# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347493
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] -4.083250e-02 -2.367904e-02 2.136623e-02 -4.228475e-02 5.195523e-02
## [6] -6.591993e-03 1.565687e-02 5.586288e-02 -1.403147e-02 -3.034322e-02
## [11] 2.699580e-02 -8.507786e-03 -6.685196e-03 -1.191088e-02 -9.465720e-04
## [16] -7.832867e-03 4.382644e-02 1.445580e-02 1.539713e-03 2.179880e-02
## [21] 2.196824e-03 -1.011522e-02 -1.823323e-02 2.823963e-04 -1.061482e-02
## [26] -4.272469e-03 -2.958370e-02 1.490782e-02 -6.569322e-03 -1.612754e-03
## [31] 3.596628e-02 -5.157085e-03 1.808325e-02 -2.232898e-02 2.516978e-02
## [36] 5.603407e-03 -1.157075e-02 9.891943e-03 -3.679096e-02 5.660111e-02
## [41] 3.341617e-02 2.609679e-02 2.034446e-02 -2.072964e-02 -3.400697e-02
## [46] -6.412563e-03 3.689197e-02 5.231295e-03 2.263701e-02 5.315863e-02
## [51] -1.536070e-02 5.476737e-02 1.349881e-02 1.470367e-02 2.937865e-02
## [56] 2.316380e-02 -1.215675e-02 3.300537e-03 2.286260e-02 1.299513e-02
## [61] 5.001158e-03 -3.002129e-02 6.267549e-03 -2.022697e-02 -8.453475e-03
## [66] -1.182710e-02 1.221311e-02 2.248478e-02 -7.276517e-03 2.303737e-03
## [71] 2.631493e-02 1.952305e-02 8.006387e-03 -1.561327e-02 1.155522e-02
## [76] 2.278592e-04 -2.500149e-02 2.516151e-02 1.683830e-02 2.880140e-02
## [81] -3.895232e-03 1.165626e-02 3.730854e-02 6.359262e-03 6.075890e-03
## [86] -8.472808e-03 4.630779e-05 8.658059e-03 1.137102e-02 2.742422e-03
## [91] 2.559758e-02 1.742127e-02 5.168364e-02 -4.766689e-03 -4.483439e-03
## [96] 3.355599e-02 2.321384e-04 2.828144e-02 6.527136e-03 2.094865e-02
## [101] 4.075086e-02 1.424924e-02 3.173190e-02 -2.840387e-02 -2.459915e-02
## [106] -1.829115e-02 2.822411e-02 -2.123454e-02 1.589371e-02 2.099728e-02
## [111] -3.070517e-03 -3.565692e-02 -1.371217e-04 1.072905e-02 -1.037740e-02
## [116] 1.877482e-02 -2.622007e-02 3.349118e-02 4.537831e-02 6.238672e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 0.959
## 3 0.976
## 4 1.02
## 5 0.958
## 6 1.05
## 7 0.993
## 8 1.02
## 9 1.06
## 10 0.986
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 0.959
## 3 0.936
## 4 0.956
## 5 0.916
## 6 0.964
## 7 0.957
## 8 0.972
## 9 1.03
## 10 1.01
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.209101
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 390.
## 2 390.
## 3 391.
## 4 393.
## 5 399.
## 6 402.
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
# for reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months")