# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899138
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0013501187 -0.0307743958 -0.0266190665 -0.0100676084 -0.0262687324
##   [6]  0.0039884468  0.0240810825  0.0402840077  0.0097776570 -0.0209562779
##  [11]  0.0327681681  0.0096836906  0.0414476727  0.0144351828 -0.0178459365
##  [16] -0.0015342813  0.0271755756 -0.0276399091  0.0223105974 -0.0058591634
##  [21]  0.0164808912  0.0110092260  0.0662488707  0.0013718967 -0.0010781946
##  [26] -0.0070438505 -0.0253967949  0.0150357686  0.0067395071  0.0212472216
##  [31] -0.0403653100  0.0641248454  0.0124499093 -0.0282602648 -0.0025915866
##  [36]  0.0372649147 -0.0039945674  0.0288237195  0.0078651453  0.0517318786
##  [41]  0.0222355565  0.0319435363  0.0017580499 -0.0026566514  0.0341489528
##  [46]  0.0164683347 -0.0175512622 -0.0110285529 -0.0101540673  0.0424729788
##  [51] -0.0005011694 -0.0205789144 -0.0175079696 -0.0475789800  0.0305407037
##  [56] -0.0196585208 -0.0145800603  0.0129288943 -0.0091839451 -0.0085366738
##  [61]  0.0138075102 -0.0241933547  0.0163566657  0.0143099242 -0.0045124242
##  [66]  0.0185549895  0.0478099794  0.0337408169  0.0112769018  0.0241102993
##  [71] -0.0009532828 -0.0179232017  0.0068247928 -0.0188502701  0.0186617137
##  [76] -0.0011726444  0.0047064674 -0.0019702893  0.0074544421 -0.0017620566
##  [81]  0.0142340804  0.0311248729  0.0076464228  0.0144007441  0.0226012830
##  [86]  0.0397679528 -0.0280425209  0.0177756508 -0.0022543110 -0.0163530824
##  [91]  0.0156195582  0.0308486810  0.0054137259  0.0381350196  0.0537989281
##  [96]  0.0211244201  0.0088154512  0.0174524979  0.0370704480 -0.0505578077
## [101] -0.0179541662 -0.0091951520  0.0185665487  0.0115507526  0.0269773961
## [106]  0.0125588027 -0.0307476975 -0.0096360644 -0.0195040593 -0.0187890300
## [111]  0.0139897753 -0.0241158279 -0.0342304566  0.0041642592  0.0165100159
## [116] -0.0054591528 -0.0082462026 -0.0411002216  0.0302042357 -0.0376554020
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   0.969
##  4   0.973
##  5   0.990
##  6   0.974
##  7   1.00 
##  8   1.02 
##  9   1.04 
## 10   1.01 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  0.971
##  4  0.945
##  5  0.935
##  6  0.911
##  7  0.914
##  8  0.936
##  9  0.974
## 10  0.984
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 5.888404

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)    
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   335.
## 2   338.
## 3   340.
## 4   338.
## 5   339.
## 6   344.
dump(list = c("simulate_acculumation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))
starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N = 120, 
                                        mean_return = mean_port_return, 
                                        sd_return = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x =month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth), 
              median = median(growth), 
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation")