# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0020940117  0.0228570910 -0.0070963721  0.0183441329 -0.0182350583
##   [6]  0.0276234417 -0.0184474062  0.0579892545 -0.0087632095  0.0239184925
##  [11]  0.0160238808  0.0157250915  0.0079238519 -0.0309010102  0.0014812254
##  [16]  0.0083680526  0.0128329244  0.0536208392  0.0065303663 -0.0047701108
##  [21]  0.0506378228  0.0059354298  0.0274007333 -0.0218340692 -0.0059995460
##  [26] -0.0412812876 -0.0172286592 -0.0343622511  0.0084621600 -0.0204162998
##  [31]  0.0385408314 -0.0430560729 -0.0298817852 -0.0036758774  0.0199058095
##  [36]  0.0421447042  0.0421068984  0.0388077582  0.0060951811  0.0053984036
##  [41]  0.0285410669  0.0493610404  0.0250534533  0.0422801466 -0.0253840544
##  [46] -0.0194307697  0.0203089798  0.0102677866  0.0315583446 -0.0114898993
##  [51]  0.0226706467  0.0215034894  0.0540411767  0.0462712044 -0.0014524207
##  [56]  0.0517230302 -0.0049792435  0.0026381958 -0.0040007969 -0.0034067871
##  [61]  0.0234335795 -0.0102803500  0.0178206792  0.0096772472  0.0547597564
##  [66]  0.0122604041  0.0055302049  0.0339888246 -0.0229719401  0.0002291472
##  [71]  0.0613162668 -0.0381254566  0.0177160518  0.0445365603 -0.0280828723
##  [76] -0.0338055365  0.0248712121  0.0142280695 -0.0010815852  0.0031550375
##  [81]  0.0027020684 -0.0230137744  0.0058272949 -0.0243084673 -0.0241863618
##  [86] -0.0208660316 -0.0040433168  0.0232132294  0.0225929763 -0.0001793122
##  [91]  0.0173014764  0.0479476650  0.0336937616  0.0154036435  0.0026168113
##  [96] -0.0399152608 -0.0290865952  0.0279895754  0.0169056203  0.0061536808
## [101] -0.0255797445  0.0225921367  0.0183414203  0.0063846262 -0.0272113619
## [106]  0.0115692550 -0.0108051430  0.0326204837  0.0011177291  0.0154885515
## [111] -0.0178341072  0.0281841569  0.0455822611  0.0115582389 -0.0055552508
## [116]  0.0106403081 -0.0283947622  0.0288892583  0.0483511258  0.0161128732
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.02 
##  4   0.993
##  5   1.02 
##  6   0.982
##  7   1.03 
##  8   0.982
##  9   1.06 
## 10   0.991
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.00
##  3   1.02
##  4   1.02
##  5   1.04
##  6   1.02
##  7   1.05
##  8   1.03
##  9   1.09
## 10   1.08
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 10.26875

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>% tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   321.
## 2   321.
## 3   328.
## 4   333.
## 5   336.
## 6   340.
dump(list = c("simulate_accumulation"),
    file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# create a vector of 1s as a starting point

sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))
    
    starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
    # simulate
    set.seed(1234)
  monte_carlo_sim51 <- starts %>%
        # simulate
        map_dfc(.x = .,
                .f = ~simulate_accumulation(initial_value = .x, N = 120, mean_return = mean_port_return, sd_return = stddev_port_return)) %>% 
        
         # add column months
        mutate(month = 1:nrow(.)) %>%
        select(month, everything()) %>%
        # rearrange column names
        set_names(c("month", names(starts))) %>%
  # transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
    
monte_carlo_sim51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim51 %>%
    group_by(sim) %>% 
    summarize(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim51 %>% 
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none")+
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Simulating growth of $1 over 120 months")

## Line plot with max, median and min

# step 1, summarize data into max, med, min of last value
sim_summary <- monte_carlo_sim51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

    sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2, plot
    monte_carlo_sim51 %>%
        
        group_by(sim) %>%
        filter(last(growth) == sim_summary$max | 
                 last(growth) == sim_summary$median |
                last(growth) == sim_summary$min ) %>%
        ungroup() %>%
        
    
    # plot
    
        ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none")+
    theme(plot.title = element_text(hjust = 0.5)) +
     theme(plot.subtitle = element_text(hjust = 0.5))   +
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Max, Median, minimum simulation")