Memanggil Packages yang Dibutuhkan

library(readxl)
## Warning: package 'readxl' was built under R version 4.4.3
library(MVN)
## Warning: package 'MVN' was built under R version 4.4.3
library(MVTests)
## Warning: package 'MVTests' was built under R version 4.4.3
## 
## Attaching package: 'MVTests'
## The following object is masked from 'package:datasets':
## 
##     iris
library(profileR)
## Warning: package 'profileR' was built under R version 4.4.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.3
## Loading required package: RColorBrewer
## Loading required package: reshape
## Warning: package 'reshape' was built under R version 4.4.3
## Loading required package: lavaan
## Warning: package 'lavaan' was built under R version 4.4.3
## This is lavaan 0.6-20
## lavaan is FREE software! Please report any bugs.

Input Data dari File Excel

data_anmul = read_excel("C:/Users/RIZKI/OneDrive/Documents/Data ANMUL.xlsx")
View(data_anmul)

Mengubah Variabel Menjadi Bentuk Matriks

y1 <- as.matrix(data_anmul$`Produksi`, nrow=80, ncol=1)
y2 <- as.matrix(data_anmul$`Luas Panen`, nrow=80, ncol=1)
y3 <- as.matrix(data_anmul$`Curah hujan`, nrow=80, ncol=1)
perlakuan <- as.matrix(data_anmul$Provinsi, nrow=80, ncol=1)

Membuat Data Frame

datafix=data.frame(perlakuan,y1,y2,y3)
datafix
##           perlakuan        y1        y2     y3
## 1              Aceh 1788738.0 352281.00 1986.0
## 2              Aceh 1772962.0 380686.00 1268.0
## 3              Aceh 1582393.0 387803.00 1098.0
## 4              Aceh 2331046.0 419183.00 1623.6
## 5              Aceh 1820062.0 376137.00 2264.4
## 6              Aceh 1956940.0 461060.00 1575.0
## 7              Aceh 2180754.0 293067.00 1096.0
## 8              Aceh 2478922.0 294483.00 1905.9
## 9              Aceh 1714437.6 310012.46 1931.4
## 10             Aceh 1861567.1 317869.41 1619.2
## 11   Sumatera Utara 3582302.0 754674.00 1903.3
## 12   Sumatera Utara 3607403.0 757547.00 2042.0
## 13   Sumatera Utara 3715514.0 765099.00 3175.0
## 14   Sumatera Utara 3727249.0 742968.00 2627.0
## 15   Sumatera Utara 3631039.0 717318.00 2148.0
## 16   Sumatera Utara 4044829.0 781769.00  975.9
## 17   Sumatera Utara 4387035.9 423029.00 2384.0
## 18   Sumatera Utara 4669777.5 415675.00 3190.0
## 19   Sumatera Utara 2078901.6 413141.24 1401.6
## 20   Sumatera Utara 2076280.0 388591.22 1648.3
## 21   Sumatera Barat 2211248.0 460497.00 5228.0
## 22   Sumatera Barat 2279602.0 461709.00 4959.5
## 23   Sumatera Barat 2368390.0 476422.00 4339.0
## 24   Sumatera Barat 2430384.0 487820.00 4627.9
## 25   Sumatera Barat 2519020.0 503198.00 2838.4
## 26   Sumatera Barat 2550609.0 507545.00 3548.0
## 27   Sumatera Barat 2487929.0 222482.00 4205.2
## 28   Sumatera Barat 2810425.0 222021.00 4553.0
## 29   Sumatera Barat 1482996.0 311671.23 4757.5
## 30   Sumatera Barat 1450839.7 295664.47 4072.7
## 31             Riau  574864.0 156088.00 3390.0
## 32             Riau  535788.0 145242.00 2405.0
## 33             Riau  512152.0 144015.00 2636.0
## 34             Riau  434144.0 118518.00 2628.0
## 35             Riau  385475.0 106037.00 2343.0
## 36             Riau  393917.0 107546.00 2048.3
## 37             Riau  325826.0  72151.00 2105.6
## 38             Riau  337421.0  70016.00 2982.9
## 39             Riau  230874.0  63142.04 1608.3
## 40             Riau  269344.0  64733.13 2584.9
## 41            Jambi  628828.0 153897.00 3207.0
## 42            Jambi  646641.0 157441.00 2295.0
## 43            Jambi  625164.0 149369.00 1874.0
## 44            Jambi  664535.0 153243.00 2093.0
## 45            Jambi  664720.0 145990.00 1781.0
## 46            Jambi  541486.0 122214.00 1694.9
## 47            Jambi  642095.0  96588.00 1502.4
## 48            Jambi  678127.0  97690.00 2193.2
## 49            Jambi  309932.7  69536.06 1773.4
## 50            Jambi  374376.3  84772.93 2303.8
## 51 Sumatera Selatan 3272451.0 769478.00 3396.0
## 52 Sumatera Selatan 3384670.0 784820.00 2593.0
## 53 Sumatera Selatan 3295247.0 769725.00 3083.0
## 54 Sumatera Selatan 3676723.0 800036.00 3409.0
## 55 Sumatera Selatan 3670435.0 810900.00 1668.3
## 56 Sumatera Selatan 4247922.0 872737.00 1947.2
## 57 Sumatera Selatan 4881089.0 615184.00 3477.9
## 58 Sumatera Selatan 4807430.0 621903.00 2489.5
## 59 Sumatera Selatan 2603396.2 539316.52 1655.5
## 60 Sumatera Selatan 2696877.5 551320.76 2300.2
## 61         Bengkulu  516869.0 133629.00 3822.0
## 62         Bengkulu  502552.0 127934.00 2465.7
## 63         Bengkulu  581910.0 144448.00 2545.0
## 64         Bengkulu  622832.0 147680.00 3980.9
## 65         Bengkulu  593194.0 147572.00 3323.0
## 66         Bengkulu  578654.0 128833.00 2668.9
## 67         Bengkulu  629224.0  83449.00 3350.1
## 68         Bengkulu  714017.0  82429.00 3949.8
## 69         Bengkulu  296472.1  64406.86 1786.2
## 70         Bengkulu  296925.2  64137.28 4144.0
## 71          Lampung 2807676.0 590608.00 2710.0
## 72          Lampung 2940795.0 606973.00 1568.0
## 73          Lampung 3101455.0 641876.00 1685.0
## 74          Lampung 3207002.0 638090.00 2456.7
## 75          Lampung 3320064.0 648731.00 1682.5
## 76          Lampung 3641895.0 707266.00 1628.1
## 77          Lampung 3831923.0 390799.00 2317.6
## 78          Lampung 4090654.0 396559.00 1825.1
## 79          Lampung 2164089.3 464103.42 1706.4
## 80          Lampung 2604913.3 545149.05 2211.3

Mengecek Keberadaan Package MVN

exists("mvn", where = "package:MVN")
## [1] TRUE

Melakukan Uji Normalitas Multivariat

norm.test = mvn(data = datafix, subset = "perlakuan", mvn_test = "mardia")
norm.test$multivariate_normality
##               Group            Test Statistic p.value      MVN
## 1              Aceh Mardia Skewness     5.189   0.878 ✓ Normal
## 2              Aceh Mardia Kurtosis    -1.213   0.225 ✓ Normal
## 3          Bengkulu Mardia Skewness    16.071   0.098 ✓ Normal
## 4          Bengkulu Mardia Kurtosis    -0.449   0.654 ✓ Normal
## 5             Jambi Mardia Skewness    14.461   0.153 ✓ Normal
## 6             Jambi Mardia Kurtosis    -0.695   0.487 ✓ Normal
## 7           Lampung Mardia Skewness    12.953   0.226 ✓ Normal
## 8           Lampung Mardia Kurtosis    -0.921   0.357 ✓ Normal
## 9              Riau Mardia Skewness     6.532   0.769 ✓ Normal
## 10             Riau Mardia Kurtosis    -0.886   0.376 ✓ Normal
## 11   Sumatera Barat Mardia Skewness    15.281   0.122 ✓ Normal
## 12   Sumatera Barat Mardia Kurtosis    -1.021   0.307 ✓ Normal
## 13 Sumatera Selatan Mardia Skewness    12.440   0.257 ✓ Normal
## 14 Sumatera Selatan Mardia Kurtosis    -1.195   0.232 ✓ Normal
## 15   Sumatera Utara Mardia Skewness    16.601   0.084 ✓ Normal
## 16   Sumatera Utara Mardia Kurtosis    -0.660   0.509 ✓ Normal

Melakukan Uji Homogenitas Ragam

ujiboxm<-BoxM(datafix[,2:4], datafix$`perlakuan`)
summary(ujiboxm)
##        Box's M Test 
## 
## Chi-Squared Value = 149.4296 , df = 42  and p-value: 5.84e-14

Melakukan Uji MANOVA

ujimanova <- manova(cbind(y1,y2,y3)~perlakuan,data=datafix)
summary(ujimanova, test="Pillai")
##           Df Pillai approx F num Df den Df    Pr(>F)    
## perlakuan  7 1.6135   11.969     21    216 < 2.2e-16 ***
## Residuals 72                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(ujimanova, test="Roy")
##           Df    Roy approx F num Df den Df    Pr(>F)    
## perlakuan  7 11.674   120.07      7     72 < 2.2e-16 ***
## Residuals 72                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(ujimanova, test="Wilks")
##           Df   Wilks approx F num Df den Df    Pr(>F)    
## perlakuan  7 0.02629   24.481     21 201.55 < 2.2e-16 ***
## Residuals 72                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(ujimanova, test="Hotelling-Lawley")
##           Df Hotelling-Lawley approx F num Df den Df    Pr(>F)    
## perlakuan  7           13.598   44.464     21    206 < 2.2e-16 ***
## Residuals 72                                                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Melakukan Uji ANOVA Setiap Variabel

summary.aov(ujimanova)
##  Response y1 :
##             Df     Sum Sq    Mean Sq F value    Pr(>F)    
## perlakuan    7 1.3318e+14 1.9026e+13  75.203 < 2.2e-16 ***
## Residuals   72 1.8215e+13 2.5299e+11                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response y2 :
##             Df     Sum Sq    Mean Sq F value    Pr(>F)    
## perlakuan    7 4.1409e+12 5.9156e+11  60.014 < 2.2e-16 ***
## Residuals   72 7.0971e+11 9.8570e+09                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response y3 :
##             Df   Sum Sq Mean Sq F value    Pr(>F)    
## perlakuan    7 50926052 7275150  19.646 1.899e-14 ***
## Residuals   72 26662534  370313                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plot Analisis Profil

profil <- pbg(datafix[,2:4], datafix[,1], profile.plot = TRUE)
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '26'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '26'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '26'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '27'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '27'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '27'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '28'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '28'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '28'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '26'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '27'
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch value
## '28'

Uji Pada Analisis Profil

summary(profil)
## Call:
## pbg(data = datafix[, 2:4], group = datafix[, 1], profile.plot = TRUE)
## 
## Hypothesis Tests:
## $`Ho: Profiles are parallel`
##   Multivariate.Test   Statistic   Approx.F num.df den.df      p.value
## 1             Wilks  0.07828946  26.107198     14    142 1.820973e-32
## 2            Pillai  0.95814723   9.459329     14    144 1.380184e-14
## 3  Hotelling-Lawley 11.30770241  56.538512     14    140 2.026386e-50
## 4               Roy 11.26639284 115.882898      7     72 1.370939e-36
## 
## $`Ho: Profiles have equal levels`
##             Df    Sum Sq   Mean Sq F value Pr(>F)    
## group        7 2.045e+13 2.921e+12      94 <2e-16 ***
## Residuals   72 2.237e+12 3.107e+10                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`Ho: Profiles are flat`
##          F df1 df2      p-value
## 1 1012.456   2  71 6.470383e-53