#Remember to install packages before loading them with library()
library(tidyverse) ## A set of tools for Data manipulation and visualization
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate) ## for date time manipulation
library(scales) ## Formatting numbers and values
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
#library(hrbrthemes)# For changing ggplot theme
library(extrafont) # More font options
## Warning: package 'extrafont' was built under R version 4.5.2
## Registering fonts with R
#Q1 - view data
setwd("C:/Users/aleen/Downloads/Prof Zhan Class")
sales <- read.csv("sales.csv")
head(sales)
## Invoice.ID Branch City Customer.type Gender Product.line
## 1 750-67-8428 A Yangon Member Female Health and beauty
## 2 226-31-3081 C Naypyitaw Normal Female Electronic accessories
## 3 631-41-3108 A Yangon Normal Male Home and lifestyle
## 4 123-19-1176 A Yangon Member Male Health and beauty
## 5 373-73-7910 A Yangon Normal Male Sports and travel
## 6 699-14-3026 C Naypyitaw Normal Male Electronic accessories
## Unit.price Quantity Tax.5. Total Date Time Payment cogs
## 1 74.69 7 26.1415 548.9715 1/5/2019 13:08 Ewallet 522.83
## 2 15.28 5 3.8200 80.2200 3/8/2019 10:29 Cash 76.40
## 3 46.33 7 16.2155 340.5255 3/3/2019 13:23 Credit card 324.31
## 4 58.22 8 23.2880 489.0480 1/27/2019 20:33 Ewallet 465.76
## 5 86.31 7 30.2085 634.3785 2/8/2019 10:37 Ewallet 604.17
## 6 85.39 7 29.8865 627.6165 3/25/2019 18:30 Ewallet 597.73
## gross.margin.percentage gross.income Rating
## 1 4.761905 26.1415 9.1
## 2 4.761905 3.8200 9.6
## 3 4.761905 16.2155 7.4
## 4 4.761905 23.2880 8.4
## 5 4.761905 30.2085 5.3
## 6 4.761905 29.8865 4.1
sales <- read.csv("sales.csv")
sales %>% View()
glimpse(sales)
## Rows: 1,000
## Columns: 17
## $ Invoice.ID <chr> "750-67-8428", "226-31-3081", "631-41-3108", "…
## $ Branch <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "…
## $ City <chr> "Yangon", "Naypyitaw", "Yangon", "Yangon", "Ya…
## $ Customer.type <chr> "Member", "Normal", "Normal", "Member", "Norma…
## $ Gender <chr> "Female", "Female", "Male", "Male", "Male", "M…
## $ Product.line <chr> "Health and beauty", "Electronic accessories",…
## $ Unit.price <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8…
## $ Quantity <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10…
## $ Tax.5. <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Total <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378…
## $ Date <chr> "1/5/2019", "3/8/2019", "3/3/2019", "1/27/2019…
## $ Time <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "…
## $ Payment <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "…
## $ cogs <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,…
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.7619…
## $ gross.income <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Rating <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5…
library(lubridate)
# Hour digit
sales$Hour <- as.integer(substr(sales$Time, 1, 2))
# Proper date
sales$date <- mdy(sales$Date)
# Weekday name
sales$Weekday <- weekdays(sales$date)
library(dplyr)
library(ggplot2)
weekday_sales <- sales %>%
group_by(Weekday) %>%
summarise(TotalSales = sum(Total))
ggplot(weekday_sales, aes(x = Weekday, y = TotalSales)) +
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Total Sales by Weekday",
x = "Weekday",
y = "Total Sales") +
theme_minimal()