###### Universidad Central del Ecuador######
###### Carrera de Petróleos #####
library(readxl)
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
# Cargar datos
library(readr)
datasetf <- read_csv("datasetf.csv")
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
## Rows: 2795 Columns: 36
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (18): Accident Date/Time, Operator Name, Pipeline/Facility Name, Pipelin...
## dbl (18): Report Number, Supplemental Number, Accident Year, Operator ID, Ac...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(datasetf)
# Agrupar Pipeline Location por Pipeline Location
Tabla_location <- datasetf %>%
count(Location = `Pipeline Location`, name = "ni") %>%
arrange(desc(ni))
# TDFfrecuencias
Tabla_location$hi <- Tabla_location$ni / sum(Tabla_location$ni)
Tabla_location$hi_porcentaje <- round(Tabla_location$hi * 100, 3)
# Agregar TOTAL
total_fila_location <- data.frame(
Location = "TOTAL",
ni = sum(Tabla_location$ni),
hi = 1,
hi_porcentaje = 100.000
)
Tabla_completa_location <- rbind(Tabla_location, total_fila_location)
Tabla_final_location <- Tabla_completa_location[, c("Location", "ni", "hi_porcentaje")]
names(Tabla_final_location)[names(Tabla_final_location) == "hi_porcentaje"] <- "hi" #CAMBIO DE NOMBRE
View(Tabla_final_location)
print(Tabla_final_location)
## # A tibble: 3 × 3
## Location ni hi
## <chr> <int> <dbl>
## 1 ONSHORE 2777 99.4
## 2 OFFSHORE 18 0.644
## 3 TOTAL 2795 100
# Filtrar datos (sin TOTAL)
datos_grafica_location <- Tabla_final_location[Tabla_final_location$Location != "TOTAL", ]
# Gráfico 1: Barras para ni
barplot(datos_grafica_location$ni,
names.arg = datos_grafica_location$Location,
col = "#4ECDC4",
main = "Gráfica No.1: Distribución por Ubicación de Pipeline",
ylab = "Cantidad",
las = 2,
cex.names = 0.7,
ylim = c(0, max(datos_grafica_location$ni) * 1.1))

# Gráfico 2: Barras para hi
barplot(datos_grafica_location$hi,
names.arg = datos_grafica_location$Location,
col = "#4ECDC4",
main = "Gráfica No.2: Distribución por Ubicación de Pipeline",
ylab = "Cantidad",
las = 2,
cex.names = 0.7,
ylim = c(0, max(datos_grafica_location$hi) * 1.1))

# Gráfico 3: Porcentaje (hi * 100)
barplot(datos_grafica_location$hi * 100,
names.arg = datos_grafica_location$Location,
col = "#4ECDC4",
main = "Gráfica Nº3: Distribución por Ubicación de Pipeline",
las = 2,
cex.names = 0.7,
ylab = "Cantidad")

# Gráfico 4: Pastel
par(mar = c(2, 2, 2, 12)) # Margen derecho MUY grande para la leyenda
azules_degradado <- c("#1f77b4", "#279ece", "#4fb4d8", "#7bcde8", "#a6e3f7", "#d4f1f9")
# Crear el pastel normal
pie(datos_grafica_location$hi * 100,
labels = NA, # Sin etiquetas en el gráfico
col = azules_degradado,
main = "Distribución por Tipo de Líquido",
radius = 1)
# Leyenda externa BIEN POSICIONADA
legend(x = 1.2, y = 1,
legend = paste0(datos_grafica_location$Location, " - ",
round(datos_grafica_location$hi * 100, 1), "%",
" (", datos_grafica_location$ni, " casos)"),
fill = azules_degradado,
bty = "t",
cex = 0.6,
xpd = TRUE)

# Restaurar márgenes
par(mar = c(5, 4, 4, 2) + 0.1)