# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.168
# Figure 5.2 Shaded histogram returns ----
portfolio_returns_tbl %>%
# Create a new variable for shade
mutate(returns_extreme_neg = if_else(returns < mean(returns) - 2*sd(returns),
"yes",
"no")) %>%
# Plot
ggplot(aes(returns, fill = returns_extreme_neg)) +
geom_histogram(alpha = .7,
binwidth = .003) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 8)) +
scale_fill_tq() +
labs(x = "monthly returns")
# Figure 5.6 Asset and portfolio skewness comparison ----
asset_returns_skew_tbl <- asset_returns_tbl %>%
# skewness for each asset
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
# 3 Rolling skewness ----
# Why rolling skewness?
# To check anything unusual in the portfolio's historical risk
# Assign a value to winder
window <- 24
port_rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = skewness,
col_rename = "rolling_skew") %>%
select(date, rolling_skew) %>%
na.omit()
# Figure 4.8 Rolling skewness ggplot ----
port_rolling_sd_tbl %>%
ggplot(aes(date, rolling_skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
scale_y_continuous(limits = c(-1,1),
breaks = scales::pretty_breaks(n = 10)) +
scale_x_date(breaks = scales::breaks_pretty(n = 7))+
labs(title = paste0("Rolling ", window, "-Month Skew"),
x = NULL,
y = "skewness") +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-09-01"), y = 0.7,
color = "red", size = 5,
label = str_glue("The 24-month skewness is positive for about half of the lifetime,
even though the overall skewness is negative"))
Is any asset in your portfolio more likely to return extreme positive
returns than your portfolio collectively? Discuss in terms of skewness.
You may also refer to the distribution of returns you plotted in Code
along 4.
SPY and IJS are the most likely to have extremeky positive returns. This is because they have the greatest positive skewness, and a longer right tail.