# Load packages
library(tidyverse)
library(tidyquant)
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tb1 <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tb1
## # A tibble: 100 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 SPY 2012-03-30 0.104
## 2 SPY 2012-06-29 -0.0289
## 3 SPY 2012-09-28 0.0615
## 4 SPY 2012-12-31 -0.00383
## 5 SPY 2013-03-28 0.0999
## 6 SPY 2013-06-28 0.0289
## 7 SPY 2013-09-30 0.0511
## 8 SPY 2013-12-31 0.100
## 9 SPY 2014-03-31 0.0169
## 10 SPY 2014-06-30 0.0503
## # ℹ 90 more rows
asset_returns_tb1 %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3,bindwidth = 0.01 ) +
facet_wrap(~asset, ncol = 1) +
# labeling
labs (title = "Distribution of Monthly Returns, 2012-2016",
y = "Frequency",
x. = "Rate of Returns",
caption = "A typic monthly return is higher for SPY and IJS than for AGG, EEM, and EFA")
Hide the code, messages, and warnings