R Markdown
df <- readxl::read_excel("Copy of data.xlsx")
library(ggpubr)
## Loading required package: ggplot2
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(ggplot2)
p <- df %>%
filter(Product %in% c("Beans","Tea")) %>%
ggplot(aes(y = Profit,fill = Product))+
geom_boxplot()
p

plot_ly(x = NULL, y = df$Profit, type = "box",color = df$Product)
plot_ly(labels = names(table(df$Country)), values = as.numeric(table(df$Country)), type = "pie")
df <- df %>%
mutate(time = lubridate::today()-as.Date(Date))
df$time <- as.numeric(df$time)
df <- df %>%
mutate(days_group = if_else(time<100,1,if_else(time<300,2,if_else(time<500,3,4))))
gr1 <- df %>%
group_by(Product, days_group) %>%
summarise(mean_pr = mean(Profit))
## `summarise()` has grouped output by 'Product'. You can override using the
## `.groups` argument.
plot_ly(x = gr1$days_group,y = gr1$mean_pr,color = gr1$Product, type = "scatter",mode = "lines+markers",width = 5) %>%
layout(
title = "The linecharts of the comparison Over Time",
xaxis = list("Time scores"),
yaxis = list("Profit")
)