# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899137
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0012354300 -0.0276043532 -0.0191348511  0.0119943906 -0.0337410310
##   [6]  0.0040928742  0.0639845743  0.0277532995  0.0348829409  0.0483646288
##  [11]  0.0544258230  0.0071962263 -0.0124474568 -0.0043872349 -0.0339698587
##  [16]  0.0062539086  0.0362377424  0.0115627988  0.0342190116 -0.0022231799
##  [21]  0.0203059602 -0.0030028348  0.0205044061 -0.0164428996 -0.0036333678
##  [26]  0.0016741734 -0.0250142360 -0.0403982449 -0.0044175098  0.0303997146
##  [31]  0.0169852945 -0.0188144789  0.0112135035  0.0133380231  0.0332173183
##  [36] -0.0358397353  0.0080817854  0.0158346221  0.0142491200  0.0049752076
##  [41] -0.0097942116 -0.0210149315 -0.0056371051 -0.0013923750  0.0422018859
##  [46]  0.0244607575 -0.0244194595  0.0035566834 -0.0528343574  0.0121331918
##  [51]  0.0288072503  0.0401560631  0.0108777575  0.0205216479  0.0054051367
##  [56]  0.0135271165 -0.0063019986  0.0045517127  0.0289575743 -0.0132281823
##  [61]  0.0355019360  0.0016292691  0.0065859789  0.0050729700  0.0167869153
##  [66]  0.0348044357  0.0131886197  0.0415715320  0.0152439457  0.0177551017
##  [71] -0.0226765750  0.0053880151  0.0443281619 -0.0274180630  0.0293980518
##  [76]  0.0036094609 -0.0191646358 -0.0242582534 -0.0059730013 -0.0133816127
##  [81] -0.0043147197 -0.0052036244  0.0007965703  0.0406193170 -0.0079135947
##  [86] -0.0276516440 -0.0239935289  0.0109454361  0.0218554963  0.0114029689
##  [91] -0.0161509728 -0.0193252103 -0.0134523707 -0.0195673008 -0.0163932456
##  [96]  0.0040943289 -0.0245249419  0.0207958850  0.0088742263  0.0479534822
## [101] -0.0175859871  0.0058341869  0.0181289406 -0.0575284958  0.0432883835
## [106] -0.0263193591  0.0314960058  0.0114473139 -0.0056186441  0.0144064749
## [111] -0.0350623462  0.0227339412 -0.0248318198 -0.0398352252  0.0038914708
## [116] -0.0232882752  0.0458376421  0.0036652479 -0.0051435651  0.0244694144
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   0.972
##  4   0.981
##  5   1.01 
##  6   0.966
##  7   1.00 
##  8   1.06 
##  9   1.03 
## 10   1.03 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  0.974
##  4  0.955
##  5  0.966
##  6  0.934
##  7  0.938
##  8  0.998
##  9  1.03 
## 10  1.06 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.64335

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01)
## # A tibble: 242 × 1
##    growth
##     <dbl>
##  1  100  
##  2  100  
##  3  100.0
##  4   99.3
##  5   98.7
##  6   97.4
##  7   97.8
##  8   98.8
##  9   98.2
## 10   98.1
## # ℹ 232 more rows
dump(list = c("simulate_accumulation"),
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as starting point
sims <- 51
starts<- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# for reproducible research
set.seed(1234)
monte_carlo_sim_51 <-starts %>%
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N= 120,
                                        mean_return = mean_port_return,
                                        sd_return = stddev_port_return)) %>%
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # rearrange column names
    set_names(c("month",names(starts))) %>%
    
    # transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,222 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,212 more rows
# find quantiles
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    quantile(probs = c(0, 0.25, 0.5,0.75,1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5))

    labs(title = "Simulating growth of $1 over 120 months")
## $title
## [1] "Simulating growth of $1 over 120 months"
## 
## attr(,"class")
## [1] "labels"

Line plot with max, median and min

# summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    summarise(max =max(growth),
              median = median(growth), 
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Plot
monte_carlo_sim_51 %>%
    # filter for max, median and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    # plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation")