0.1 Code Description

The following R script processes the results from 1000 PSA runs. It takes in the PSA results(res_no_intervention_parallel, res_Empower_Health_parallel and res_Usual_Care_parallel) dataframes and performs subsequent analyses. The script also generates a plot of the simulation results.

1 Clear the workspace

rm(list = ls())

1.1 Load Libraries

The script begins by loading the necessary R libraries:

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   4.0.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(reshape2) # For reshaping data
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ggplot2) # For plotting
library(dampack) # For processing PSA results 

2 Import PSA Datasets

# Import PSA datasets
load('/Users/jamesoguta/Documents/James Oguta/My PhD Folder-2023-2025/Trainings/KenyaCVDModel/data/psa_results_no_trt.rda')
load('/Users/jamesoguta/Documents/James Oguta/My PhD Folder-2023-2025/Trainings/KenyaCVDModel/data/psa_results_Emp_Health.rda')
load('/Users/jamesoguta/Documents/James Oguta/My PhD Folder-2023-2025/Trainings/KenyaCVDModel/data/psa_results_Usual_Care.rda')

3 Rename datasets

subset_psa_no_int <- psa_results_no_trt[, c("mean_Dcosts", "mean_Ddalys")]
subset_psa_Emp_Health <- psa_results_Emp_Health[, c("mean_Dcosts", "mean_Ddalys")]
subset_psa_UC <- psa_results_Usual_Care[, c("mean_Dcosts", "mean_Ddalys")]

4 Add strategy to the intervention datasets

subset_psa_no_int$strategy <- "No_Intervention"
subset_psa_Emp_Health$strategy <- "Empower_Health"
subset_psa_UC$strategy <- "Usual_Care"
subset_psa_no_int$sim <- 1:nrow(subset_psa_no_int)
subset_psa_Emp_Health$sim <- 1:nrow(subset_psa_Emp_Health)
subset_psa_UC$sim <- 1:nrow(subset_psa_UC)

5 Combine into one dataset for plotting

psa_results <- bind_rows(subset_psa_no_int, subset_psa_Emp_Health, subset_psa_UC)

6 Reshape data to wide format

psa_wide <- reshape(psa_results, 
                timevar = "strategy", 
                idvar = "sim", 
                direction = "wide")
head(psa_wide)
##   sim mean_Dcosts.No_Intervention mean_Ddalys.No_Intervention
## 1   1                    1206.473                    4.743405
## 2   2                    1228.786                    6.133804
## 3   3                    1187.193                    6.112661
## 4   4                    1198.016                    6.148143
## 5   5                    1129.835                    6.776182
## 6   6                    1203.293                    6.188534
##   mean_Dcosts.Empower_Health mean_Ddalys.Empower_Health mean_Dcosts.Usual_Care
## 1                   7176.782                   4.645208               6217.620
## 2                   6771.298                   6.168652               5904.517
## 3                   6737.978                   6.144695               5852.409
## 4                   6741.760                   6.175688               5866.236
## 5                   6496.725                   6.820126               5630.660
## 6                   6726.379                   6.225300               5850.450
##   mean_Ddalys.Usual_Care
## 1               4.889149
## 2               6.375088
## 3               6.358847
## 4               6.386532
## 5               7.034411
## 6               6.436548

7 Calculate Incremental Cost and Effect

# Calculate incremental cost and incremental DALYs (Usual_Care as comparator)
psa_wide$delta_cost <- psa_wide$mean_Dcosts.Empower_Health - psa_wide$mean_Dcosts.Usual_Care
psa_wide$delta_dalys <- psa_wide$mean_Ddalys.Usual_Care - psa_wide$mean_Ddalys.Empower_Health
# Avoid division by zero in ICER
psa_wide$icer <- with(psa_wide, ifelse(delta_dalys == 0, NA, delta_cost / delta_dalys))

# Summary of incremental costs and DALYs
summary(psa_wide$delta_cost)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   824.9   863.9   893.2   896.3   928.9   988.2
summary(psa_wide$delta_dalys)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.1949  0.2090  0.2189  0.2203  0.2319  0.2535
# Summarize ICER
summary(psa_wide$icer)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3899    4010    4073    4073    4137    4242

8 Cost-Effectiveness Plane (CE Plane) Plot

# Clean NA from icers for plotting points
valid <- !is.na(psa_wide$delta_dalys) & !is.na(psa_wide$delta_cost)

plot(psa_wide$delta_dalys[valid], psa_wide$delta_cost[valid],
     xlab = "Incremental DALYs Averted (Usual Care vs Empower Health)",
     ylab = "Incremental Cost (USD)",
     main = "Cost-Effectiveness Plane",
     pch = 19, col = rgb(0, 0, 1, 0.3))

abline(h = 0, col = "gray", lty = 2)  # horizontal zero cost line
abline(v = 0, col = "gray", lty = 2)  # vertical zero effect line

# Histogram of ICER

hist(psa_wide$icer,
     breaks = 50,
     main = "Distribution of ICERs (Empower Health vs Usual Care)",
     xlab = "ICER (USD per DALY averted)",
     col = "lightblue",
     xlim = c(min(psa_wide$icer, na.rm=TRUE), quantile(psa_wide$icer, 0.95, na.rm=TRUE)))

# Cost-Effectiveness Acceptability Curve (CEAC)

# Define range of WTP thresholds, e.g., 0 to 5000 USD per DALY averted
wtp_values <- seq(0, 500, by = 50)

# Initialize vector to store probability cost-effective at each WTP
ceac <- numeric(length(wtp_values))

for(i in seq_along(wtp_values)) {
  wtp <- wtp_values[i]
  # Cost-effective if ICER <= WTP
  ceac[i] <- mean(psa_wide$icer <= wtp, na.rm = TRUE)
}

# Plot CEAC
plot(wtp_values, ceac,
     type = "l",
     lwd = 2,
     col = "black",
     xlab = "Willingness-to-pay Threshold (USD per DALY averted)",
     ylab = "Probability Cost-Effective",
     main = "Cost-Effectiveness Acceptability Curve")
grid()

# Save the CEAC plot

9 Draw CEAC and save as image

png(filename = "CEAC_Plot.png",
    width = 800, height = 600)
plot(wtp_values, ceac,
     type = "l",
     lwd = 2,
     col = "black",
     xlab = "Willingness-to-pay Threshold (USD per DALY averted)",
     ylab = "Probability Cost-Effective",
     main = "Cost-Effectiveness Acceptability Curve (Empower Health vs Usual Care)")
grid()
dev.off()
## quartz_off_screen 
##                 2

10 Add no intervention options

# Empower_Health vs No_Intervention
psa_wide$delta_cost_EmpNoInt <- psa_wide$mean_Dcosts.Empower_Health - psa_wide$mean_Dcosts.No_Intervention
psa_wide$delta_dalys_EmpNoInt <- psa_wide$mean_Ddalys.No_Intervention - psa_wide$mean_Ddalys.Empower_Health
psa_wide$icer_EmpNoInt <- psa_wide$delta_cost_EmpNoInt / psa_wide$delta_dalys_EmpNoInt

# Usual_Care vs No_Intervention
psa_wide$delta_cost_UCNoInt <- psa_wide$mean_Dcosts.Usual_Care - psa_wide$mean_Dcosts.No_Intervention
psa_wide$delta_dalys_UCNoInt <- psa_wide$mean_Ddalys.No_Intervention - psa_wide$mean_Ddalys.Usual_Care
psa_wide$icer_UCNoInt <- psa_wide$delta_cost_UCNoInt / psa_wide$delta_dalys_UCNoInt

par(mfrow = c(1,2))

# Empower Health vs No Intervention
plot(psa_wide$delta_dalys_EmpNoInt, psa_wide$delta_cost_EmpNoInt,
     xlab = "Incremental DALYs Averted (No Intervention vs Empower Health)",
     ylab = "Incremental Cost (USD)",
     main = "CE Plane: Empower Health vs No Intervention",
     pch = 19, col = rgb(1, 0, 0, 0.3))
abline(h = 0, v = 0, col = "gray", lty = 2)

# Usual Care vs No Intervention
plot(psa_wide$delta_dalys_UCNoInt, psa_wide$delta_cost_UCNoInt,
     xlab = "Incremental DALYs Averted (No Intervention vs Usual Care)",
     ylab = "Incremental Cost (USD)",
     main = "CE Plane: Usual Care vs No Intervention",
     pch = 19, col = rgb(0, 0, 1, 0.3))
abline(h = 0, v = 0, col = "gray", lty = 2)

par(mfrow = c(1,1))

11 CE Plane for all the three interventions

# Calculate incremental values including Empower vs Usual
cep_data <- data.frame(
  sim = psa_wide$sim,
  delta_cost_emp = psa_wide$mean_Dcosts.Empower_Health - psa_wide$mean_Dcosts.No_Intervention,
  delta_dalys_emp = psa_wide$mean_Ddalys.No_Intervention - psa_wide$mean_Ddalys.Empower_Health,
  
  delta_cost_uc = psa_wide$mean_Dcosts.Usual_Care - psa_wide$mean_Dcosts.No_Intervention,
  delta_dalys_uc = psa_wide$mean_Ddalys.No_Intervention - psa_wide$mean_Ddalys.Usual_Care,
  
  delta_cost_emp_vs_uc = psa_wide$mean_Dcosts.Empower_Health - psa_wide$mean_Dcosts.Usual_Care,
  delta_dalys_emp_vs_uc = psa_wide$mean_Ddalys.Usual_Care - psa_wide$mean_Ddalys.Empower_Health
)

# Convert to long format for ggplot
cep_long <- bind_rows(
  data.frame(
    sim = cep_data$sim,
    delta_cost = cep_data$delta_cost_emp,
    delta_dalys = cep_data$delta_dalys_emp,
    comparison = "Empower Health vs. No Intervention"
  ),
  data.frame(
    sim = cep_data$sim,
    delta_cost = cep_data$delta_cost_uc,
    delta_dalys = cep_data$delta_dalys_uc,
    comparison = "Usual Care vs. No Intervention"
  ),
  data.frame(
    sim = cep_data$sim,
    delta_cost = cep_data$delta_cost_emp_vs_uc,
    delta_dalys = cep_data$delta_dalys_emp_vs_uc,
    comparison = "Empower Health vs. Usual Care"
  )
)


# Plot CEP with WTP threshold of $1000/DALY
ggplot(cep_long, aes(x = delta_dalys, y = delta_cost, color = comparison)) +
  geom_point(alpha = 0.4, size = 1.2) +
  geom_hline(yintercept = 0, linetype = "dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype = "dashed", color = "grey50") +
  # Add WTP line
  geom_abline(slope = 1000, intercept = 0, linetype = "dotted", color = "black", size = 1) +
  annotate("text", x = max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           y = 1000 * max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           label = "WTP = $1000/DALY", hjust = 1, vjust = -0.5, angle = atan(1000)*180/pi, size = 3.5) +
  labs(
    title = "Cost-Effectiveness Plane at US$1000 WTP Threshold",
    x = "Incremental DALYs Averted",
    y = "Incremental Costs (USD)",
    color = "Comparison"
  ) +
  theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

# CE- Plane for all interventions saved as image

png(filename = "CE_Plane_All_Interventions.png",
    width = 800, height = 600)
ggplot(cep_long, aes(x = delta_dalys, y = delta_cost, color = comparison)) +
  geom_point(alpha = 0.4, size = 1.2) +
  geom_hline(yintercept = 0, linetype = "dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype = "dashed", color = "grey50") +
  # Add WTP line
  geom_abline(slope = 1000, intercept = 0, linetype = "dotted", color = "black", size = 1) +
  annotate("text", x = max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           y = 1000 * max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           label = "WTP = $1000/DALY", hjust = 1, vjust = -0.5, angle = atan(1000)*180/pi, size = 3.5) +
  labs(
    title = "Cost-Effectiveness Plane at US$1000 WTP Threshold",
    x = "Incremental DALYs Averted",
    y = "Incremental Costs (USD)",
    color = "Comparison"
  ) +
  theme_minimal()
dev.off()
## quartz_off_screen 
##                 2

12 CE-Plane for only Empower Health vs Usual Care with WTP line

png(filename = "CE_Plane_Empower_Health_vs_Usual_Care.png",
    width = 800, height = 600)
ggplot(cep_long %>% filter(comparison == "Empower Health vs. Usual Care"), 
       aes(x = delta_dalys, y = delta_cost, color = comparison)) +
  geom_point(alpha = 0.4, size = 1.2) +
  geom_hline(yintercept = 0, linetype = "dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype = "dashed", color = "grey50") +
  # Add WTP line
  geom_abline(slope = 1000, intercept = 0, linetype = "dotted", color = "black", size = 1) +
  annotate("text", x = max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           y = 1000 * max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           label = "WTP = $1000/DALY", hjust = 1, vjust = -0.5, angle = atan(1000)*180/pi, size = 3.5) +
  labs(
    title = "Cost-Effectiveness Plane at US$1000 WTP Threshold: Empower Health vs Usual Care",
    x = "Incremental DALYs Averted",
    y = "Incremental Costs (USD)",
    color = "Comparison"
  ) +
  theme_minimal()
dev.off()
## quartz_off_screen 
##                 2

13 CE-Plane for only Empower Health vs Usual Care with WTP line adding the mean ICER point in different color

mean_delta_cost <- mean(psa_wide$delta_cost, na.rm = TRUE)
mean_delta_dalys <- mean(psa_wide$delta_dalys, na.rm = TRUE)
ce_plane_psa <- ggplot(cep_long %>% filter(comparison == "Empower Health vs. Usual Care"), 
       aes(x = delta_dalys, y = delta_cost, color = comparison)) +
  geom_point(alpha = 0.4, size = 1.2) +
  geom_point(aes(x = mean_delta_dalys, y = mean_delta_cost), color = "blue", size = 4, shape = 17) + # Mean ICER point
  geom_hline(yintercept = 0, linetype = "dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype = "dashed", color = "grey50") +
  # Add WTP line
  geom_abline(slope = 1000, intercept = 0, linetype = "dotted", color = "black", size = 1) +
  annotate("text", x = max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           y = 1000 * max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           label = "WTP = $1000/DALY", hjust = 1, vjust = -0.5, angle = atan(1000)*180/pi, size = 3.5) +
  labs(
    title = "Cost-Effectiveness Plane (Empower Health vs Usual Care) with Mean ICER Point",
    x = "Incremental DALYs Averted",
    y = "Incremental Costs (USD)",
    color = "ICERs"
  ) +
  theme_minimal()

ce_plane_psa
## Warning in geom_point(aes(x = mean_delta_dalys, y = mean_delta_cost), color = "blue", : All aesthetics have length 1, but the data has 1000 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
##   a single row.

# CE-Plane for only Empower Health vs Usual Care with WTP line adding the mean ICER point in different color- Saved as pdf

mean_delta_cost <- mean(psa_wide$delta_cost, na.rm = TRUE)
mean_delta_dalys <- mean(psa_wide$delta_dalys, na.rm = TRUE)
psa_ce_plane <- ggplot(cep_long %>% filter(comparison == "Empower Health vs. Usual Care"), 
       aes(x = delta_dalys, y = delta_cost, color = comparison)) +
  geom_point(alpha = 0.4, size = 1.2) +
  geom_point(aes(x = mean_delta_dalys, y = mean_delta_cost), color = "blue", size = 4, shape = 17) + # Mean ICER point
  geom_hline(yintercept = 0, linetype = "dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype = "dashed", color = "grey50") +
  # Add WTP line
  geom_abline(slope = 1000, intercept = 0, linetype = "dotted", color = "black", size = 1) +
  annotate("text", x = max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           y = 1000 * max(cep_long$delta_dalys, na.rm = TRUE) * 0.9,
           label = "WTP = $1000/DALY", hjust = 1, vjust = -0.5, angle = atan(1000)*180/pi, size = 3.5) +
  labs(
    title = NULL,
    x = "Incremental DALYs Averted",
    y = "Incremental Costs (USD)",
    color = "ICERs for each PSA run"
  ) +
  theme_minimal()
psa_ce_plane
## Warning in geom_point(aes(x = mean_delta_dalys, y = mean_delta_cost), color = "blue", : All aesthetics have length 1, but the data has 1000 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
##   a single row.

ggsave("CE_Plane_Empower_Health_vs_Usual_Care_Mean_ICER.pdf", plot = psa_ce_plane, width = 8, height = 6)
## Warning in geom_point(aes(x = mean_delta_dalys, y = mean_delta_cost), color = "blue", : All aesthetics have length 1, but the data has 1000 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
##   a single row.

14 Cost-Effectiveness Acceptability Curve (All Interventions)

# Step 1: Define WTP thresholds
wtp_values <- seq(0, 20000, by = 100)

# Step 2: Pivot long to wide
library(reshape2)
psa_wide_costs <- dcast(psa_results, sim ~ strategy, value.var = "mean_Dcosts")
psa_wide_dalys <- dcast(psa_results, sim ~ strategy, value.var = "mean_Ddalys")

# Step 3: Calculate NMB for each strategy at each WTP
strategies <- c("No_Intervention", "Usual_Care", "Empower_Health")
ceac_matrix <- matrix(NA, nrow = length(wtp_values), ncol = length(strategies))
colnames(ceac_matrix) <- strategies

for (i in seq_along(wtp_values)) {
  wtp <- wtp_values[i]
  
  # Calculate NMB: NMB = DALYs averted × WTP − Cost
  nmb_df <- data.frame(
    No_Intervention = (max(psa_wide_dalys) - psa_wide_dalys$No_Intervention) * wtp - psa_wide_costs$No_Intervention,
    Usual_Care      = (max(psa_wide_dalys) - psa_wide_dalys$Usual_Care) * wtp - psa_wide_costs$Usual_Care,
    Empower_Health  = (max(psa_wide_dalys) - psa_wide_dalys$Empower_Health) * wtp - psa_wide_costs$Empower_Health
  )
  
  # Find which strategy has the max NMB per simulation
  best_strategy <- apply(nmb_df, 1, function(x) colnames(nmb_df)[which.max(x)])
  
  # Compute CEAC (probability each strategy is cost-effective)
  ceac_matrix[i, ] <- table(factor(best_strategy, levels = strategies)) / nrow(nmb_df)
}

# Step 4: Plot CEAC using matplot (base R)
matplot(wtp_values, ceac_matrix, type = "l", lty = 1, lwd = 2,
        col = c("black", "red", "blue"),
        xlab = "Willingness-to-pay Threshold (USD)",
        ylab = "Probability Cost-Effective",
        main = "Cost-Effectiveness Acceptability Curve")

legend("right", legend = strategies, col = c("black", "red", "blue"), lty = 1, lwd = 2)

# Summary of ICERs for all the intervention pairs

cat("Summary: Empower Health vs No Intervention\n")
## Summary: Empower Health vs No Intervention
summary(psa_wide[, c("delta_cost_EmpNoInt", "delta_dalys_EmpNoInt", "icer_EmpNoInt")])
##  delta_cost_EmpNoInt delta_dalys_EmpNoInt icer_EmpNoInt     
##  Min.   :5272        Min.   :-0.068524    Min.   :-5153245  
##  1st Qu.:5455        1st Qu.:-0.031808    1st Qu.: -175719  
##  Median :5630        Median :-0.005172    Median :  -87703  
##  Mean   :5647        Mean   : 0.017057    Mean   :  -59057  
##  3rd Qu.:5842        3rd Qu.: 0.069452    3rd Qu.:   78378  
##  Max.   :6068        Max.   : 0.123593    Max.   :18722490
cat("\nSummary: Usual Care vs No Intervention\n")
## 
## Summary: Usual Care vs No Intervention
summary(psa_wide[, c("delta_cost_UCNoInt", "delta_dalys_UCNoInt", "icer_UCNoInt")])
##  delta_cost_UCNoInt delta_dalys_UCNoInt  icer_UCNoInt   
##  Min.   :4431       Min.   :-0.2685     Min.   :-40412  
##  1st Qu.:4592       1st Qu.:-0.2418     1st Qu.:-29934  
##  Median :4738       Median :-0.2257     Median :-20973  
##  Mean   :4751       Mean   :-0.2032     Mean   :-24820  
##  3rd Qu.:4911       3rd Qu.:-0.1624     3rd Qu.:-18970  
##  Max.   :5114       Max.   :-0.1264     Max.   :-16740
cat("Summary: Empower Health vs Usual Care\n")
## Summary: Empower Health vs Usual Care
summary(psa_wide[, c("delta_cost", "delta_dalys", "icer")])
##    delta_cost     delta_dalys          icer     
##  Min.   :824.9   Min.   :0.1949   Min.   :3899  
##  1st Qu.:863.9   1st Qu.:0.2090   1st Qu.:4010  
##  Median :893.2   Median :0.2189   Median :4073  
##  Mean   :896.3   Mean   :0.2203   Mean   :4073  
##  3rd Qu.:928.9   3rd Qu.:0.2319   3rd Qu.:4137  
##  Max.   :988.2   Max.   :0.2535   Max.   :4242