# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062308063 -0.0029355988 0.0366065001 0.052133440 4.992251e-02
## 2013-02-28 0.0058913475 -0.0231052291 -0.0129695665 0.016175451 1.267837e-02
## 2013-03-28 0.0009841418 -0.0102348782 0.0129695665 0.040258193 3.726824e-02
## 2013-04-30 0.0096398689 0.0120844258 0.0489673452 0.001222538 1.902986e-02
## 2013-05-31 -0.0202141809 -0.0494834075 -0.0306555956 0.041976385 2.333560e-02
## 2013-06-28 -0.0157779351 -0.0547282832 -0.0271444386 -0.001403198 -1.343443e-02
## 2013-07-31 0.0026882945 0.0131597343 0.0518604901 0.063541150 5.038571e-02
## 2013-08-30 -0.0082985679 -0.0257055117 -0.0197463316 -0.034743680 -3.045191e-02
## 2013-09-30 0.0111433410 0.0695888285 0.0753384346 0.063874011 3.115683e-02
## 2013-10-31 0.0082919988 0.0408610589 0.0320817420 0.034234344 4.526629e-02
## 2013-11-29 -0.0025097180 -0.0025939594 0.0054495182 0.041660989 2.920732e-02
## 2013-12-31 -0.0055829442 -0.0040744740 0.0215282508 0.012891884 2.559625e-02
## 2014-01-31 0.0152918816 -0.0903227406 -0.0534133482 -0.035775149 -3.588464e-02
## 2014-02-28 0.0037564562 0.0332208034 0.0595051619 0.045257432 4.451014e-02
## 2014-03-31 -0.0014810730 0.0380215189 -0.0046027319 0.013315232 8.261200e-03
## 2014-04-30 0.0081834498 0.0077726748 0.0165294223 -0.023184275 6.927457e-03
## 2014-05-30 0.0117206949 0.0290915452 0.0158282891 0.006205532 2.294127e-02
## 2014-06-30 -0.0005753668 0.0237337140 0.0091655702 0.037718650 2.043483e-02
## 2014-07-31 -0.0025121555 0.0135560224 -0.0263799686 -0.052009499 -1.352860e-02
## 2014-08-29 0.0114308109 0.0279041659 0.0018005554 0.043658025 3.870449e-02
## 2014-09-30 -0.0061675416 -0.0808565541 -0.0395985398 -0.061260643 -1.389227e-02
## 2014-10-31 0.0105844589 0.0140965713 -0.0026546882 0.068874811 2.327762e-02
## 2014-11-28 0.0065497325 -0.0155414412 0.0006251658 0.004773887 2.710159e-02
## 2014-12-31 0.0014745998 -0.0404421791 -0.0407467327 0.025295599 -2.540003e-03
## 2015-01-30 0.0203148056 -0.0068957584 0.0062264515 -0.054627728 -3.007683e-02
## 2015-02-27 -0.0089876607 0.0431361473 0.0614508320 0.056914066 5.468196e-02
## 2015-03-31 0.0037400746 -0.0150860633 -0.0143886301 0.010156923 -1.583041e-02
## 2015-04-30 -0.0032334174 0.0662812322 0.0358164147 -0.018417800 9.785786e-03
## 2015-05-29 -0.0043835358 -0.0419108050 0.0019525556 0.007509785 1.277425e-02
## 2015-06-30 -0.0108255093 -0.0297470595 -0.0316789227 0.004171360 -2.052133e-02
## 2015-07-31 0.0085845929 -0.0651777732 0.0201146545 -0.027375506 2.233819e-02
## 2015-08-31 -0.0033628592 -0.0925125256 -0.0771524135 -0.047268035 -6.288680e-02
## 2015-09-30 0.0080810647 -0.0318251041 -0.0451947528 -0.038465006 -2.584716e-02
## 2015-10-30 0.0006852694 0.0618085611 0.0640258117 0.063589776 8.163490e-02
## 2015-11-30 -0.0038983505 -0.0255607521 -0.0075559791 0.024415353 3.648681e-03
## 2015-12-31 -0.0019187159 -0.0389468536 -0.0235951381 -0.052157088 -1.743385e-02
## 2016-01-29 0.0123296510 -0.0516367731 -0.0567577056 -0.060306728 -5.106860e-02
## 2016-02-29 0.0088314068 -0.0082114604 -0.0339140194 0.020605214 -8.263364e-04
## 2016-03-31 0.0087088679 0.1218791563 0.0637458506 0.089910220 6.510035e-02
## 2016-04-29 0.0025464754 0.0040791037 0.0219750163 0.021044169 3.933516e-03
## 2016-05-31 0.0001350632 -0.0376284587 -0.0008562582 0.004397257 1.686833e-02
## 2016-06-30 0.0191667209 0.0445822149 -0.0244912654 0.008292096 3.469846e-03
## 2016-07-29 0.0054301193 0.0524423593 0.0390002385 0.049348507 3.582208e-02
## 2016-08-31 -0.0021566150 0.0087984693 0.0053267596 0.011261131 1.196811e-03
## 2016-09-30 0.0005160426 0.0248727288 0.0132791635 0.008614665 5.794373e-05
## 2016-10-31 -0.0082045759 -0.0083122023 -0.0224038374 -0.038134959 -1.748914e-02
## 2016-11-30 -0.0259895177 -0.0451618894 -0.0179742290 0.125246798 3.617592e-02
## 2016-12-30 0.0025370642 -0.0025297863 0.0267028154 0.031491356 2.006922e-02
## 2017-01-31 0.0021265773 0.0644313517 0.0323818294 -0.012143895 1.773656e-02
## 2017-02-28 0.0064384065 0.0172581395 0.0118365136 0.013428835 3.853925e-02
## 2017-03-31 -0.0005537535 0.0361886138 0.0318056710 -0.006532996 1.249047e-03
## 2017-04-28 0.0090297910 0.0168666395 0.0239520989 0.005107702 9.877230e-03
## 2017-05-31 0.0068471800 0.0280596727 0.0348102979 -0.022862613 1.401442e-02
## 2017-06-30 -0.0001828290 0.0092238832 0.0029561481 0.029151643 6.354650e-03
## 2017-07-31 0.0033345809 0.0565945288 0.0261878041 0.007481838 2.034580e-02
## 2017-08-31 0.0093690696 0.0232439185 -0.0004485755 -0.027564454 2.913217e-03
## 2017-09-29 -0.0057320903 -0.0004463619 0.0233429570 0.082321356 1.994928e-02
## 2017-10-31 0.0009778273 0.0322783985 0.0166538599 0.005915982 2.329088e-02
## 2017-11-30 -0.0014839725 -0.0038968199 0.0068696856 0.036913377 3.010795e-02
## 2017-12-29 0.0047400762 0.0369253201 0.0133986167 -0.003730966 1.205482e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398292e-05 0.0001042088 4.178176e-05 -7.811915e-05 -9.030653e-06
## EEM 1.042088e-04 0.0017547101 1.039018e-03 6.437734e-04 6.795449e-04
## EFA 4.178176e-05 0.0010390178 1.064238e-03 6.490311e-04 6.975428e-04
## IJS -7.811915e-05 0.0006437734 6.490311e-04 1.565449e-03 8.290255e-04
## SPY -9.030653e-06 0.0006795449 6.975428e-04 8.290255e-04 7.408303e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874069 0.009257143 0.005815638 0.00568447 0.002330255
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
sset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062308063 -0.0029355988 0.0366065001 0.052133440 4.992251e-02
## 2013-02-28 0.0058913475 -0.0231052291 -0.0129695665 0.016175451 1.267837e-02
## 2013-03-28 0.0009841418 -0.0102348782 0.0129695665 0.040258193 3.726824e-02
## 2013-04-30 0.0096398689 0.0120844258 0.0489673452 0.001222538 1.902986e-02
## 2013-05-31 -0.0202141809 -0.0494834075 -0.0306555956 0.041976385 2.333560e-02
## 2013-06-28 -0.0157779351 -0.0547282832 -0.0271444386 -0.001403198 -1.343443e-02
## 2013-07-31 0.0026882945 0.0131597343 0.0518604901 0.063541150 5.038571e-02
## 2013-08-30 -0.0082985679 -0.0257055117 -0.0197463316 -0.034743680 -3.045191e-02
## 2013-09-30 0.0111433410 0.0695888285 0.0753384346 0.063874011 3.115683e-02
## 2013-10-31 0.0082919988 0.0408610589 0.0320817420 0.034234344 4.526629e-02
## 2013-11-29 -0.0025097180 -0.0025939594 0.0054495182 0.041660989 2.920732e-02
## 2013-12-31 -0.0055829442 -0.0040744740 0.0215282508 0.012891884 2.559625e-02
## 2014-01-31 0.0152918816 -0.0903227406 -0.0534133482 -0.035775149 -3.588464e-02
## 2014-02-28 0.0037564562 0.0332208034 0.0595051619 0.045257432 4.451014e-02
## 2014-03-31 -0.0014810730 0.0380215189 -0.0046027319 0.013315232 8.261200e-03
## 2014-04-30 0.0081834498 0.0077726748 0.0165294223 -0.023184275 6.927457e-03
## 2014-05-30 0.0117206949 0.0290915452 0.0158282891 0.006205532 2.294127e-02
## 2014-06-30 -0.0005753668 0.0237337140 0.0091655702 0.037718650 2.043483e-02
## 2014-07-31 -0.0025121555 0.0135560224 -0.0263799686 -0.052009499 -1.352860e-02
## 2014-08-29 0.0114308109 0.0279041659 0.0018005554 0.043658025 3.870449e-02
## 2014-09-30 -0.0061675416 -0.0808565541 -0.0395985398 -0.061260643 -1.389227e-02
## 2014-10-31 0.0105844589 0.0140965713 -0.0026546882 0.068874811 2.327762e-02
## 2014-11-28 0.0065497325 -0.0155414412 0.0006251658 0.004773887 2.710159e-02
## 2014-12-31 0.0014745998 -0.0404421791 -0.0407467327 0.025295599 -2.540003e-03
## 2015-01-30 0.0203148056 -0.0068957584 0.0062264515 -0.054627728 -3.007683e-02
## 2015-02-27 -0.0089876607 0.0431361473 0.0614508320 0.056914066 5.468196e-02
## 2015-03-31 0.0037400746 -0.0150860633 -0.0143886301 0.010156923 -1.583041e-02
## 2015-04-30 -0.0032334174 0.0662812322 0.0358164147 -0.018417800 9.785786e-03
## 2015-05-29 -0.0043835358 -0.0419108050 0.0019525556 0.007509785 1.277425e-02
## 2015-06-30 -0.0108255093 -0.0297470595 -0.0316789227 0.004171360 -2.052133e-02
## 2015-07-31 0.0085845929 -0.0651777732 0.0201146545 -0.027375506 2.233819e-02
## 2015-08-31 -0.0033628592 -0.0925125256 -0.0771524135 -0.047268035 -6.288680e-02
## 2015-09-30 0.0080810647 -0.0318251041 -0.0451947528 -0.038465006 -2.584716e-02
## 2015-10-30 0.0006852694 0.0618085611 0.0640258117 0.063589776 8.163490e-02
## 2015-11-30 -0.0038983505 -0.0255607521 -0.0075559791 0.024415353 3.648681e-03
## 2015-12-31 -0.0019187159 -0.0389468536 -0.0235951381 -0.052157088 -1.743385e-02
## 2016-01-29 0.0123296510 -0.0516367731 -0.0567577056 -0.060306728 -5.106860e-02
## 2016-02-29 0.0088314068 -0.0082114604 -0.0339140194 0.020605214 -8.263364e-04
## 2016-03-31 0.0087088679 0.1218791563 0.0637458506 0.089910220 6.510035e-02
## 2016-04-29 0.0025464754 0.0040791037 0.0219750163 0.021044169 3.933516e-03
## 2016-05-31 0.0001350632 -0.0376284587 -0.0008562582 0.004397257 1.686833e-02
## 2016-06-30 0.0191667209 0.0445822149 -0.0244912654 0.008292096 3.469846e-03
## 2016-07-29 0.0054301193 0.0524423593 0.0390002385 0.049348507 3.582208e-02
## 2016-08-31 -0.0021566150 0.0087984693 0.0053267596 0.011261131 1.196811e-03
## 2016-09-30 0.0005160426 0.0248727288 0.0132791635 0.008614665 5.794373e-05
## 2016-10-31 -0.0082045759 -0.0083122023 -0.0224038374 -0.038134959 -1.748914e-02
## 2016-11-30 -0.0259895177 -0.0451618894 -0.0179742290 0.125246798 3.617592e-02
## 2016-12-30 0.0025370642 -0.0025297863 0.0267028154 0.031491356 2.006922e-02
## 2017-01-31 0.0021265773 0.0644313517 0.0323818294 -0.012143895 1.773656e-02
## 2017-02-28 0.0064384065 0.0172581395 0.0118365136 0.013428835 3.853925e-02
## 2017-03-31 -0.0005537535 0.0361886138 0.0318056710 -0.006532996 1.249047e-03
## 2017-04-28 0.0090297910 0.0168666395 0.0239520989 0.005107702 9.877230e-03
## 2017-05-31 0.0068471800 0.0280596727 0.0348102979 -0.022862613 1.401442e-02
## 2017-06-30 -0.0001828290 0.0092238832 0.0029561481 0.029151643 6.354650e-03
## 2017-07-31 0.0033345809 0.0565945288 0.0261878041 0.007481838 2.034580e-02
## 2017-08-31 0.0093690696 0.0232439185 -0.0004485755 -0.027564454 2.913217e-03
## 2017-09-29 -0.0057320903 -0.0004463619 0.0233429570 0.082321356 1.994928e-02
## 2017-10-31 0.0009778273 0.0322783985 0.0166538599 0.005915982 2.329088e-02
## 2017-11-30 -0.0014839725 -0.0038968199 0.0068696856 0.036913377 3.010795e-02
## 2017-12-29 0.0047400762 0.0369253201 0.0133986167 -0.003730966 1.205482e-02
calculate_component_contribution <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
Column chart of componenet contribution
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform
pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = Asset, y = Contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column chart of component contribution and weight
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform
pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
# Add weights
add_column(weight = c(.25, .25, .2, .2, .1)) %>%
# Transform
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight",
y = "Percent",
x = NULL)