LitterBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Dry_LitterBag = as.numeric(Dry_LitterBag)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  mutate(biomass = Litter_Weight_Post - Dry_LitterBag)

Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  filter(biomass >= 0)

Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Litter_Weight_Initial - Litter_Weight_Post) / biomass * 100, NA))

avg_litter_values_Avg <- Comb_Litter_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_litter_biomass = mean(biomass, na.rm = TRUE),
            avg_litter_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Fill in gaps within Net method with Avg method.

# Live
avg_live_values_Combined <- avg_live_values_Net %>%
  full_join(avg_live_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_live_biomass = coalesce(avg_live_biomass_Net, avg_live_biomass_Avg),
    avg_live_moisture_content = coalesce(avg_live_moisture_content_Net, avg_live_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    avg_height = coalesce(avg_height_Net, avg_height_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_live_biomass, avg_live_moisture_content, avg_soil_moisture, avg_height)

# Dead
avg_dead_values_Combined <- avg_dead_values_Net %>%
  full_join(avg_dead_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_dead_biomass = coalesce(avg_dead_biomass_Net, avg_dead_biomass_Avg),
    avg_dead_moisture_content = coalesce(avg_dead_moisture_content_Net, avg_dead_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_dead_biomass, avg_dead_moisture_content, avg_soil_moisture)

# Litter
avg_litter_values_Combined <- avg_litter_values_Net %>%
  full_join(avg_litter_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_litter_biomass = coalesce(avg_litter_biomass_Net, avg_litter_biomass_Avg),
    avg_litter_moisture_content = coalesce(avg_litter_moisture_content_Net, avg_litter_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_litter_biomass, avg_litter_moisture_content, avg_soil_moisture)

Combine summer sampling (CogonSites) locations with winter sampling locations

Merge avg_live_values, avg_dead_values, and avg_litter_values

Average Fuel Values by Invasion Status and Season

There are 10,000 square meters in a hectare. Biomass is from 25 cm by 25 cm quadrats, so we have 0.0625 square meters. Therefore, 10,000/0.0625 = 160,000. So biomass gets multiplied by 160,000 and divided by 1,000,000 to convert from grams to tonnes.

25th, 50th and 75 quantiles of fuel values

Fuel_model_quantiles <- avg_fuel_values %>%
  group_by(Status, Season) %>%
  summarize(avg_live_biomass_25 = quantile(avg_live_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_live_biomass_50 = quantile(avg_live_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_live_biomass_75 = quantile(avg_live_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_dead_biomass_25 = quantile(avg_dead_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_dead_biomass_50 = quantile(avg_dead_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_dead_biomass_75 = quantile(avg_dead_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_litter_biomass_25 = quantile(avg_litter_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_litter_biomass_50 = quantile(avg_litter_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_litter_biomass_75 = quantile(avg_litter_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_live_moisture_content_25 = quantile(avg_live_moisture_content, 0.25, na.rm = TRUE),
            avg_live_moisture_content_50 = quantile(avg_live_moisture_content, 0.50, na.rm = TRUE),
            avg_live_moisture_content_75 = quantile(avg_live_moisture_content, 0.75, na.rm = TRUE),
            avg_dead_moisture_content_25 = quantile(avg_dead_moisture_content, 0.25, na.rm = TRUE),
            avg_dead_moisture_content_50 = quantile(avg_dead_moisture_content, 0.50, na.rm = TRUE),
            avg_dead_moisture_content_75 = quantile(avg_dead_moisture_content, 0.75, na.rm = TRUE),
            avg_litter_moisture_content_25 = quantile(avg_litter_moisture_content, 0.25, na.rm = TRUE),
            avg_litter_moisture_content_50 = quantile(avg_litter_moisture_content, 0.50, na.rm = TRUE),
            avg_litter_moisture_content_75 = quantile(avg_litter_moisture_content, 0.75, na.rm = TRUE),
            avg_soil_moisture_25 = quantile(avg_soil_moisture, 0.25, na.rm = TRUE),
            avg_soil_moisture_50 = quantile(avg_soil_moisture, 0.50, na.rm = TRUE),
            avg_soil_moisture_75 = quantile(avg_soil_moisture, 0.75, na.rm = TRUE),
            avg_height_25 = quantile(avg_height, 0.25, na.rm = TRUE),
            avg_height_50 = quantile(avg_height, 0.50, na.rm = TRUE),
            avg_height_75 = quantile(avg_height, 0.75, na.rm = TRUE),
            .groups = "drop")

# Kable table of quantiles
kable(Fuel_model_quantiles)
Status Season avg_live_biomass_25 avg_live_biomass_50 avg_live_biomass_75 avg_dead_biomass_25 avg_dead_biomass_50 avg_dead_biomass_75 avg_litter_biomass_25 avg_litter_biomass_50 avg_litter_biomass_75 avg_live_moisture_content_25 avg_live_moisture_content_50 avg_live_moisture_content_75 avg_dead_moisture_content_25 avg_dead_moisture_content_50 avg_dead_moisture_content_75 avg_litter_moisture_content_25 avg_litter_moisture_content_50 avg_litter_moisture_content_75 avg_soil_moisture_25 avg_soil_moisture_50 avg_soil_moisture_75 avg_height_25 avg_height_50 avg_height_75
Invaded Green_Up 1.1562667 2.1616000 3.4720000 1.8922667 2.4192000 3.108267 3.486400 4.974400 9.215467 54.66557 117.06158 133.0470 9.195465 10.39843 16.57708 9.487179 11.44906 14.92138 4.833333 5.766667 7.10000 0.5600000 0.7533333 0.9500000
Invaded Summer 1.7720000 2.4472000 3.7221333 1.2645333 2.3952000 4.480933 2.325600 4.085333 6.754400 133.21727 147.42139 168.2493 13.454489 18.01118 27.29767 11.681481 21.20772 35.50451 6.316667 10.900000 12.95833 0.6633333 0.8050000 1.0100000
Invaded Winter 0.9458667 1.4976000 2.4898667 1.9476000 3.4101333 6.198267 3.023867 5.620267 7.916800 95.76815 119.49396 151.1411 13.788625 19.72430 36.73561 15.979345 27.86209 47.96388 5.933333 10.916667 13.89167 0.7116667 0.8500000 0.9733333
Non_Invaded Green_Up 0.3685333 0.5088000 0.7546667 0.3370667 0.7482667 1.361600 3.924267 6.187200 8.342933 51.67528 80.33146 146.1973 9.750584 15.46700 17.59368 7.290356 12.30107 17.27920 3.066667 4.033333 9.30000 0.2333333 0.3333333 0.4366667
Non_Invaded Summer 0.2821333 0.5946667 1.0218667 0.1384000 0.3152000 0.896000 3.992200 6.060000 7.308933 133.27391 163.91720 191.7656 8.801051 15.42178 29.73250 10.007541 21.21443 47.66848 3.741667 5.500000 11.65833 0.1533333 0.2366667 0.3366667
Non_Invaded Winter 0.2112000 0.2728000 0.5125333 0.3168000 0.7242667 1.806667 4.612133 6.603733 9.257733 30.64949 85.18529 184.4349 11.679660 16.25337 49.32975 15.910721 42.65335 56.80946 6.233333 9.566667 12.37500 0.1116667 0.2366667 0.3583333

Fuel Table

Fuel and Moisture Quantiles by Invasion Status and Season
Variable Invaded - Spring Invaded - Summer Invaded - Winter Non Invaded - Spring Non Invaded - Summer Non Invaded - Winter
Live Biomass (25%) 1.16 1.77 0.95 0.37 0.28 0.21
Live Biomass (50%) 2.16 2.45 1.50 0.51 0.59 0.27
Live Biomass (75%) 3.47 3.72 2.49 0.75 1.02 0.51
Dead Biomass (25%) 1.89 1.26 1.95 0.34 0.14 0.32
Dead Biomass (50%) 2.42 2.40 3.41 0.75 0.32 0.72
Dead Biomass (75%) 3.11 4.48 6.20 1.36 0.90 1.81
Litter Biomass (25%) 3.49 2.33 3.02 3.92 3.99 4.61
Litter Biomass (50%) 4.97 4.09 5.62 6.19 6.06 6.60
Litter Biomass (75%) 9.22 6.75 7.92 8.34 7.31 9.26
Live Moisture Content (25%) 54.67 133.22 95.77 51.68 133.27 30.65
Live Moisture Content (50%) 117.06 147.42 119.49 80.33 163.92 85.19
Live Moisture Content (75%) 133.05 168.25 151.14 146.20 191.77 184.43
Dead Moisture Content (25%) 9.20 13.45 13.79 9.75 8.80 11.68
Dead Moisture Content (50%) 10.40 18.01 19.72 15.47 15.42 16.25
Dead Moisture Content (75%) 16.58 27.30 36.74 17.59 29.73 49.33
Litter Moisture Content (25%) 9.49 11.68 15.98 7.29 10.01 15.91
Litter Moisture Content (50%) 11.45 21.21 27.86 12.30 21.21 42.65
Litter Moisture Content (75%) 14.92 35.50 47.96 17.28 47.67 56.81
Soil Moisture (25%) 4.83 6.32 5.93 3.07 3.74 6.23
Soil Moisture (50%) 5.77 10.90 10.92 4.03 5.50 9.57
Soil Moisture (75%) 7.10 12.96 13.89 9.30 11.66 12.38
Height (25%) 0.56 0.66 0.71 0.23 0.15 0.11
Height (50%) 0.75 0.80 0.85 0.33 0.24 0.24
Height (75%) 0.95 1.01 0.97 0.44 0.34 0.36
## <div id="cxlzrxjqsa" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#cxlzrxjqsa table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #cxlzrxjqsa thead, #cxlzrxjqsa tbody, #cxlzrxjqsa tfoot, #cxlzrxjqsa tr, #cxlzrxjqsa td, #cxlzrxjqsa th {
##   border-style: none;
## }
## 
## #cxlzrxjqsa p {
##   margin: 0;
##   padding: 0;
## }
## 
## #cxlzrxjqsa .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: 100%;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #cxlzrxjqsa .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #cxlzrxjqsa .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #cxlzrxjqsa .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #cxlzrxjqsa .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #cxlzrxjqsa .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #cxlzrxjqsa .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #cxlzrxjqsa .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #cxlzrxjqsa .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #cxlzrxjqsa .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #cxlzrxjqsa .gt_row {
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #cxlzrxjqsa .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #cxlzrxjqsa .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #cxlzrxjqsa .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_left {
##   text-align: left;
## }
## 
## #cxlzrxjqsa .gt_center {
##   text-align: center;
## }
## 
## #cxlzrxjqsa .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #cxlzrxjqsa .gt_font_normal {
##   font-weight: normal;
## }
## 
## #cxlzrxjqsa .gt_font_bold {
##   font-weight: bold;
## }
## 
## #cxlzrxjqsa .gt_font_italic {
##   font-style: italic;
## }
## 
## #cxlzrxjqsa .gt_super {
##   font-size: 65%;
## }
## 
## #cxlzrxjqsa .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #cxlzrxjqsa .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #cxlzrxjqsa .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #cxlzrxjqsa .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #cxlzrxjqsa .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #cxlzrxjqsa .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #cxlzrxjqsa .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #cxlzrxjqsa .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #cxlzrxjqsa div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="7" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Fuel and Moisture Quantiles by Invasion Status and Season</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Variable">Variable</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Spring">Invaded - Spring</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Summer">Invaded - Summer</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Winter">Invaded - Winter</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Spring">Non Invaded - Spring</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Summer">Non Invaded - Summer</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Winter">Non Invaded - Winter</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">1.16</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.77</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.95</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.37</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.28</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.21</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">2.16</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.45</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">1.50</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.51</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.59</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.27</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.47</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">3.72</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">2.49</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">1.02</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.51</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">1.89</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.26</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">1.95</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.34</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.14</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.32</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">2.42</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.40</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">3.41</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.32</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.72</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.11</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">4.48</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">6.20</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">1.36</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.90</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">1.81</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.49</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.33</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">3.02</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">3.92</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">3.99</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">4.61</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">4.97</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">4.09</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">5.62</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">6.19</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">6.06</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">6.60</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.22</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">6.75</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">7.92</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">8.34</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">7.31</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">9.26</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">54.67</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">133.22</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">95.77</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">51.68</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">133.27</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">30.65</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">117.06</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">147.42</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">119.49</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">80.33</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">163.92</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">85.19</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">133.05</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">168.25</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">151.14</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">146.20</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">191.77</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">184.43</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.20</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">13.45</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">13.79</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">9.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">8.80</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">11.68</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">10.40</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">18.01</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">19.72</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">15.47</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">15.42</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">16.25</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">16.58</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">27.30</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">36.74</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">17.59</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">29.73</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">49.33</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.49</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">11.68</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">15.98</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">7.29</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">10.01</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">15.91</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">11.45</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">21.21</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">27.86</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">12.30</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">21.21</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">42.65</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">14.92</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">35.50</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">47.96</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">17.28</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">47.67</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">56.81</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">4.83</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">6.32</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">5.93</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">3.07</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">3.74</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">6.23</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">5.77</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">10.90</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">10.92</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">4.03</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">5.50</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">9.57</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">7.10</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">12.96</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">13.89</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">9.30</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">11.66</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">12.38</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.56</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">0.66</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.71</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.23</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.15</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.11</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">0.80</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.85</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.33</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.24</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.24</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.95</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.01</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.97</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.44</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.34</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.36</td></tr>
##   </tbody>
##   
## </table>
## </div>

Objective 1- Cogongrass relationship with fuel dynamics

Data Cleaning

GLMM Live Fuel Biomass

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_live_biomass ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.39      1.42     0.06     5.17 1.00     1992     4069
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    -21.48     30.19  -101.84    13.22 1.00     2703
## StatusInvaded                 18.91      3.68    11.83    26.17 1.00     6348
## SeasonSpring                  -0.11      0.18    -0.45     0.24 1.00     7815
## SeasonWinter                  -0.23      0.16    -0.53     0.08 1.00     7713
## Latitude                       0.74      1.01    -0.42     3.42 1.00     2701
## StatusInvaded:SeasonSpring    -0.70      0.30    -1.29    -0.09 1.00     8461
## StatusInvaded:SeasonWinter    -0.99      0.28    -1.54    -0.43 1.00     9062
## StatusInvaded:Latitude        -0.57      0.12    -0.81    -0.34 1.00     6366
##                            Tail_ESS
## Intercept                      3239
## StatusInvaded                  5499
## SeasonSpring                   7975
## SeasonWinter                   7903
## Latitude                       3318
## StatusInvaded:SeasonSpring     8018
## StatusInvaded:SeasonWinter     8903
## StatusInvaded:Latitude         5544
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.59      0.08     0.45     0.75 1.00     7499     7593
## nu        2.40      0.67     1.45     4.00 1.00     6990     5116
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     1.96     1.626      2.30
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     1.25     0.766      1.78
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     0.96     0.523      1.43
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |   pd
## -------------------------------------
## Invaded - Non_Invaded | Summer | 100%
## Invaded - Non_Invaded | Spring | 100%
## Invaded - Non_Invaded | Winter | 100%

Live Biomass Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="vpcbzhsspi" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#vpcbzhsspi table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #vpcbzhsspi thead, #vpcbzhsspi tbody, #vpcbzhsspi tfoot, #vpcbzhsspi tr, #vpcbzhsspi td, #vpcbzhsspi th {
##   border-style: none;
## }
## 
## #vpcbzhsspi p {
##   margin: 0;
##   padding: 0;
## }
## 
## #vpcbzhsspi .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #vpcbzhsspi .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #vpcbzhsspi .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #vpcbzhsspi .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #vpcbzhsspi .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #vpcbzhsspi .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #vpcbzhsspi .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #vpcbzhsspi .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #vpcbzhsspi .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #vpcbzhsspi .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #vpcbzhsspi .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #vpcbzhsspi .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #vpcbzhsspi .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #vpcbzhsspi .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #vpcbzhsspi .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vpcbzhsspi .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #vpcbzhsspi .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #vpcbzhsspi .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #vpcbzhsspi .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vpcbzhsspi .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #vpcbzhsspi .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vpcbzhsspi .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #vpcbzhsspi .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vpcbzhsspi .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #vpcbzhsspi .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vpcbzhsspi .gt_left {
##   text-align: left;
## }
## 
## #vpcbzhsspi .gt_center {
##   text-align: center;
## }
## 
## #vpcbzhsspi .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #vpcbzhsspi .gt_font_normal {
##   font-weight: normal;
## }
## 
## #vpcbzhsspi .gt_font_bold {
##   font-weight: bold;
## }
## 
## #vpcbzhsspi .gt_font_italic {
##   font-style: italic;
## }
## 
## #vpcbzhsspi .gt_super {
##   font-size: 65%;
## }
## 
## #vpcbzhsspi .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #vpcbzhsspi .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #vpcbzhsspi .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #vpcbzhsspi .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #vpcbzhsspi .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #vpcbzhsspi .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #vpcbzhsspi .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #vpcbzhsspi .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #vpcbzhsspi div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Live Biomass</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">−10.60</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">18.56</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−90.50</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">21.47</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.221</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">2,676</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">3,232</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">0.37</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">0.62</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−0.59</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">3.14</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.802</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">2,671</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">3,312</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">−0.11</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">0.17</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−0.45</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">0.25</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.269</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">7,782</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">7,942</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right">−0.23</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right">0.15</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right">−0.54</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right">0.07</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right">0.070</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right">7,711</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right">7,854</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right" style="font-weight: bold;">18.86</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right" style="font-weight: bold;">3.65</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">11.61</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">25.93</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">1.000</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">6,311</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">5,451</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right" style="font-weight: bold;">−0.57</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.12</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−0.81</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−0.34</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.000</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">6,324</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">5,494</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right" style="font-weight: bold;">−0.70</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.31</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−1.31</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−0.12</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.012</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">8,379</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">7,997</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right" style="font-weight: bold;">−1.00</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.28</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−1.54</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−0.43</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.001</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">9,046</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">8,890</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Live Biomass

## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

Conditional Effects Live Biomass

GLMM Dead Fuel Biomass

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_dead_biomass ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.79      0.98     0.02     3.49 1.00     2717     4115
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                     -1.69     19.34   -56.65    27.29 1.00     4677
## StatusInvaded                 14.59      7.77    -0.10    29.97 1.00     6046
## SeasonSpring                   0.45      0.28    -0.08     1.01 1.00     8672
## SeasonWinter                   0.40      0.26    -0.07     0.94 1.00     8977
## Latitude                       0.07      0.64    -0.90     1.89 1.00     4691
## StatusInvaded:SeasonSpring    -0.26      0.45    -1.16     0.58 1.00     8156
## StatusInvaded:SeasonWinter     0.77      0.63    -0.47     2.00 1.00     8926
## StatusInvaded:Latitude        -0.42      0.25    -0.92     0.07 1.00     6061
##                            Tail_ESS
## Intercept                      2730
## StatusInvaded                  7112
## SeasonSpring                   8586
## SeasonWinter                   8111
## Latitude                       2814
## StatusInvaded:SeasonSpring     8460
## StatusInvaded:SeasonWinter     8771
## StatusInvaded:Latitude         7144
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.89      0.13     0.65     1.17 1.00     7359     6876
## nu        1.77      0.43     1.16     2.80 1.00     6924     5175
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Warning: There were 1 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_dead_biomass ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.68      0.76     0.01     2.80 1.01     1659     1183
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept        -0.19     14.31   -35.80    23.87 1.00     1286      489
## StatusInvaded     1.88      0.18     1.52     2.25 1.00     8429     6863
## SeasonSpring      0.33      0.21    -0.07     0.75 1.00     5586     2600
## SeasonWinter      0.44      0.23     0.01     0.92 1.00     5989     6885
## Latitude          0.02      0.48    -0.79     1.20 1.00     1233      387
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.83      0.13     0.60     1.10 1.00     4442     5641
## nu        1.60      0.36     1.08     2.46 1.00     4054     3151
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     2.13      1.53      2.81
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     1.89      1.13      2.61
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     2.95      1.75      4.11
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |   pd
## -------------------------------------
## Invaded - Non_Invaded | Summer | 100%
## Invaded - Non_Invaded | Spring | 100%
## Invaded - Non_Invaded | Winter | 100%

Dead Biomass Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="zqhbupmzfw" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#zqhbupmzfw table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #zqhbupmzfw thead, #zqhbupmzfw tbody, #zqhbupmzfw tfoot, #zqhbupmzfw tr, #zqhbupmzfw td, #zqhbupmzfw th {
##   border-style: none;
## }
## 
## #zqhbupmzfw p {
##   margin: 0;
##   padding: 0;
## }
## 
## #zqhbupmzfw .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #zqhbupmzfw .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #zqhbupmzfw .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #zqhbupmzfw .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #zqhbupmzfw .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #zqhbupmzfw .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #zqhbupmzfw .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #zqhbupmzfw .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #zqhbupmzfw .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #zqhbupmzfw .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #zqhbupmzfw .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #zqhbupmzfw .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #zqhbupmzfw .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #zqhbupmzfw .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #zqhbupmzfw .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #zqhbupmzfw .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #zqhbupmzfw .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #zqhbupmzfw .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #zqhbupmzfw .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #zqhbupmzfw .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #zqhbupmzfw .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #zqhbupmzfw .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #zqhbupmzfw .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #zqhbupmzfw .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #zqhbupmzfw .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #zqhbupmzfw .gt_left {
##   text-align: left;
## }
## 
## #zqhbupmzfw .gt_center {
##   text-align: center;
## }
## 
## #zqhbupmzfw .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #zqhbupmzfw .gt_font_normal {
##   font-weight: normal;
## }
## 
## #zqhbupmzfw .gt_font_bold {
##   font-weight: bold;
## }
## 
## #zqhbupmzfw .gt_font_italic {
##   font-style: italic;
## }
## 
## #zqhbupmzfw .gt_super {
##   font-size: 65%;
## }
## 
## #zqhbupmzfw .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #zqhbupmzfw .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #zqhbupmzfw .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #zqhbupmzfw .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #zqhbupmzfw .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #zqhbupmzfw .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #zqhbupmzfw .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #zqhbupmzfw .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #zqhbupmzfw div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Dead Biomass</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">1.67</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">7.89</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−49.68</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">30.40</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.596</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">4,664</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">2,722</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">−0.04</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">0.26</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−1.01</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">1.66</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.423</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">4,677</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">2,805</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">0.45</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">0.27</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−0.08</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">1.01</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.953</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">8,623</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">8,551</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right">0.39</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right">0.25</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right">−0.09</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right">0.92</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right">0.950</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right">8,922</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right">8,079</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right" style="font-weight: bold;">14.44</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right" style="font-weight: bold;">7.82</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">0.21</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">30.25</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.974</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">6,031</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">7,090</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.001</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">−0.41</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">0.26</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−0.91</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">0.07</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.047</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">6,046</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">7,120</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">−0.26</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">0.44</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−1.16</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">0.58</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.277</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">8,091</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">8,443</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">0.78</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">0.63</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−0.49</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">1.98</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.884</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">8,845</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">8,781</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.001</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Dead Biomass

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Litter Fuel Biomass

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_litter_biomass ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.00      2.65     0.33    10.17 1.00     2853     4003
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                     47.00     81.24   -47.14   274.66 1.00     3582
## StatusInvaded                 -7.14     14.47   -35.30    21.52 1.00     7845
## SeasonSpring                   1.07      0.93    -0.76     2.96 1.00     9795
## SeasonWinter                   0.89      0.82    -0.71     2.53 1.00     9814
## Latitude                      -1.38      2.72    -9.01     1.75 1.00     3578
## StatusInvaded:SeasonSpring     0.72      1.25    -1.76     3.19 1.00    10123
## StatusInvaded:SeasonWinter     0.55      1.20    -1.87     2.81 1.00     9329
## StatusInvaded:Latitude         0.20      0.48    -0.76     1.14 1.00     7907
##                            Tail_ESS
## Intercept                      3300
## StatusInvaded                  8159
## SeasonSpring                   8334
## SeasonWinter                   8820
## Latitude                       3300
## StatusInvaded:SeasonSpring     8869
## StatusInvaded:SeasonWinter     8873
## StatusInvaded:Latitude         8076
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     2.82      0.31     2.25     3.44 1.00     7739     8274
## nu        5.41      3.11     2.45    13.02 1.00     8080     7044
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Warning: There were 26 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_litter_biomass ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.90      2.35     0.34     9.63 1.00     2179     1341
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept        41.68     69.30   -47.17   236.31 1.00     2636     1137
## StatusInvaded    -0.94      0.48    -1.88     0.01 1.00    10075     7979
## SeasonSpring      1.42      0.70     0.06     2.83 1.00     5539     2033
## SeasonWinter      1.15      0.58    -0.01     2.27 1.00    10048     8062
## Latitude         -1.21      2.32    -7.68     1.73 1.00     2631     1134
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     2.83      0.29     2.28     3.43 1.00     4987     6185
## nu        5.62      3.20     2.56    13.61 1.00     6459     6905
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -1.235     -2.57    0.0387
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -0.513     -2.69    1.6490
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -0.664     -2.62    1.2518
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |     pd
## ---------------------------------------
## Invaded - Non_Invaded | Summer | 96.61%
## Invaded - Non_Invaded | Spring | 67.98%
## Invaded - Non_Invaded | Winter | 75.47%

Litter Biomass Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="vmhrjdybwn" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#vmhrjdybwn table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #vmhrjdybwn thead, #vmhrjdybwn tbody, #vmhrjdybwn tfoot, #vmhrjdybwn tr, #vmhrjdybwn td, #vmhrjdybwn th {
##   border-style: none;
## }
## 
## #vmhrjdybwn p {
##   margin: 0;
##   padding: 0;
## }
## 
## #vmhrjdybwn .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #vmhrjdybwn .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #vmhrjdybwn .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #vmhrjdybwn .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #vmhrjdybwn .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #vmhrjdybwn .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #vmhrjdybwn .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #vmhrjdybwn .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #vmhrjdybwn .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #vmhrjdybwn .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #vmhrjdybwn .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #vmhrjdybwn .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #vmhrjdybwn .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #vmhrjdybwn .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #vmhrjdybwn .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vmhrjdybwn .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #vmhrjdybwn .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #vmhrjdybwn .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #vmhrjdybwn .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vmhrjdybwn .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #vmhrjdybwn .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vmhrjdybwn .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #vmhrjdybwn .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vmhrjdybwn .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #vmhrjdybwn .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #vmhrjdybwn .gt_left {
##   text-align: left;
## }
## 
## #vmhrjdybwn .gt_center {
##   text-align: center;
## }
## 
## #vmhrjdybwn .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #vmhrjdybwn .gt_font_normal {
##   font-weight: normal;
## }
## 
## #vmhrjdybwn .gt_font_bold {
##   font-weight: bold;
## }
## 
## #vmhrjdybwn .gt_font_italic {
##   font-style: italic;
## }
## 
## #vmhrjdybwn .gt_super {
##   font-size: 65%;
## }
## 
## #vmhrjdybwn .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #vmhrjdybwn .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #vmhrjdybwn .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #vmhrjdybwn .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #vmhrjdybwn .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #vmhrjdybwn .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #vmhrjdybwn .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #vmhrjdybwn .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #vmhrjdybwn div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Litter Biomass</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">23.67</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">44.75</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−62.10</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">239.60</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.740</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">3,546</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">3,279</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">−0.61</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">1.50</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−7.58</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">2.48</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.318</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">3,543</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">3,279</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">1.06</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">0.92</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−0.84</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">2.86</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.876</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">9,769</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">8,297</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right">0.90</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right">0.82</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right">−0.68</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right">2.55</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right">0.862</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right">9,787</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right">8,772</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right">−7.24</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right">14.36</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right">−35.14</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right">21.57</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right">0.308</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right">7,865</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right">8,140</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">0.20</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">0.48</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−0.78</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">1.11</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.663</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">7,929</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">8,070</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">0.72</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">1.24</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−1.77</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">3.17</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.718</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">10,097</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">8,793</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">0.57</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">1.20</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−1.86</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">2.82</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.681</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">9,309</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">8,834</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Litter Biomass

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Live Moisture

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_live_moisture_content ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 133) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)    18.24     19.46     0.50    69.75 1.00     3487     5296
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    439.26    496.60  -401.92  1588.10 1.00     4964
## StatusInvaded               -203.99    271.70  -741.39   328.63 1.00     6478
## SeasonSpring                 -69.36     18.99  -106.03   -32.14 1.00     8543
## SeasonWinter                 -71.26     29.57  -129.69   -13.59 1.00     7459
## Latitude                      -9.15     16.56   -47.60    19.03 1.00     4985
## StatusInvaded:SeasonSpring    20.11     23.29   -25.55    65.56 1.00     8312
## StatusInvaded:SeasonWinter    41.02     32.42   -21.89   104.81 1.00     7376
## StatusInvaded:Latitude         6.38      9.07   -11.43    24.28 1.00     6523
##                            Tail_ESS
## Intercept                      3796
## StatusInvaded                  6828
## SeasonSpring                   8421
## SeasonWinter                   7532
## Latitude                       3865
## StatusInvaded:SeasonSpring     8263
## StatusInvaded:SeasonWinter     7312
## StatusInvaded:Latitude         6814
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    44.32      4.35    35.30    52.48 1.00     7981     7263
## nu       15.28     11.24     3.55    45.65 1.00     7804     8346
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Warning: There were 41 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_live_moisture_content ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 133) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)    18.03     18.09     0.56    68.10 1.00     2395     1650
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept       286.58    409.09  -477.83  1298.49 1.00     2440     1269
## StatusInvaded    -5.33      9.26   -23.58    12.64 1.00     9987     8198
## SeasonSpring    -56.17     10.63   -77.08   -35.29 1.00     8863     8436
## SeasonWinter    -38.05     11.86   -61.37   -15.05 1.00     9425     6963
## Latitude         -4.21     13.61   -37.80    21.14 1.00     2465     1312
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    45.07      3.87    37.63    52.86 1.00     7038     6493
## nu       16.93     11.40     4.55    47.67 1.00     7404     8696
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

## Warning: Removed 53 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 53 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Warning: Removed 53 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Removed 53 rows containing missing values or values outside the scale range
## (`geom_point()`).

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -14.28     -37.1      7.23
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     5.71     -34.8     45.55
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    26.53     -32.9     84.28
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |     pd
## ---------------------------------------
## Invaded - Non_Invaded | Summer | 89.58%
## Invaded - Non_Invaded | Spring | 61.14%
## Invaded - Non_Invaded | Winter | 81.66%

Live Moisture Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="ktngdghfij" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#ktngdghfij table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #ktngdghfij thead, #ktngdghfij tbody, #ktngdghfij tfoot, #ktngdghfij tr, #ktngdghfij td, #ktngdghfij th {
##   border-style: none;
## }
## 
## #ktngdghfij p {
##   margin: 0;
##   padding: 0;
## }
## 
## #ktngdghfij .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #ktngdghfij .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #ktngdghfij .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #ktngdghfij .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #ktngdghfij .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #ktngdghfij .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #ktngdghfij .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #ktngdghfij .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #ktngdghfij .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #ktngdghfij .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #ktngdghfij .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #ktngdghfij .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #ktngdghfij .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #ktngdghfij .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #ktngdghfij .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #ktngdghfij .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #ktngdghfij .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #ktngdghfij .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #ktngdghfij .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #ktngdghfij .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #ktngdghfij .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #ktngdghfij .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #ktngdghfij .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #ktngdghfij .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #ktngdghfij .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #ktngdghfij .gt_left {
##   text-align: left;
## }
## 
## #ktngdghfij .gt_center {
##   text-align: center;
## }
## 
## #ktngdghfij .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #ktngdghfij .gt_font_normal {
##   font-weight: normal;
## }
## 
## #ktngdghfij .gt_font_bold {
##   font-weight: bold;
## }
## 
## #ktngdghfij .gt_font_italic {
##   font-style: italic;
## }
## 
## #ktngdghfij .gt_super {
##   font-size: 65%;
## }
## 
## #ktngdghfij .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #ktngdghfij .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #ktngdghfij .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #ktngdghfij .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #ktngdghfij .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #ktngdghfij .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #ktngdghfij .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #ktngdghfij .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #ktngdghfij div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Live Moisture</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">400.42</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">339.69</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−508.11</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">1,458.36</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.881</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">4,957</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">3,729</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">−7.82</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">11.33</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−42.47</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">23.08</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.234</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">4,978</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">3,794</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right" style="font-weight: bold;">−69.17</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right" style="font-weight: bold;">19.18</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−106.45</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−32.68</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.000</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">8,529</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">8,406</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right" style="font-weight: bold;">−71.21</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right" style="font-weight: bold;">29.25</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−126.79</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−11.38</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.009</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">7,442</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">7,510</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right">−204.73</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right">270.29</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right">−728.48</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right">335.58</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right">0.223</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right">6,454</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right">6,778</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">6.46</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">9.06</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−11.53</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">24.09</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.760</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">6,500</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">6,760</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">20.08</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">23.19</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−25.56</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">65.56</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.805</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">8,193</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">8,225</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">40.80</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">31.77</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−22.71</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">103.94</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.897</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">7,353</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">7,287</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Live Moisture

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Dead Moisture

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_dead_moisture_content ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 135) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     5.75      4.67     0.65    17.94 1.00     4038     4387
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                      2.15    124.01  -249.74   257.94 1.00     5213
## StatusInvaded                 16.64     44.31   -70.79   104.29 1.00     6577
## SeasonSpring                   0.56      3.20    -5.97     6.64 1.00     7010
## SeasonWinter                   1.64      3.17    -4.71     7.74 1.00     6853
## Latitude                       0.36      4.15    -8.15     8.85 1.00     5178
## StatusInvaded:SeasonSpring    -4.40      3.72   -11.40     3.14 1.00     7007
## StatusInvaded:SeasonWinter     0.32      3.99    -7.37     8.40 1.00     6737
## StatusInvaded:Latitude        -0.45      1.50    -3.41     2.53 1.00     6509
##                            Tail_ESS
## Intercept                      4714
## StatusInvaded                  6915
## SeasonSpring                   7082
## SeasonWinter                   7551
## Latitude                       4822
## StatusInvaded:SeasonSpring     7173
## StatusInvaded:SeasonWinter     7562
## StatusInvaded:Latitude         6766
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     5.93      0.88     4.41     7.85 1.00     7557     8243
## nu        1.23      0.18     1.01     1.67 1.00     6331     4334
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  Family: student 
##   Links: mu = identity 
## Formula: avg_dead_moisture_content ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 135) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     5.61      4.16     0.69    16.41 1.00     3542     4374
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept        13.38    109.52  -224.74   256.49 1.00     4301     4155
## StatusInvaded     1.58      1.52    -1.44     4.59 1.00    10019     7856
## SeasonSpring     -2.34      1.73    -5.74     1.14 1.00     8520     7534
## SeasonWinter      1.36      1.97    -2.36     5.36 1.00     8008     7862
## Latitude          0.03      3.65    -8.13     7.99 1.00     4295     4090
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     5.97      0.87     4.46     7.85 1.00     8132     8018
## nu        1.24      0.18     1.01     1.69 1.00     6445     4213
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

## Warning: Removed 51 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 51 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Warning: Removed 51 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Removed 51 rows containing missing values or values outside the scale range
## (`geom_point()`).

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     3.40     -2.40      8.94
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    -1.11     -5.58      3.69
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded     3.61     -1.87      9.35
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |     pd
## ---------------------------------------
## Invaded - Non_Invaded | Summer | 87.88%
## Invaded - Non_Invaded | Spring | 68.53%
## Invaded - Non_Invaded | Winter | 90.16%

Dead Moisture Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="asbkuqtkac" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#asbkuqtkac table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #asbkuqtkac thead, #asbkuqtkac tbody, #asbkuqtkac tfoot, #asbkuqtkac tr, #asbkuqtkac td, #asbkuqtkac th {
##   border-style: none;
## }
## 
## #asbkuqtkac p {
##   margin: 0;
##   padding: 0;
## }
## 
## #asbkuqtkac .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #asbkuqtkac .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #asbkuqtkac .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #asbkuqtkac .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #asbkuqtkac .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #asbkuqtkac .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #asbkuqtkac .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #asbkuqtkac .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #asbkuqtkac .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #asbkuqtkac .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #asbkuqtkac .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #asbkuqtkac .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #asbkuqtkac .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #asbkuqtkac .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #asbkuqtkac .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #asbkuqtkac .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #asbkuqtkac .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #asbkuqtkac .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #asbkuqtkac .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #asbkuqtkac .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #asbkuqtkac .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #asbkuqtkac .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #asbkuqtkac .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #asbkuqtkac .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #asbkuqtkac .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #asbkuqtkac .gt_left {
##   text-align: left;
## }
## 
## #asbkuqtkac .gt_center {
##   text-align: center;
## }
## 
## #asbkuqtkac .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #asbkuqtkac .gt_font_normal {
##   font-weight: normal;
## }
## 
## #asbkuqtkac .gt_font_bold {
##   font-weight: bold;
## }
## 
## #asbkuqtkac .gt_font_italic {
##   font-style: italic;
## }
## 
## #asbkuqtkac .gt_super {
##   font-size: 65%;
## }
## 
## #asbkuqtkac .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #asbkuqtkac .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #asbkuqtkac .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #asbkuqtkac .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #asbkuqtkac .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #asbkuqtkac .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #asbkuqtkac .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #asbkuqtkac .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #asbkuqtkac div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Dead Moisture</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">1.99</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">85.03</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−236.14</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">269.44</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.511</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">5,238</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">4,703</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">0.37</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">2.85</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−8.30</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">8.58</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.554</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">5,201</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">4,812</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">0.64</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">3.10</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−5.60</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">6.92</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.581</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">6,992</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">7,063</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right">1.68</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right">3.06</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right">−4.58</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right">7.82</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right">0.707</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right">6,852</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right">7,490</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right">16.94</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right">44.05</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right">−71.92</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right">102.87</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right">0.646</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right">6,552</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right">6,900</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">−0.46</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">1.48</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−3.29</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">2.63</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.380</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">6,485</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">6,745</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.001</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">−4.47</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">3.62</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−11.69</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">2.74</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.115</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">6,975</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">7,159</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">0.21</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">3.96</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−7.56</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">8.17</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.521</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">6,658</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">7,549</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Dead Moisture

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Litter Moisture

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_litter_moisture_content ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     7.40      7.85     0.18    28.66 1.00     3682     5050
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    -20.73    189.36  -338.89   453.60 1.00     4866
## StatusInvaded                 42.20     81.22  -116.64   203.32 1.00     7529
## SeasonSpring                  -8.63      4.90   -18.81     0.45 1.00     6663
## SeasonWinter                  15.88      6.35     3.62    28.39 1.00     6760
## Latitude                       1.42      6.32   -14.42    12.11 1.00     4864
## StatusInvaded:SeasonSpring    -0.37      6.11   -12.16    11.81 1.00     8316
## StatusInvaded:SeasonWinter    -8.84      8.05   -24.24     7.01 1.00     6862
## StatusInvaded:Latitude        -1.43      2.73    -6.84     3.87 1.00     7481
##                            Tail_ESS
## Intercept                      3725
## StatusInvaded                  7742
## SeasonSpring                   6957
## SeasonWinter                   7809
## Latitude                       3767
## StatusInvaded:SeasonSpring     8530
## StatusInvaded:SeasonWinter     7895
## StatusInvaded:Latitude         7617
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    14.60      1.90    11.10    18.62 1.00     7257     7964
## nu        2.37      0.66     1.44     3.99 1.00     7227     6939
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Warning: There were 19 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_litter_moisture_content ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     7.60      7.56     0.23    27.56 1.00     1326      777
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept        -8.52    188.47  -396.74   457.32 1.00      653      225
## StatusInvaded    -1.94      2.78    -7.53     3.43 1.00     7876     7832
## SeasonSpring     -8.90      3.41   -15.99    -2.57 1.00     5587     6950
## SeasonWinter     10.33      3.98     2.61    18.28 1.00     9523     6889
## Latitude          1.03      6.28   -14.69    13.88 1.00      658      225
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    14.77      1.85    11.25    18.56 1.00     1134      272
## nu        2.43      0.66     1.45     4.00 1.00     1064      222
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -0.305     -7.96      7.62
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -0.665     -9.51      8.78
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -9.259    -22.13      4.74
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |     pd
## ---------------------------------------
## Invaded - Non_Invaded | Summer | 53.12%
## Invaded - Non_Invaded | Spring | 56.14%
## Invaded - Non_Invaded | Winter | 90.41%

Litter Moisture Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="rmmgypxptd" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#rmmgypxptd table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #rmmgypxptd thead, #rmmgypxptd tbody, #rmmgypxptd tfoot, #rmmgypxptd tr, #rmmgypxptd td, #rmmgypxptd th {
##   border-style: none;
## }
## 
## #rmmgypxptd p {
##   margin: 0;
##   padding: 0;
## }
## 
## #rmmgypxptd .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #rmmgypxptd .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #rmmgypxptd .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #rmmgypxptd .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #rmmgypxptd .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #rmmgypxptd .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #rmmgypxptd .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #rmmgypxptd .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #rmmgypxptd .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #rmmgypxptd .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #rmmgypxptd .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #rmmgypxptd .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #rmmgypxptd .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #rmmgypxptd .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #rmmgypxptd .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #rmmgypxptd .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #rmmgypxptd .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #rmmgypxptd .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #rmmgypxptd .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #rmmgypxptd .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #rmmgypxptd .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #rmmgypxptd .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #rmmgypxptd .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #rmmgypxptd .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #rmmgypxptd .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #rmmgypxptd .gt_left {
##   text-align: left;
## }
## 
## #rmmgypxptd .gt_center {
##   text-align: center;
## }
## 
## #rmmgypxptd .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #rmmgypxptd .gt_font_normal {
##   font-weight: normal;
## }
## 
## #rmmgypxptd .gt_font_bold {
##   font-weight: bold;
## }
## 
## #rmmgypxptd .gt_font_italic {
##   font-style: italic;
## }
## 
## #rmmgypxptd .gt_super {
##   font-size: 65%;
## }
## 
## #rmmgypxptd .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #rmmgypxptd .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #rmmgypxptd .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #rmmgypxptd .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #rmmgypxptd .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #rmmgypxptd .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #rmmgypxptd .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #rmmgypxptd .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #rmmgypxptd div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Litter Moisture</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">−41.10</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">112.79</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−374.51</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">389.95</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.355</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">4,804</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">3,691</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">2.09</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">3.79</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−12.06</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">13.51</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.705</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">4,801</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">3,745</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">−8.51</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">4.88</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−18.31</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">0.84</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.033</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">6,644</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">6,906</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right" style="font-weight: bold;">15.89</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right" style="font-weight: bold;">6.46</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">4.17</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">28.87</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.994</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">6,744</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">7,743</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right">40.41</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right">80.56</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right">−120.24</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right">198.99</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right">0.700</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right">7,502</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right">7,682</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">−1.37</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">2.70</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−6.79</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">3.90</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.300</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">7,456</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">7,548</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">−0.39</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">5.97</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−12.21</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">11.65</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.472</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">8,286</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">8,517</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">−8.91</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">8.14</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−24.35</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">6.84</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.141</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">6,848</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">7,875</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Litter Moisture

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Soil Moisture

Model Comparison

##  Family: student 
##   Links: mu = identity 
## Formula: avg_soil_moisture ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.85      2.98     0.11    10.88 1.00     2701     4147
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    -47.03     72.34  -158.10   142.06 1.00     4287
## StatusInvaded                  8.42     20.69   -31.06    49.08 1.00     7078
## SeasonSpring                  -0.68      1.17    -2.94     1.60 1.00     8839
## SeasonWinter                   2.04      1.00     0.07     4.02 1.00     8436
## Latitude                       1.80      2.41    -4.45     5.48 1.00     4302
## StatusInvaded:SeasonSpring    -2.71      1.63    -5.89     0.48 1.00     8792
## StatusInvaded:SeasonWinter    -1.82      1.56    -4.92     1.21 1.00     8508
## StatusInvaded:Latitude        -0.21      0.69    -1.56     1.11 1.00     7113
##                            Tail_ESS
## Intercept                      3086
## StatusInvaded                  7490
## SeasonSpring                   8829
## SeasonWinter                   8673
## Latitude                       3165
## StatusInvaded:SeasonSpring     8709
## StatusInvaded:SeasonWinter     8508
## StatusInvaded:Latitude         7362
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     3.23      0.33     2.61     3.93 1.00     8660     7810
## nu        2.02      0.37     1.40     2.87 1.00     9580     6613
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Warning: There were 16 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_soil_moisture ~ Status + Season + Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 186) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.88      2.72     0.12    10.60 1.00      914      367
## 
## Regression Coefficients:
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept       -45.48     67.71  -153.26   153.12 1.01      642      140
## StatusInvaded     1.02      0.67    -0.39     2.32 1.01      888      145
## SeasonSpring     -2.01      0.87    -3.62    -0.27 1.00     2631     1742
## SeasonWinter      1.29      0.73    -0.13     2.73 1.00     6693     6156
## Latitude          1.77      2.25    -4.80     5.35 1.01      643      138
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     3.23      0.32     2.63     3.89 1.00     6637     7482
## nu        2.01      0.37     1.42     2.85 1.00     4751     5530
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    2.207     0.224      4.05
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded   -0.498    -3.170      2.23
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    0.416    -2.107      2.70
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |     pd
## ---------------------------------------
## Invaded - Non_Invaded | Summer | 99.05%
## Invaded - Non_Invaded | Spring | 63.97%
## Invaded - Non_Invaded | Winter | 63.02%

Soil Moisture Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="dssanaypfq" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#dssanaypfq table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #dssanaypfq thead, #dssanaypfq tbody, #dssanaypfq tfoot, #dssanaypfq tr, #dssanaypfq td, #dssanaypfq th {
##   border-style: none;
## }
## 
## #dssanaypfq p {
##   margin: 0;
##   padding: 0;
## }
## 
## #dssanaypfq .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #dssanaypfq .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #dssanaypfq .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #dssanaypfq .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #dssanaypfq .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #dssanaypfq .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #dssanaypfq .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #dssanaypfq .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #dssanaypfq .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #dssanaypfq .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #dssanaypfq .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #dssanaypfq .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #dssanaypfq .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #dssanaypfq .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #dssanaypfq .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #dssanaypfq .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #dssanaypfq .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #dssanaypfq .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #dssanaypfq .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #dssanaypfq .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #dssanaypfq .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #dssanaypfq .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #dssanaypfq .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #dssanaypfq .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #dssanaypfq .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #dssanaypfq .gt_left {
##   text-align: left;
## }
## 
## #dssanaypfq .gt_center {
##   text-align: center;
## }
## 
## #dssanaypfq .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #dssanaypfq .gt_font_normal {
##   font-weight: normal;
## }
## 
## #dssanaypfq .gt_font_bold {
##   font-weight: bold;
## }
## 
## #dssanaypfq .gt_font_italic {
##   font-style: italic;
## }
## 
## #dssanaypfq .gt_super {
##   font-size: 65%;
## }
## 
## #dssanaypfq .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #dssanaypfq .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #dssanaypfq .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #dssanaypfq .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #dssanaypfq .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #dssanaypfq .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #dssanaypfq .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #dssanaypfq .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #dssanaypfq div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Soil Moisture</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">−59.58</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">35.63</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−169.65</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">119.86</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.149</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">4,267</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">3,066</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">2.23</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">1.18</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−3.56</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">6.10</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.867</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">4,283</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">3,145</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right">−0.66</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right">1.20</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right">−2.94</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right">1.59</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right">0.284</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right">8,736</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right">8,808</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right" style="font-weight: bold;">2.05</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.99</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">0.06</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">3.99</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.978</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">8,403</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">8,653</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right">8.02</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right">21.00</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right">−31.01</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right">49.12</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right">0.649</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right">7,072</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right">7,451</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right">−0.20</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right">0.70</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right">−1.50</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right">1.16</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right">0.385</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right">7,139</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right">7,339</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right">−2.71</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right">1.64</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right">−5.90</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right">0.46</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right">0.047</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right">8,781</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right">8,655</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">−1.80</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">1.55</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−4.94</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">1.19</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.122</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">8,493</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">8,475</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.000</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Soil Moisture

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

GLMM Veg Height

Model Comparison

## Warning: There were 45 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: student 
##   Links: mu = identity 
## Formula: avg_height ~ Status * Season + Status * Latitude + (1 | Site) 
##    Data: merged_sites (Number of observations: 183) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~Site (Number of levels: 3) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.32      0.48     0.00     1.83 1.03      104       29
## 
## Regression Coefficients:
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                     -0.18      4.49   -12.50     8.57 1.03      129
## StatusInvaded                  3.76      0.68     2.40     5.09 1.00     6008
## SeasonSpring                   0.09      0.04     0.01     0.18 1.01     3392
## SeasonWinter                  -0.02      0.04    -0.10     0.06 1.00     1997
## Latitude                       0.01      0.15    -0.26     0.43 1.03      117
## StatusInvaded:SeasonSpring    -0.16      0.06    -0.28    -0.04 1.01      320
## StatusInvaded:SeasonWinter     0.01      0.06    -0.11     0.12 1.01      540
## StatusInvaded:Latitude        -0.11      0.02    -0.15    -0.06 1.00     5985
##                            Tail_ESS
## Intercept                       274
## StatusInvaded                  6271
## SeasonSpring                   5552
## SeasonWinter                   7570
## Latitude                        263
## StatusInvaded:SeasonSpring     1289
## StatusInvaded:SeasonWinter      285
## StatusInvaded:Latitude         6538
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.14      0.01     0.11     0.16 1.00     6059     7344
## nu        5.05      2.30     2.55    10.52 1.00     5593     6245
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.

## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

Estimated marginal means

## Season = Summer:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    0.588     0.520     0.653
## 
## Season = Spring:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    0.425     0.328     0.525
## 
## Season = Winter:
##  contrast              estimate lower.HPD upper.HPD
##  Invaded - Non_Invaded    0.595     0.498     0.695
## 
## Point estimate displayed: median 
## HPD interval probability: 0.95
## Probability of Direction
## 
## contrast              | Season |   pd
## -------------------------------------
## Invaded - Non_Invaded | Summer | 100%
## Invaded - Non_Invaded | Spring | 100%
## Invaded - Non_Invaded | Winter | 100%

Veg Height Summary Table

## Warning: Dropping 'draws_df' class as required metadata was removed.
## <div id="cvlvyhamzb" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#cvlvyhamzb table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #cvlvyhamzb thead, #cvlvyhamzb tbody, #cvlvyhamzb tfoot, #cvlvyhamzb tr, #cvlvyhamzb td, #cvlvyhamzb th {
##   border-style: none;
## }
## 
## #cvlvyhamzb p {
##   margin: 0;
##   padding: 0;
## }
## 
## #cvlvyhamzb .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #cvlvyhamzb .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #cvlvyhamzb .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #cvlvyhamzb .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #cvlvyhamzb .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #cvlvyhamzb .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #cvlvyhamzb .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #cvlvyhamzb .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #cvlvyhamzb .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #cvlvyhamzb .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #cvlvyhamzb .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #cvlvyhamzb .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #cvlvyhamzb .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #cvlvyhamzb .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #cvlvyhamzb .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cvlvyhamzb .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #cvlvyhamzb .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #cvlvyhamzb .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #cvlvyhamzb .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cvlvyhamzb .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #cvlvyhamzb .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cvlvyhamzb .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #cvlvyhamzb .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cvlvyhamzb .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cvlvyhamzb .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cvlvyhamzb .gt_left {
##   text-align: left;
## }
## 
## #cvlvyhamzb .gt_center {
##   text-align: center;
## }
## 
## #cvlvyhamzb .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #cvlvyhamzb .gt_font_normal {
##   font-weight: normal;
## }
## 
## #cvlvyhamzb .gt_font_bold {
##   font-weight: bold;
## }
## 
## #cvlvyhamzb .gt_font_italic {
##   font-style: italic;
## }
## 
## #cvlvyhamzb .gt_super {
##   font-size: 65%;
## }
## 
## #cvlvyhamzb .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #cvlvyhamzb .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #cvlvyhamzb .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #cvlvyhamzb .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #cvlvyhamzb .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #cvlvyhamzb .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #cvlvyhamzb .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #cvlvyhamzb .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #cvlvyhamzb div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="9" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Posterior Estimates for Vegetation Height</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="a::stub"></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Estimate">Estimate</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Est.-Error">Est. Error</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Lower)">95% HPDI (Lower)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="a95%-HPDI-(Upper)">95% HPDI (Upper)</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Probability-&gt;-0">Probability &gt; 0</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Bulk-ESS">Bulk ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Tail-ESS">Tail ESS</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="R-hat">R-hat</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><th id="stub_1_1" scope="row" class="gt_row gt_left gt_stub">(Intercept)</th>
## <td headers="stub_1_1 Estimate" class="gt_row gt_right">0.60</td>
## <td headers="stub_1_1 Est. Error" class="gt_row gt_right">1.89</td>
## <td headers="stub_1_1 95% HPDI (Lower)" class="gt_row gt_right">−10.09</td>
## <td headers="stub_1_1 95% HPDI (Upper)" class="gt_row gt_right">9.39</td>
## <td headers="stub_1_1 Probability > 0" class="gt_row gt_right">0.636</td>
## <td headers="stub_1_1 Bulk ESS" class="gt_row gt_right">192</td>
## <td headers="stub_1_1 Tail ESS" class="gt_row gt_right">285</td>
## <td headers="stub_1_1 R-hat" class="gt_row gt_right">1.012</td></tr>
##     <tr><th id="stub_1_2" scope="row" class="gt_row gt_left gt_stub">Latitude</th>
## <td headers="stub_1_2 Estimate" class="gt_row gt_right">−0.01</td>
## <td headers="stub_1_2 Est. Error" class="gt_row gt_right">0.06</td>
## <td headers="stub_1_2 95% HPDI (Lower)" class="gt_row gt_right">−0.29</td>
## <td headers="stub_1_2 95% HPDI (Upper)" class="gt_row gt_right">0.35</td>
## <td headers="stub_1_2 Probability > 0" class="gt_row gt_right">0.414</td>
## <td headers="stub_1_2 Bulk ESS" class="gt_row gt_right">175</td>
## <td headers="stub_1_2 Tail ESS" class="gt_row gt_right">275</td>
## <td headers="stub_1_2 R-hat" class="gt_row gt_right">1.013</td></tr>
##     <tr><th id="stub_1_3" scope="row" class="gt_row gt_left gt_stub">Season-Spring</th>
## <td headers="stub_1_3 Estimate" class="gt_row gt_right" style="font-weight: bold;">0.10</td>
## <td headers="stub_1_3 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.04</td>
## <td headers="stub_1_3 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">0.01</td>
## <td headers="stub_1_3 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">0.18</td>
## <td headers="stub_1_3 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.986</td>
## <td headers="stub_1_3 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">3,021</td>
## <td headers="stub_1_3 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">5,496</td>
## <td headers="stub_1_3 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.002</td></tr>
##     <tr><th id="stub_1_4" scope="row" class="gt_row gt_left gt_stub">Season-Winter</th>
## <td headers="stub_1_4 Estimate" class="gt_row gt_right">−0.02</td>
## <td headers="stub_1_4 Est. Error" class="gt_row gt_right">0.04</td>
## <td headers="stub_1_4 95% HPDI (Lower)" class="gt_row gt_right">−0.10</td>
## <td headers="stub_1_4 95% HPDI (Upper)" class="gt_row gt_right">0.06</td>
## <td headers="stub_1_4 Probability > 0" class="gt_row gt_right">0.306</td>
## <td headers="stub_1_4 Bulk ESS" class="gt_row gt_right">1,902</td>
## <td headers="stub_1_4 Tail ESS" class="gt_row gt_right">7,526</td>
## <td headers="stub_1_4 R-hat" class="gt_row gt_right">1.000</td></tr>
##     <tr><th id="stub_1_5" scope="row" class="gt_row gt_left gt_stub">Status-Invaded</th>
## <td headers="stub_1_5 Estimate" class="gt_row gt_right" style="font-weight: bold;">3.73</td>
## <td headers="stub_1_5 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.66</td>
## <td headers="stub_1_5 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">2.40</td>
## <td headers="stub_1_5 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">5.09</td>
## <td headers="stub_1_5 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">1.000</td>
## <td headers="stub_1_5 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">5,972</td>
## <td headers="stub_1_5 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">6,249</td>
## <td headers="stub_1_5 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.002</td></tr>
##     <tr><th id="stub_1_6" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Latitude</th>
## <td headers="stub_1_6 Estimate" class="gt_row gt_right" style="font-weight: bold;">−0.11</td>
## <td headers="stub_1_6 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.02</td>
## <td headers="stub_1_6 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−0.15</td>
## <td headers="stub_1_6 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−0.06</td>
## <td headers="stub_1_6 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.000</td>
## <td headers="stub_1_6 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">5,969</td>
## <td headers="stub_1_6 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">6,501</td>
## <td headers="stub_1_6 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.002</td></tr>
##     <tr><th id="stub_1_7" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Spring</th>
## <td headers="stub_1_7 Estimate" class="gt_row gt_right" style="font-weight: bold;">−0.16</td>
## <td headers="stub_1_7 Est. Error" class="gt_row gt_right" style="font-weight: bold;">0.06</td>
## <td headers="stub_1_7 95% HPDI (Lower)" class="gt_row gt_right" style="font-weight: bold;">−0.28</td>
## <td headers="stub_1_7 95% HPDI (Upper)" class="gt_row gt_right" style="font-weight: bold;">−0.05</td>
## <td headers="stub_1_7 Probability > 0" class="gt_row gt_right" style="font-weight: bold;">0.003</td>
## <td headers="stub_1_7 Bulk ESS" class="gt_row gt_right" style="font-weight: bold;">427</td>
## <td headers="stub_1_7 Tail ESS" class="gt_row gt_right" style="font-weight: bold;">1,278</td>
## <td headers="stub_1_7 R-hat" class="gt_row gt_right" style="font-weight: bold;">1.004</td></tr>
##     <tr><th id="stub_1_8" scope="row" class="gt_row gt_left gt_stub">Status-Invaded x Season-Winter</th>
## <td headers="stub_1_8 Estimate" class="gt_row gt_right">0.01</td>
## <td headers="stub_1_8 Est. Error" class="gt_row gt_right">0.06</td>
## <td headers="stub_1_8 95% HPDI (Lower)" class="gt_row gt_right">−0.11</td>
## <td headers="stub_1_8 95% HPDI (Upper)" class="gt_row gt_right">0.12</td>
## <td headers="stub_1_8 Probability > 0" class="gt_row gt_right">0.545</td>
## <td headers="stub_1_8 Bulk ESS" class="gt_row gt_right">521</td>
## <td headers="stub_1_8 Tail ESS" class="gt_row gt_right">300</td>
## <td headers="stub_1_8 R-hat" class="gt_row gt_right">1.002</td></tr>
##   </tbody>
##   
## </table>
## </div>

Conditional Effects Veg Height

## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_ribbon()`).

## You are calculating adjusted predictions on the population-level (i.e.
##   `type = "fixed"`) for a *generalized* linear mixed model.
##   This may produce biased estimates due to Jensen's inequality. Consider
##   setting `bias_correction = TRUE` to correct for this bias.
##   See also the documentation of the `bias_correction` argument.
## Note: uncertainty of error terms are not taken into account. Consider
##   setting `interval` to "prediction". This will call `posterior_predict()`
##   instead of `posterior_epred()`.
## Warning in check_dep_version(dep_pkg = "TMB"): package version mismatch: 
## glmmTMB was built with TMB package version 1.9.17
## Current TMB package version is 1.9.18
## Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Ignoring unknown labels:
## • linetype : "Latitude"
## • shape : "Latitude"
## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's colour values.
## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's colour values.
## No shared levels found between `names(values)` of the manual scale and the
## data's colour values.

Merge Plot