title: “Sacrificio de ganado bovino en el Valle del Cauca”

output: flexdashboard::flex_dashboard: orientation: rows social: menu source_code: embed

author: | Isabela Caro Díaz , Angela Nicol Botina , Sara Velásquez Rodríguez, Sarah Valencia González , Jaime Andrés Guevara

date: “2025-11-29”


Datos

Row

  Municipio         Machos.Sacrificados Promedio.en.Kg.Machos
 Length:85          Min.   :   43       Min.   :313.0        
 Class :character   1st Qu.:  396       1st Qu.:393.0        
 Mode  :character   Median : 1066       Median :420.0        
                    Mean   : 2049       Mean   :421.7        
                    3rd Qu.: 2485       3rd Qu.:450.0        
                    Max.   :29371       Max.   :513.0        
 Hembras.Sacrificadas Promedio.en.Kg.Hembras Animales.Sacrificados
 Min.   :   35        Min.   :298.0          Min.   :  102        
 1st Qu.:  276        1st Qu.:363.0          1st Qu.:  672        
 Median :  595        Median :382.0          Median : 1685        
 Mean   : 1128        Mean   :381.9          Mean   : 3177        
 3rd Qu.: 1299        3rd Qu.:400.0          3rd Qu.: 3820        
 Max.   :18223        Max.   :551.0          Max.   :47594        
 Peso.en.pie.en.Tn     Año           
 Min.   :   33     Length:85         
 1st Qu.:  282     Class :character  
 Median :  699     Mode  :character  
 Mean   : 1311                       
 3rd Qu.: 1585                       
 Max.   :20119                       

Fuente de datos

                                   Variable    Media Mediana Moda Varianza
Machos.Sacrificados     Machos.Sacrificados 2049.141    1066 1822 12425727
Hembras.Sacrificadas   Hembras.Sacrificadas 1128.094     595  953  4430193
Animales.Sacrificados Animales.Sacrificados 3177.235    1685 2775 31559000
Peso.en.pie.en.Tn         Peso.en.pie.en.Tn 1311.424     699  699  5614424
                      Desv_Estandar
Machos.Sacrificados        3525.014
Hembras.Sacrificadas       2104.802
Animales.Sacrificados      5617.740
Peso.en.pie.en.Tn          2369.478

Boxplot

Row

Row

Row

Histogramas

Row

Row

Row

Dispersión

Row

Row

Correlación

Row

[1] 0.9908458

    Pearson's product-moment correlation

data:  Machos and Hembras
t = 66.867, df = 83, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9859218 0.9940527
sample estimates:
      cor 
0.9908458 

Row

Comparación por municipio

Row

Row

Pronóstico

Row

Row

---

title: "Sacrificio de ganado bovino en el Valle del Cauca"

output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    social: menu
    source_code: embed
    
author: |
  Isabela Caro Díaz , Angela Nicol Botina , Sara Velásquez Rodríguez, Sarah Valencia González , Jaime Andrés Guevara  
  
  
date: "2025-11-29"



---

Datos
======================================================================================================================================

Row 
-------------------------------------------------------------------
```{r, fig.width=5, fig.height=5}
library(tidyverse)
library(ggplot2)
library(readr)
library(readxl)
library(PerformanceAnalytics)
library(forecast)
library(flexdashboard)
library(kableExtra)

df <- read_excel("Sacrificio_De_Ganado_Bovino_en_el_valle_del_cauca_20250926.xlsx")
names(df) <- make.names(names(df))
summary (df)
```


### Fuente de datos


```{r tabla-descriptiva}
### Resumen estadisticas descriptivas

get_mode <- function(v) {
  uniques <- unique(v)
  uniques[which.max(tabulate(match(v, uniques)))]
}

variables <- data.frame(
  Machos.Sacrificados = df$Machos.Sacrificados,
  Hembras.Sacrificadas = df$Hembras.Sacrificadas,
  Animales.Sacrificados = df$Animales.Sacrificados,
  Peso.en.pie.en.Tn = df$Peso.en.pie.en.Tn
)

tabla_stats <- data.frame(
  Variable = colnames(variables),
  Media = sapply(variables, mean, na.rm = TRUE),
  Mediana = sapply(variables, median, na.rm = TRUE),
  Moda = sapply(variables, get_mode),
  Varianza = sapply(variables, var, na.rm = TRUE),
  Desv_Estandar = sapply(variables, sd, na.rm = TRUE)
)

tabla_stats

```

Boxplot
===================================================================

Row 
-------------------------------------------------------------------

```{r, fig.width=6, fig.height=6}

boxplot(df$Machos.Sacrificados, col="skyblue", main="Machos Sacrificados",
        ylim=c(0, 10000))

```{r, fig.width=6, fig.height=6}
boxplot(df$Hembras.Sacrificadas, col ="pink",main="Hembras Sacrificadas",
        ylim=c(0,4000))

```

Row 
-------------------------------------------------------------------

```{r, fig.width=6, fig.height=6}
boxplot(df$Animales.Sacrificados, col="lightgreen",main="Animales sacrificados",
        ylim=c(0,12000))
```{r, fig.width=6, fig.height=6}
boxplot(df$Peso.en.pie.en.Tn, col="orange",main="Peso en pie en Tn",
        ylim=c(0,5000))

par(mfrow=c(1,1))  # volver a 1 gráfico

```

Row 
-------------------------------------------------------------------

Histogramas 
===================================================================
Row 
-------------------------------------------------------------------
```{r, fig.width=6, fig.height=6}

media_machos <- mean(df$Machos.Sacrificados, na.rm = TRUE)
mediana_machos <- median(df$Machos.Sacrificados, na.rm = TRUE)
moda_machos <- get_mode(df$Machos.Sacrificados)


hist(df$Machos.Sacrificados, col = "skyblue",
     main = "Histograma Machos Sacrificados con Media, Mediana y Moda",
     xlab = "Machos Sacrificados")
abline(v = media_machos, col = "red", lwd = 2, lty = 1)
abline(v = mediana_machos, col = "green", lwd = 2, lty = 2)
abline(v = moda_machos, col = "blue", lwd = 2, lty = 3)
legend("topright",
       legend = c("Media", "Mediana", "Moda"),
       col = c("red", "green", "blue"),
       lwd = 2,
       lty = c(1, 2, 3))

```{r, fig.width=6, fig.height=6}
# Histogramas para Hembras Sacrificadas
media_hembras <- mean(df$Hembras.Sacrificadas, na.rm = TRUE)
mediana_hembras <- median(df$Hembras.Sacrificadas, na.rm = TRUE)
moda_hembras <- get_mode(df$Hembras.Sacrificadas)

hist(df$Hembras.Sacrificadas, col = "gray",
     main = "Histograma Hembras Sacrificadas con Media, Mediana y Moda",
     xlab = "Hembras Sacrificadas")
abline(v = media_hembras, col = "red", lwd = 2, lty = 1)
abline(v = mediana_hembras, col = "green", lwd = 2, lty = 2)
abline(v = moda_hembras, col = "blue", lwd = 2, lty = 3)
legend("topright",
       legend = c("Media", "Mediana", "Moda"),
       col = c("red", "green", "blue"),
       lwd = 2,
       lty = c(1, 2, 3))
```

Row 
-------------------------------------------------------------------

```{r, fig.width=6, fig.height=6}
# Histograma para Peso en pie en Tn
media_peso <- mean(df$Peso.en.pie.en.Tn, na.rm = TRUE)
mediana_peso <- median(df$Peso.en.pie.en.Tn, na.rm = TRUE)
moda_peso <- get_mode(df$Peso.en.pie.en.Tn)

hist(df$Peso.en.pie.en.Tn, col = "orange",
     main = "Histograma Peso en pie en Tn con Media, Mediana y Moda",
     xlab = "Peso en pie en Tn")
abline(v = media_peso, col = "red", lwd = 2, lty = 1)
abline(v = mediana_peso, col = "green", lwd = 2, lty = 2)
abline(v = moda_peso, col = "blue", lwd = 2, lty = 3)
legend("topright",
       legend = c("Media", "Mediana", "Moda"),
       col = c("red", "green", "blue"),
       lwd = 2,
       lty = c(1, 2, 3))

```

Row 
-------------------------------------------------------------------

Dispersión 
===================================================================
Row 
-------------------------------------------------------------------

```{r, fig.width=5, fig.height=5}

plot(df$Machos.Sacrificados, df$Hembras.Sacrificadas, col="blue",
     main="Dispersión Machos vs Hembras",
     xlab="Machos Sacrificados", ylab="Hembras Sacrificadas", xlim =c(0,10000))

```{r, fig.width=5, fig.height=5}

plot(df$Animales.Sacrificados, df$Peso.en.pie.en.Tn, col="red",
     main="Dispersión Animales vs Peso en pie",
     xlab="Animales Sacrificados", ylab="Peso en pie en Tn", xlim =c(0,15000))

```

Row 
-------------------------------------------------------------------

Correlación 
===================================================================
Row 
-------------------------------------------------------------------
```{r, fig.width=5, fig.height=5}
#Declarar las variables a comparar
Machos<-c(df$Machos.Sacrificados)
Hembras<-c(df$Hembras.Sacrificadas)

#Determinar la correlación entre ellas
cor(Machos,Hembras)
cor.test(Machos,Hembras)
#Graficar
pairs(Machos~Hembras)
```


```{r, fig.width=5, fig.height=5}
#Matriz de correlación
data <-data.frame(Machos,Hembras)
chart.Correlation(data)
```

Row
-------------------------------------------------------------------
Comparación por municipio
===================================================================
Row 
-------------------------------------------------------------------
```{r}
##Declarar variable cualitativa y cuantitativa
Cualitativa<- c(df$Municipio)
Cuantitativa<-c(df$Animales.Sacrificados)

#Diagrama de cajas 
boxplot(Cuantitativa~Cualitativa)

```

Row 
-------------------------------------------------------------------

Pronóstico
===================================================================
Row 
-------------------------------------------------------------------
```{r}
serie <- ts(df$Animales.Sacrificados, start = min(df$Año), frequency = 1)

autoplot(serie) +
  labs(title = "Pronóstico en el tiempo",
       x = "Año",
       y = "Animales Sacrificados") +
  theme_bw()
```


Row 
-------------------------------------------------------------------