#Remember to install packages before loading them with library()
library(tidyverse) ## A set of tools for Data manipulation and visualization
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate) ## for date time manipulation
library(scales) ## Formatting numbers and values
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
#library(hrbrthemes)# For changing ggplot theme
library(extrafont) # More font options
## Registering fonts with R
library(dplyr)
library(magrittr) # optional, but gives you the pipe
##
## Attaching package: 'magrittr'
##
## The following object is masked from 'package:purrr':
##
## set_names
##
## The following object is masked from 'package:tidyr':
##
## extract
#Q1 - view data
sales <- read.csv("sales.csv")
glimpse(sales)
## Rows: 1,000
## Columns: 20
## $ Invoice.ID <chr> "750-67-8428", "226-31-3081", "631-41-3108", "…
## $ Branch <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "…
## $ City <chr> "Yangon", "Naypyitaw", "Yangon", "Yangon", "Ya…
## $ Customer.type <chr> "Member", "Normal", "Normal", "Member", "Norma…
## $ Gender <chr> "Female", "Female", "Male", "Male", "Male", "M…
## $ Product.line <chr> "Health and beauty", "Electronic accessories",…
## $ Unit.price <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8…
## $ Quantity <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10…
## $ Tax.5. <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Total <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378…
## $ Date <chr> "1/5/2019", "3/8/2019", "3/3/2019", "1/27/2019…
## $ Time <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "…
## $ Payment <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "…
## $ cogs <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,…
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.7619…
## $ gross.income <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Rating <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5…
## $ hour_digit <int> 13, 10, 13, 20, 10, 18, 14, 11, 17, 13, 18, 17…
## $ order_date <chr> "2019-01-05", "2019-03-08", "2019-03-03", "201…
## $ weekday <chr> "Sat", "Fri", "Sun", "Sun", "Fri", "Mon", "Mon…
library(dplyr)
library(lubridate)
sales <- read.csv("sales.csv")
sales <- sales %>%
mutate(
# 1) Hour digit from the Time column ("13:08" → 13)
hour_digit = as.integer(substr(Time, 1, 2)),
# 2) Proper date column (Date → real Date)
order_date = mdy(Date),
# 3) Weekday (Mon, Tue, Wed…)
weekday = wday(order_date, label = TRUE, abbr = TRUE)
)
glimpse(sales)
## Rows: 1,000
## Columns: 20
## $ Invoice.ID <chr> "750-67-8428", "226-31-3081", "631-41-3108", "…
## $ Branch <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "…
## $ City <chr> "Yangon", "Naypyitaw", "Yangon", "Yangon", "Ya…
## $ Customer.type <chr> "Member", "Normal", "Normal", "Member", "Norma…
## $ Gender <chr> "Female", "Female", "Male", "Male", "Male", "M…
## $ Product.line <chr> "Health and beauty", "Electronic accessories",…
## $ Unit.price <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8…
## $ Quantity <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10…
## $ Tax.5. <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Total <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378…
## $ Date <chr> "1/5/2019", "3/8/2019", "3/3/2019", "1/27/2019…
## $ Time <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "…
## $ Payment <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "…
## $ cogs <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,…
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.7619…
## $ gross.income <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29…
## $ Rating <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5…
## $ hour_digit <int> 13, 10, 13, 20, 10, 18, 14, 11, 17, 13, 18, 17…
## $ order_date <date> 2019-01-05, 2019-03-08, 2019-03-03, 2019-01-2…
## $ weekday <ord> Sat, Fri, Sun, Sun, Fri, Mon, Mon, Sun, Thu, W…
library(ggplot2)
library(dplyr)
sales_summary <- sales %>%
group_by(weekday) %>%
summarise(total_sales = sum(Total, na.rm = TRUE))
ggplot(sales_summary, aes(x = weekday, y = total_sales, fill = weekday)) +
geom_col() +
# Labels inside bars — now black
geom_text(aes(label = round(total_sales, 0)),
color = "black",
size = 4,
position = position_stack(vjust = 0.5)) +
# Horizontal orientation
coord_flip() +
# Color palette
scale_fill_brewer(palette = "Set2") +
# Titles & labels
labs(
title = "Total Sales Breakdown by Weekday",
x = "Weekday",
y = "Total Sales"
) +
theme_minimal()