# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.

Choose your stocks.

from 2012-12-31 to present

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2024-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 144 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 134 more rows

5 Compute Sharpe Ratio

# Risk free rate
rfr <- 0.0003

portfolio_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_performance(Ra = returns,
                   Rf = rfr,
                   performance_fun = SharpeRatio,
                   FUN = "StdDev") 

portfolio_sharpe_tbl
## # A tibble: 1 × 1
##   `StdDevSharpe(Rf=0%,p=95%)`
##                         <dbl>
## 1                       0.116

6 Plot: Rolling Sharpe Ratio

Returns Histogram with Risk-Free Rate

# Figure 7.2 Returns Histogram with Risk-Free Rate ggplot ----

portfolio_returns_tbl %>%

    ggplot(aes(returns)) +
    geom_histogram(binwidth = 0.01, fill = "cornflowerblue", alpha = 0.5) +
    geom_vline(xintercept = rfr, color = "green", size = 1) +

    annotate(geom= "text",
             x = rfr + 0.002, y = 13,
             label = "risk free rate", angle = 90, size = 5) +
    labs(y = "count")

Scatter Returns around Risk Free Rate

# Figure 7.1 Scatter Returns around Risk Free Rate ----

portfolio_returns_tbl %>%

    # Transform data
    mutate(returns_excess = if_else(returns > rfr, "above_rfr", "below_rfr")) %>%

    ggplot(aes(date, returns, color = returns_excess)) +
    geom_point(show.legend = FALSE) +

    # risk free rate
    geom_hline(yintercept = rfr, linetype = "dotted", size = 1, color = "cornflowerblue") +

    # election date
    geom_vline(xintercept = as.Date("2016-11-30"), size = 1, color = "cornflowerblue") +

    # formatting
    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +

    # labeling
    annotate(geom = "text",
             x = as.Date("2017-01-01"), y = -0.04,
             label = "Election", angle = 90, size = 5) +
    annotate(geom = "text",
             x = as.Date("2017-06-01"), y = -0.01,
             label = str_glue("No returns below the RFR
                              after the 2016 election"),
             color = "red", size = 4) +
    labs(y = "percent monthly returns",
         x = NULL)

# Custom function
# necessary because we would not be able to specify FUN = "StdDev" otherwise

calculate_rolling_sharpeRatio <- function(df) {

    SharpeRatio(df,
                Rf = rfr,
                FUN = "StdDev")

}

# dump(list = "calculate_rolling_sharpeRatio",
#      file = "00_scripts/calculate_rolling_sharpeRatio.R")

# Set the length of periods for rolling calculation
window <- 24

# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width = window,
              align = "right",
              FUN = calculate_rolling_sharpeRatio,
              col_rename = "sharpeRatio") %>%
    na.omit()

rolling_sharpe_tbl
## # A tibble: 121 × 3
##    date        returns sharpeRatio
##    <date>        <dbl>       <dbl>
##  1 2014-12-31 -0.0131       0.230 
##  2 2015-01-30 -0.00933      0.178 
##  3 2015-02-27  0.0377       0.240 
##  4 2015-03-31 -0.00527      0.210 
##  5 2015-04-30  0.0202       0.214 
##  6 2015-05-29 -0.00840      0.222 
##  7 2015-06-30 -0.0177       0.238 
##  8 2015-07-31 -0.0134       0.162 
##  9 2015-08-31 -0.0551       0.0950
## 10 2015-09-30 -0.0253      -0.0279
## # ℹ 111 more rows
# Figure 7.5 Rolling Sharpe ggplot ----

rolling_sharpe_tbl %>%

    ggplot(aes(date, sharpeRatio)) +
    geom_line(color = "cornflowerblue") +

    labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
         y = "rolling Sharpe Ratio",
         x = NULL) +
    theme(plot.title = element_text(hjust = 0.5)) +

    annotate(geom = "text",
             x = as.Date("2016-06-01"), y = 0.5,
             label = "This portfolio has done quite well since 2016.",
             size = 5, color = "red")

How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
Based off the rolling sharpe ratio, the portfolio’s returns improve over time.The rolling Sharpe Ratio shows several structural breaks in performance over time. The first major break occurs around November 2016, when the ratio rises sharply following the U.S. presidential election, marking a shift to stronger risk-adjusted returns. A second break appears during the 2018 market downturn, where the Sharpe Ratio drops noticeably as volatility spiked and equity returns weakened. Performance strengthens again with a clear upswing beginning in 2020, driven by the post-pandemic market recovery and strong equity momentum. This is followed by another structural decline in 2022, coinciding with high inflation, aggressive rate hikes, and broad market drawdowns that reduced the portfolio’s risk-adjusted performance. Finally, the portfolio experiences a renewed improvement in 2023 as markets stabilized and began recovering.