# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(dplyr)
library(ggplot2)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899136
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  1.279338e-02  2.076291e-02 -4.128848e-02 -1.294067e-02 -1.118665e-02
##   [6]  2.805612e-05  9.257051e-04  5.498149e-02  2.763578e-02  1.095363e-02
##  [11] -6.035550e-03 -2.272842e-03 -1.443694e-02  7.057701e-04  5.416540e-02
##  [16]  3.709707e-02  1.421126e-02  2.457024e-02  2.477235e-02  3.062962e-03
##  [21] -3.209622e-03 -1.279667e-03 -3.569199e-03 -7.263769e-04  2.091303e-02
##  [26] -2.405693e-02  2.526077e-02 -2.184379e-02  4.887952e-02  2.820898e-02
##  [31]  2.371361e-02 -2.763539e-02 -4.716893e-03  6.196046e-02  2.797432e-02
##  [36] -1.038325e-02  3.287429e-02  1.897072e-02  3.532723e-02  6.921543e-03
##  [41] -2.698595e-02  1.826841e-02  7.043678e-03  3.237274e-02  1.053779e-02
##  [46]  1.767959e-02  1.779833e-02  6.323776e-02 -1.056960e-02  3.675662e-02
##  [51]  9.130217e-03 -4.175674e-02  2.961281e-02 -3.713731e-02  2.550750e-02
##  [56]  5.564386e-04  1.356971e-02 -2.831279e-03 -5.291432e-03  1.150384e-02
##  [61]  5.005799e-03 -8.133086e-03 -2.293851e-02 -1.647883e-02  1.780108e-02
##  [66]  4.830121e-02 -1.260705e-02  6.956828e-03 -5.019948e-03 -1.531033e-02
##  [71]  2.369405e-03 -3.968775e-02  2.411455e-02 -1.199358e-02  3.366768e-02
##  [76] -2.127768e-02  1.817668e-02  4.062960e-02 -1.883542e-02 -1.435464e-02
##  [81] -2.668624e-03  5.698905e-02  3.831565e-02  2.608445e-02 -1.917191e-02
##  [86]  3.102527e-02  3.973461e-02  1.876187e-02 -3.303407e-03  8.428273e-03
##  [91]  4.020452e-04  1.442096e-02  1.740599e-02 -4.608842e-03 -9.239876e-03
##  [96] -1.710835e-03  1.575349e-02 -8.234121e-04  1.762643e-03  6.009784e-03
## [101]  2.463029e-02 -3.387958e-03  5.796381e-02  8.362120e-03 -2.239126e-02
## [106] -7.987742e-03 -3.635177e-03  4.621286e-02  1.619648e-02 -8.400347e-04
## [111]  1.769757e-02  5.350393e-02  4.783240e-03  2.332598e-02 -1.967999e-02
## [116]  1.624986e-02  9.053295e-03  2.454552e-02  3.967212e-02  2.492642e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.02 
##  4   0.959
##  5   0.987
##  6   0.989
##  7   1.00 
##  8   1.00 
##  9   1.05 
## 10   1.03 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.01 
##  3  1.03 
##  4  0.991
##  5  0.978
##  6  0.967
##  7  0.967
##  8  0.968
##  9  1.02 
## 10  1.05 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 11.82546

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {

# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return))) 

# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

return(simulated_growth)  
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   294.
## 2   298.
## 3   298.
## 4   300.
## 5   305.
## 6   307.
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>% 
set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# For reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, N = 120, mean_return = mean_port_return, sd_return = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names 
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup()%>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>% 
   
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5))+
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, min of lat value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth), 
              median = median(growth),
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>% 
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5))

    labs(title = "Simulating growth of $1 over 120 months", subtitle = "Maximum, Median and Minimum Simulation")
## $title
## [1] "Simulating growth of $1 over 120 months"
## 
## $subtitle
## [1] "Maximum, Median and Minimum Simulation"
## 
## attr(,"class")
## [1] "labels"