Executive Summary
lalalalalalalalalalahouseslalalalalalapriceslalallalalala
# Data and parameters:
data <- c (305000 , 280000 , 265000 , 315000 , 290000 , 275000 , 325000 , 300000 , 285000 , 310000 , 282000 , 270000 , 330000 , 295000 , 290000 , 320000 , 288000 , 280000 , 308000 , 281000 , 267000 , 312000 , 292000 , 278000 , 322000 , 303000 , 287000 , 311000 )
x_bar <- mean (data) # Sample mean
s <- sd (data) # Sample standard deviation (s)
n <- length (data) # Sample size
mu_0 <- 300000 # Hypothesized population mean
alpha <- 0.05 # Significance level
# Compute the t-statistic:
t <- (x_bar - mu_0) / (s / sqrt (n))
# Degrees of freedom:
df <- n - 1
# Two-tailed test:
p_two <- 2 * (1 - pt (abs (t), df = df))
critical_value_two_upper <- qt (1 - alpha/ 2 , df = df)
critical_value_two_lower <- qt (alpha/ 2 , df = df)
# Left-tailed test:
p_left <- pt (t, df = df)
critical_value_left <- qt (alpha, df = df)
# Right-tailed test:
p_right <- 1 - pt (t, df = df)
critical_value_right <- qt (1 - alpha, df = df)
# Compute Confidence Interval (Two-tailed):
CI_lower <- x_bar - critical_value_two_upper* (s/ sqrt (n))
CI_upper <- x_bar + critical_value_two_upper* (s/ sqrt (n))
# Output the t-statistic, degrees of freedom, p-values, and Confidence Interval:
t
There is not sufficient evidence that the mean sale price of the houses =$300,000. This implies that the sale price of the houses, on average, falls within the 95% confidence interval of $288099.20 to $302329.40 with a sample average price of $295,214.30.
2.