\[Y = \beta _{0} + \beta _{1}X + \varepsilon\]
library(knitr)
library(kableExtra)
Hipotesis_1 <- data.frame(
"Años_De_Experiencia(X)" = c("1.1", "3.2", "5.1" , "7.4" , "10.3" , "12.0"),
"Salario_Anual(Y)" = c("39.34", "55.79", "75.80" , "98.27" , "122.39" , "143.01"),
stringsAsFactors = FALSE
)
kable(Hipotesis_1, "html", caption = "Datos relacionados:") %>%
kable_styling(
bootstrap_options = c("striped", "hover", "condensed"),
full_width = FALSE,
font_size = 20
)
| Años_De_Experiencia.X. | Salario_Anual.Y. |
|---|---|
| 1.1 | 39.34 |
| 3.2 | 55.79 |
| 5.1 | 75.80 |
| 7.4 | 98.27 |
| 10.3 | 122.39 |
| 12.0 | 143.01 |
\[Y = 25.79 + 9.49X\]
library(knitr)
library(kableExtra)
Hipotesis_2 <- data.frame(
"Temperatura_Media_Diaria(X)" = c("5", "10", "15" , "20" , "25" , "30"),
"Consumo_Eléctrico(Y)" = c("18.5", "16.0", "20.2" , "25.5" , "32.1" , "40.8"),
stringsAsFactors = FALSE
)
kable(Hipotesis_2, "html", caption = "Datos relacionados:") %>%
kable_styling(
bootstrap_options = c("striped", "hover", "condensed"),
full_width = FALSE,
font_size = 20
)
| Temperatura_Media_Diaria.X. | Consumo_Eléctrico.Y. |
|---|---|
| 5 | 18.5 |
| 10 | 16.0 |
| 15 | 20.2 |
| 20 | 25.5 |
| 25 | 32.1 |
| 30 | 40.8 |
\[Y = 5.23 + 1.05X\]
precios <- c(50, 55, 53, 60, 65)
log_precios <- log(precios)
media_log <- mean(log_precios)
desv_log <- sd(log_precios)
x <- seq(40, 80, length.out = 200)
densidad <- dlnorm(x, meanlog = media_log, sdlog = desv_log)
plot(
x, densidad,
type = "l",
lwd = 2,
col = "blue",
main = "Distribución Lognormal de Precios de una Acción",
xlab = "Precio (X)",
ylab = "Densidad de probabilidad"
)
polygon(x, densidad, col = rgb(0.2, 0.6, 1, 0.3), border = NA)
points(precios, dlnorm(precios, meanlog = media_log, sdlog = desv_log),
col = "red", pch = 19)
lambda <- 0.61
x <- 0:6
probabilidades <- dpois(x, lambda)
datos <- data.frame(
muertes = x,
probabilidad = probabilidades
)
x_cont <- seq(0, 6, length.out = 500)
densidad_suave <- spline(x, dpois(x, lambda), xout = x_cont)$y
plot(
x_cont, densidad_suave,
type = "l",
lwd = 2,
col = "blue",
main = "Distribución Poisson (Muertes por patadas de caballo)",
xlab = "Número de muertes (X)",
ylab = "Probabilidad P(X = x)"
)
points(datos$muertes, datos$probabilidad,
col = "red", pch = 19)
p_x2 <- dpois(2, lambda)
points(2, p_x2, col = "darkred", pch = 19, cex = 1.5)
text(2, p_x2 + 0.015, paste0("P(X=2) = ", round(p_x2, 3)), col = "darkred")