# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899137
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 1.925878e-02 -1.410757e-02 3.764044e-02 1.293198e-02 2.210719e-02
## [6] 2.492424e-02 7.026167e-03 2.412502e-02 -6.060989e-03 1.045817e-03
## [11] 1.898053e-02 8.195020e-03 -2.168865e-02 -4.048490e-02 -2.471489e-02
## [16] 1.642101e-02 2.752525e-03 -2.029803e-02 1.137153e-02 3.894596e-02
## [21] 1.534567e-03 1.325983e-02 3.538859e-02 -2.520639e-02 1.238446e-04
## [26] 6.074400e-02 4.315433e-02 -2.557662e-04 -4.809586e-04 -5.193231e-02
## [31] -5.531001e-03 4.662863e-02 3.450598e-02 3.717184e-02 3.837188e-02
## [36] 2.067611e-02 2.475357e-02 1.632820e-02 -1.257397e-02 7.237488e-03
## [41] -5.379135e-03 3.549442e-02 3.199317e-02 3.919363e-03 -9.242883e-03
## [46] -6.252011e-03 5.036846e-02 -4.484809e-02 1.120325e-02 2.900068e-02
## [51] 1.455167e-02 -3.008494e-03 1.284299e-02 3.824448e-02 -1.123762e-02
## [56] 1.006592e-02 1.365469e-02 -1.386300e-02 -1.072395e-02 1.174876e-02
## [61] 3.657552e-02 -8.161554e-03 -7.871873e-03 -2.750504e-03 1.720087e-02
## [66] -5.234228e-03 -9.647263e-03 -1.763561e-03 2.741766e-02 -1.433137e-02
## [71] -3.468837e-02 1.559046e-02 -1.276502e-02 1.623009e-02 2.206637e-03
## [76] 2.065292e-02 1.276640e-02 3.088752e-02 1.951169e-02 -5.889537e-02
## [81] 2.024757e-02 -1.831284e-02 2.001946e-02 -4.880501e-02 1.539226e-02
## [86] -4.011933e-03 9.615856e-03 1.069165e-02 9.332067e-03 -1.482332e-02
## [91] 3.880655e-02 -2.963222e-02 -3.580350e-02 -1.009872e-02 3.172940e-02
## [96] 3.088014e-02 2.785914e-02 -6.138887e-03 -3.282873e-02 -6.692558e-03
## [101] -1.375205e-02 1.703372e-03 1.958249e-02 4.877407e-02 2.857544e-03
## [106] 1.160805e-02 2.814247e-03 4.533987e-02 1.097591e-05 1.576837e-02
## [111] 2.607814e-02 -4.267491e-02 2.664051e-02 1.324109e-02 2.897051e-02
## [116] 1.301376e-02 -1.157099e-02 3.378581e-02 1.010688e-02 1.824567e-03
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.02
## 3 0.986
## 4 1.04
## 5 1.01
## 6 1.02
## 7 1.02
## 8 1.01
## 9 1.02
## 10 0.994
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.02
## 3 1.00
## 4 1.04
## 5 1.06
## 6 1.08
## 7 1.11
## 8 1.11
## 9 1.14
## 10 1.13
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.434928
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# The first value, i whatever value we want to follow
#rnom(time frame, etc.)
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 325.
## 2 330.
## 3 332.
## 4 329.
## 5 328.
## 6 326.
# how to save a function
dump(list = c("simulate_accumulation"),
file = "../00_scripts/simulate_accumulation.R")
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
# for reproducible research
set.seed(1234)
monte_carlo_sim51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.17 1.59 1.98 2.40 3.88
monte_carlo_sim51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating Growth of $1 over 12 months")
Line plot with max, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.88 1.98 1.17
# Step 2 Plot
monte_carlo_sim51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating Growth of $1 over 12 months",
subtitle = "Max, Median, and Minimum Simulation")