# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899136
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347488
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0015976533 -0.0017668981  0.0268258501  0.0238477813  0.0110655765
##   [6] -0.0236647290 -0.0109129598  0.0107999180 -0.0289094158  0.0197409565
##  [11]  0.0186234289  0.0187890136  0.0318992688  0.0291597563 -0.0092005989
##  [16] -0.0158755018  0.0058973089  0.0170979246 -0.0443283971 -0.0146922882
##  [21]  0.0408860652  0.0189169710  0.0271089795 -0.0213919592  0.0354092889
##  [26]  0.0182220546  0.0170311007  0.0130123682 -0.0379274088  0.0176976690
##  [31] -0.0170840515  0.0069091822 -0.0026301256  0.0056904551 -0.0109740928
##  [36]  0.0148289998  0.0124591489 -0.0182570840 -0.0111114300 -0.0161679198
##  [41] -0.0070378026  0.0143928224  0.0425919693  0.0037389726  0.0359098670
##  [46]  0.0355913452  0.0024392454 -0.0250652622 -0.0266226004 -0.0053436255
##  [51]  0.0303090016  0.0272475301  0.0250026158  0.0015368348  0.0453848852
##  [56] -0.0163448139  0.0158831326 -0.0226370046 -0.0022720456 -0.0260592335
##  [61] -0.0049306058  0.0347596524  0.0296421730  0.0183017278 -0.0058281373
##  [66]  0.0353999198 -0.0044287132 -0.0151949374  0.0246972647  0.0461600953
##  [71]  0.0069488283 -0.0050109103 -0.0384229665  0.0156549402 -0.0513632051
##  [76]  0.0083525152  0.0164167279  0.0320340008  0.0323209636 -0.0198679709
##  [81] -0.0127094091 -0.0461905725  0.0525810596  0.0063942155  0.0135220608
##  [86] -0.0096547717 -0.0045809154  0.0049514620  0.0201418677  0.0705818752
##  [91] -0.0269135319  0.0225419390  0.0013138136 -0.0282503344 -0.0212529955
##  [96]  0.0032174596 -0.0103568843  0.0126949218 -0.0001235707  0.0004501185
## [101]  0.0201221139  0.0370747903 -0.0288810798 -0.0137720858  0.0149262764
## [106]  0.0472218583 -0.0003391493  0.0040415705  0.0328646571 -0.0148798694
## [111] -0.0099180515  0.0401291195  0.0439952426 -0.0068095952 -0.0226550751
## [116] -0.0068453242  0.0485296298  0.0044507566 -0.0284374011  0.0496497579
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   0.998
##  4   1.03 
##  5   1.02 
##  6   1.01 
##  7   0.976
##  8   0.989
##  9   1.01 
## 10   0.971
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.00
##  3   1.00
##  4   1.03
##  5   1.05
##  6   1.06
##  7   1.04
##  8   1.03
##  9   1.04
## 10   1.01
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 7.094071

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail() 
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   379.
## 2   378.
## 3   387.
## 4   388.
## 5   394.
## 6   395.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts 
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carle_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N              = 120, 
                                       mean_return    = mean_port_return,
                                       sd_return      = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

# Find quantiles 
monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carle_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth)) 

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carle_sim_51 %>%
    
    # Filter for max, median, min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
        ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Mimimum Simulation")