1 PENDAHULUAN

1.1 Latar Belakang

Pembangunan ekonomi di Indonesia tidak dapat dilepaskan dari kondisi sosial ekonomi masyarakat yang tersebar pada berbagai wilayah dengan karakteristik yang berbeda. Setiap provinsi memiliki tingkat kemampuan ekonomi yang dipengaruhi oleh struktur industri, akses terhadap lapangan pekerjaan, kualitas sumber daya manusia, serta berbagai faktor demografis. Salah satu indikator penting dalam menilai kondisi tersebut adalah rata-rata penghasilan masyarakat. Indikator ini mencerminkan kapasitas individu dalam memenuhi kebutuhan dasar, meningkatkan kualitas hidup, dan berpartisipasi dalam kegiatan ekonomi produktif. Perbedaan tingkat penghasilan antardaerah pada akhirnya dapat menggambarkan ketimpangan kesejahteraan yang masih menjadi tantangan dalam pembangunan nasional.

Selain menggambarkan kesejahteraan individu, variasi penghasilan juga berkaitan dengan efektivitas kebijakan pemerintah dalam meningkatkan aktivitas ekonomi di berbagai wilayah. Provinsi dengan tingkat penghasilan yang lebih tinggi biasanya memiliki struktur ekonomi yang lebih beragam, peluang kerja yang lebih luas, serta akses terhadap pendidikan dan infrastruktur yang lebih baik. Sebaliknya, provinsi dengan rata-rata penghasilan lebih rendah cenderung menghadapi hambatan dalam meningkatkan produktivitas dan pertumbuhan ekonomi. Oleh karena itu, memahami pola perbedaan penghasilan antarprovinsi menjadi langkah penting dalam upaya merumuskan kebijakan pembangunan yang tepat sasaran dan berkeadilan.

Untuk menganalisis perbedaan tersebut secara komprehensif, diperlukan metode statistik yang mampu menggambarkan hubungan kemiripan atau ketidaksamaan antarprovinsi berdasarkan indikator penghasilan yang dimiliki. Multidimensional Scaling merupakan salah satu metode analisis multivariat yang digunakan untuk memetakan objek ke dalam ruang berdimensi rendah berdasarkan tingkat kemiripannya. Metode ini memungkinkan peneliti untuk melihat struktur pola data secara visual, termasuk pengelompokan provinsi dengan karakteristik penghasilan yang serupa serta jarak antarprovinsi yang mencerminkan tingkat perbedaan ekonomi.

Melalui pendekatan MDS, representasi visual yang dihasilkan dapat membantu peneliti mengidentifikasi provinsi yang memiliki kesenjangan penghasilan cukup besar serta melihat kelompok wilayah yang memiliki struktur ekonomi yang relatif sama. Informasi ini penting bagi pemerintah maupun pemangku kebijakan lainnya dalam merancang strategi pembangunan yang lebih terarah, termasuk pemerataan ekonomi dan optimalisasi sumber daya lokal.

Dengan demikian, penggunaan metode Multidimensional Scaling dalam menganalisis data rata-rata penghasilan per provinsi di Indonesia menjadi relevan untuk memahami pola kesenjangan ekonomi wilayah. Analisis ini diharapkan mampu memberikan gambaran yang lebih jelas mengenai hubungan antarprovinsi serta membantu mendukung upaya pemerataan pembangunan di Indonesia.

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, maka rumusan masalah dalam penelitian ini adalah sebagai berikut. - Bagaimana pola kemiripan dan perbedaan rata-rata pengeluaran per kapita antarpovinsi di Indonesia pada tahun 2024 jika dianalisis menggunakan metode Multidimensional Scaling. - Provinsi mana saja yang memiliki karakteristik pengeluaran yang relatif serupa, dan provinsi mana yang menunjukkan perbedaan paling mencolok. - Bagaimana pemetaan dua dimensi yang dihasilkan oleh MDS mampu menggambarkan struktur hubungan antarprovinsi berdasarkan indikator pengeluaran makanan, bukan makanan, dan total pengeluaran.

1.3 Tujuan

Tujuan penelitian ini dirumuskan sebagai berikut. - Untuk menganalisis tingkat kemiripan dan ketidaksamaan rata-rata pengeluaran per kapita antarpovinsi di Indonesia menggunakan metode Multidimensional Scaling. - Untuk mengidentifikasi kelompok provinsi yang memiliki karakteristik pengeluaran yang serupa maupun berbeda secara signifikan. - Untuk menghasilkan pemetaan dua dimensi yang mampu memberikan visualisasi pola hubungan antarprovinsi berdasarkan komponen pengeluaran makanan, pengeluaran bukan makanan, dan total pengeluaran.

2 TINJAUAN PUSTAKA

2.1 Analisis Multivariat

Analisis multivariat merupakan cabang statistika yang mempelajari pengukuran, pemodelan, dan interpretasi beberapa variabel secara simultan. Berbeda dengan analisis univariat atau bivariat yang hanya mempertimbangkan satu atau dua variabel pada satu waktu, analisis multivariat menekankan pemahaman hubungan kompleks antar variabel dalam suatu sistem data yang memiliki dimensi tinggi. Pendekatan ini penting digunakan ketika variabel yang diamati saling berkaitan dan tidak dapat dianalisis secara terpisah tanpa mengurangi makna atau struktur informasinya.

Dalam analisis multivariat, tujuan utama adalah mereduksi dimensi data, mengidentifikasi pola hubungan, mengelompokkan objek, serta melakukan prediksi dengan mempertimbangkan interaksi antar variabel. Teknik-teknik yang umum digunakan meliputi analisis faktor, analisis komponen utama, analisis diskriminan, analisis klaster, dan Multidimensional Scaling. Melalui pendekatan ini, peneliti dapat memahami struktur internal data yang kompleks sehingga interpretasi menjadi lebih informatif dan representatif terhadap fenomena yang diteliti.

Analisis multivariat banyak digunakan dalam bidang ekonomi, ilmu sosial, psikologi, dan pemasaran, terutama ketika analisis perlu dilakukan terhadap unit pengamatan yang memiliki banyak karakteristik. Dengan memanfaatkan teknik reduksi dimensi dan pemetaan visual, peneliti dapat menyajikan temuan secara lebih mudah dipahami tanpa kehilangan informasi penting yang merepresentasikan hubungan antarvariabel.

2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) merupakan metode analisis multivariat yang digunakan untuk memvisualisasikan tingkat kemiripan atau ketidaksamaan antar objek dalam suatu ruang berdimensi rendah, biasanya dua atau tiga dimensi. MDS bekerja dengan mengubah matriks jarak atau ketidaksamaan antar objek menjadi representasi koordinat pada suatu peta persepsi. Semakin dekat posisi dua objek pada peta tersebut, semakin mirip karakteristik keduanya berdasarkan variabel yang dianalisis.

Secara prinsip, MDS berusaha meminimalkan perbedaan antara jarak asli (berdasarkan data) dengan jarak hasil pemetaan dalam ruang representasi. Tingkat ketepatan pemetaan ini diukur melalui indeks yang disebut stress value. Nilai stress yang rendah menunjukkan bahwa peta hasil MDS mampu menggambarkan jarak asli dengan baik. Selain itu, koefisien determinasi atau R-square juga digunakan untuk menilai seberapa besar proporsi variasi jarak asli yang dapat dijelaskan oleh model MDS.

MDS terbagi menjadi dua jenis utama, yaitu metric MDS dan non-metric MDS. Metric MDS mempertahankan jarak absolut antar objek, sedangkan non-metric MDS mempertahankan urutan (ranking) jarak. Pemilihan jenis MDS bergantung pada karakteristik data dan tujuan penelitian. Dalam berbagai aplikasi, MDS digunakan untuk mengidentifikasi pengelompokan objek, visualisasi hubungan kompleks, serta interpretasi pola yang sulit diamati melalui tabel data biasa.

Metode ini banyak diterapkan dalam penelitian ekonomi, pemasaran, dan ilmu sosial karena kemampuannya menampilkan struktur data secara intuitif. Ketika data memiliki dimensi tinggi dan variabel lebih dari satu, MDS menjadi alat yang efektif untuk menyederhanakan informasi tanpa menghilangkan makna hubungan antar objek.

3 SOURCE CODE

3.1 Import Library

> library(readxl)
> library(MASS)

3.2 Import Data

> data <- read.csv("C:/Users/nandw/Downloads/Rata-rata Pengeluaran per Kapita Sebulan Makanan dan Bukan Makanan di Daerah Perkotaan dan Perdesaan Menurut Provinsi (rupiah), 2024.csv")
> data <- data[, -4]

3.3 Buang kolom Provinsi

> Data <- data[ , -1]

3.4 Pastikan data numerik

> Data <- as.data.frame(sapply(Data, as.numeric))
> 

3.5 Menghitung Jarak

> D <- as.matrix(dist(Data))
> D
             1          2          3         4          5          6          7
1        0.000   65466.83  159690.79 221423.42  164704.93   36847.53  149275.15
2    65466.827       0.00   99346.29 159945.05  100214.81   37020.03   85444.23
3   159690.791   99346.29       0.00  61783.26   28734.53  136353.57   73796.76
4   221423.422  159945.05   61783.26      0.00   64535.00  196901.97  110486.31
5   164704.928  100214.81   28734.53  64535.00       0.00  136336.41   49785.96
6    36847.527   37020.03  136353.57 196901.97  136336.41       0.00  114798.66
7   149275.145   85444.23   73796.76 110486.31   49785.96  114798.66       0.00
8    65535.225   99211.97  197556.93 256471.41  193476.48   63750.39  161769.39
9   382329.680  322722.93  223519.15 163189.27  226782.18  359739.78  267628.30
10  664303.987  599648.82  507274.57 446409.70  499624.30  634957.84  524606.52
11 1207260.086 1142504.25 1050087.64 988975.48 1042562.81 1177603.26 1066176.60
12  298217.552  233126.25  146192.90  92527.91  133803.88  268100.89  158903.71
13  111259.992   88738.30  161485.79 210774.30  146665.86   79492.51  102273.78
14  469091.176  404235.47  331283.94 282187.13  312889.61  434742.46  320005.81
15  129836.262   75962.52  109656.71 152668.84   90037.53   93033.50   42526.89
16  387183.276  323582.10  228610.05 167306.26  223483.25  359814.09  255233.60
17  531923.257  466481.62  384721.39 329404.78  370271.58  499118.56  384747.02
18    9003.729   59766.69  151950.57 213726.60  157902.59   35637.18  144603.66
19  210769.188  258589.74  357132.21 415566.75  351902.80  222270.23  315560.66
20  110800.312   45630.16   69192.55 123812.45   60009.25   78642.32   40881.92
21  241160.458  179792.61   81473.87  19848.28   83647.25  216746.18  127923.39
22  206864.630  143337.48   51015.33  24759.47   43975.99  179848.45   86684.02
23  609520.675  544974.13  452270.80 391353.93  444881.46  580415.79  470615.02
24  303474.153  239534.14  146082.37  86365.13  139360.14  275661.40  172039.42
25  122294.373   60090.39   81951.17 129773.05   65466.85   87255.69   27820.04
26   89932.230   91975.99  180934.36 235384.60  170892.06   67767.57  131625.24
27  134909.114  105393.91  165200.87 209146.13  146692.81  101761.70   98686.30
28  143341.792  131255.25  202764.42 248785.82  185752.55  116747.71  138467.23
29  141968.035  118652.48  181748.50 225562.19  163262.23  110970.73  115077.43
30  143241.555  172581.96  266482.79 321702.77  257222.81  140121.40  216982.54
31  124717.864   98069.45  163566.02 209925.10  146601.03   92134.17   99940.28
32  178511.389  114337.13   80519.28  99358.10   51973.26  144059.93   29279.72
33  288146.807  224819.15  129696.51  69035.14  125030.63  261270.34  160889.81
34  302769.408  237849.78  149320.83  93887.28  138136.12  273090.97  164799.97
35  274583.322  209142.71  134325.92  94982.18  114966.12  242083.81  128641.21
36  137992.217   72540.23   48567.45  96687.40   32178.60  107081.66   28677.81
37  174641.142  152888.28  121567.86 151882.82  149977.69  177050.19  186310.38
38  436076.203  424810.73  376935.72 373298.33  404658.02  446109.62  449646.79
            8         9        10        11         12         13       14
1    65535.22 382329.68 664303.99 1207260.1 298217.552  111259.99 469091.2
2    99211.97 322722.93 599648.82 1142504.3 233126.249   88738.30 404235.5
3   197556.93 223519.15 507274.57 1050087.6 146192.904  161485.79 331283.9
4   256471.41 163189.27 446409.70  988975.5  92527.911  210774.30 282187.1
5   193476.48 226782.18 499624.30 1042562.8 133803.879  146665.86 312889.6
6    63750.39 359739.78 634957.84 1177603.3 268100.892   79492.51 434742.5
7   161769.39 267628.30 524606.52 1066176.6 158903.713  102273.78 320005.8
8        0.00 419653.10 686370.17 1227675.9 320325.474   80409.26 474992.4
9   419653.10      0.00 306651.94  841599.8 130027.292  369891.37 232985.8
10  686370.17 306651.94      0.00  542984.7 366903.800  618918.77 248582.6
11 1227675.90 841599.79 542984.71       0.0 909513.430 1157606.47 765528.2
12  320325.47 130027.29 366903.80  909513.4      0.000  257786.74 189836.1
13   80409.26 369891.37 618918.77 1157606.5 257786.745       0.00 399267.1
14  474992.36 232985.79 248582.59  765528.2 189836.099  399267.13      0.0
15  127398.31 309945.88 561151.71 1101313.2 197996.810   60301.95 347931.8
16  415172.24  65910.89 279299.69  821673.1  98379.963  355557.44 167759.6
17  543781.63 238681.58 168528.12  688821.0 238590.724  470608.73  80536.2
18   73177.78 374208.57 657333.58 1200314.2 291607.584  113245.34 463968.6
19  159588.77 578605.20 836286.08 1374088.7 473979.567  217397.84 612126.6
20  133522.08 286667.79 556436.84 1098998.4 189538.011   92776.07 358605.3
21  276181.97 143477.53 427674.61  970013.5  80149.269  229129.66 269674.8
22  237451.56 183165.27 457854.52 1000827.0  95177.691  187982.47 281393.5
23  632375.35 252926.09  55078.45  597881.1 312494.340  565834.45 207055.0
24  331115.79 103594.75 361326.11  904260.3  29688.451  273394.01 204376.6
25  134582.04 290489.74 551975.76 1093758.7 185747.851   81221.12 347493.3
26   44303.56 397164.58 653391.88 1193066.9 289922.500   37444.92 436170.4
27  103888.05 364496.23 604796.53 1141766.0 247697.745   24497.05 380948.1
28   94720.70 404572.74 641489.47 1176633.9 287027.064   43282.11 413501.0
29  103419.41 380211.29 617118.55 1152906.6 262190.320   31516.22 390584.5
30   78586.67 483418.44 734271.41 1271444.6 373932.932  116186.74 509480.4
31   93520.80 367058.97 611189.33 1148924.3 252218.662   13875.44 389094.2
32  189476.00 248076.80 497179.65 1038199.9 133157.543  124781.17 290726.1
33  317962.10 108697.11 377625.19  920392.7  39687.458  262953.32 222204.2
34  325962.79 122548.30 361877.15  904659.2   7514.038  264206.53 189483.7
35  290007.48 171338.91 396756.54  937677.4  41526.742  222967.82 197931.7
36  162089.84 258832.46 527876.92 1070542.4 161029.677  115206.89 333069.5
37  236844.86 266628.21 572119.23 1107912.1 243213.342  240898.54 432907.8
38  501327.86 371544.37 638257.96 1116443.9 437990.711  513053.28 600836.9
           15        16       17          18        19         20        21
1   129836.26 387183.28 531923.3    9003.729  210769.2  110800.31 241160.46
2    75962.52 323582.10 466481.6   59766.686  258589.7   45630.16 179792.61
3   109656.71 228610.05 384721.4  151950.574  357132.2   69192.55  81473.87
4   152668.84 167306.26 329404.8  213726.597  415566.7  123812.45  19848.28
5    90037.53 223483.25 370271.6  157902.585  351902.8   60009.25  83647.25
6    93033.50 359814.09 499118.6   35637.183  222270.2   78642.32 216746.18
7    42526.89 255233.60 384747.0  144603.656  315560.7   40881.92 127923.39
8   127398.31 415172.24 543781.6   73177.783  159588.8  133522.08 276181.97
9   309945.88  65910.89 238681.6  374208.575  578605.2  286667.79 143477.53
10  561151.71 279299.69 168528.1  657333.580  836286.1  556436.84 427674.61
11 1101313.24 821673.11 688821.0 1200314.248 1374088.7 1098998.37 970013.51
12  197996.81  98379.96 238590.7  291607.584  473979.6  189538.01  80149.27
13   60301.95 355557.44 470608.7  113245.343  217397.8   92776.07 229129.66
14  347931.76 167759.61  80536.2  463968.616  612126.6  358605.35 269674.85
15       0.00 295476.67 416417.0  127475.260  276142.9   49146.55 170372.01
16  295476.67      0.00 182166.9  379851.175  570793.4  282336.89 148400.32
17  416417.00 182166.91      0.0  526070.872  685911.8  421208.79 313792.54
18  127475.26 379851.17 526070.9       0.000  219770.9  105379.03 233416.74
19  276142.87 570793.42 685911.8  219770.860       0.0  291946.27 435170.73
20   49146.55 282336.89 421208.8  105379.030  291946.3       0.00 143293.59
21  170372.01 148400.32 313792.5  233416.739  435170.7  143293.59      0.00
22  129119.32 180376.06 333724.0  199651.626  395751.1  103962.16  41253.07
23  507657.17 224221.77 130541.6  602501.454  783230.1  501963.38 372600.61
24  213106.06  84200.68 244579.3  296295.194  487362.0  198145.99  69414.81
25   28958.04 281192.41 412559.1  118069.024  289948.8   21644.25 148440.70
26   92320.70 386818.25 506847.7   94518.768  184066.1  112278.25 254513.50
27   56676.20 346014.17 453730.6  136376.542  232323.4   99303.41 226545.78
28   96117.03 385400.38 487954.1  147191.531  198705.8  134930.13 266389.47
29   73229.97 360566.15 464406.6  144368.738  221628.7  115472.50 242842.32
30  176065.73 471542.14 583179.1  151319.202  102739.8  198350.03 340847.55
31   57418.31 350366.46 461276.8  126415.502  225308.8   96165.05 227767.66
32   64839.71 230776.31 355768.8  173730.745  340917.8   69091.38 114095.88
33  202705.16  99067.14 262845.7  280788.154  475208.2  184551.00  51417.04
34  204288.61  91580.58 235984.3  296036.852  480117.6  194637.83  80213.76
35  164448.31 137582.63 257340.4  268764.185  440235.9  163905.39  90824.96
36   61120.03 253552.57 394090.8  131982.032  320020.5   28787.04 115819.44
37  208972.65 298562.76 474281.4  165861.016  383582.6  159827.32 163234.67
38  478338.97 434057.18 609264.1  428163.993  631201.1  429566.57 371418.67
           22        23        24         25         26         27         28
1   206864.63 609520.67 303474.15  122294.37   89932.23  134909.11  143341.79
2   143337.48 544974.13 239534.14   60090.39   91975.99  105393.91  131255.25
3    51015.33 452270.80 146082.37   81951.17  180934.36  165200.87  202764.42
4    24759.47 391353.93  86365.13  129773.05  235384.60  209146.13  248785.82
5    43975.99 444881.46 139360.14   65466.85  170892.06  146692.81  185752.55
6   179848.45 580415.79 275661.40   87255.69   67767.57  101761.70  116747.71
7    86684.02 470615.02 172039.42   27820.04  131625.24   98686.30  138467.23
8   237451.56 632375.35 331115.79  134582.04   44303.56  103888.05   94720.70
9   183165.27 252926.09 103594.75  290489.74  397164.58  364496.23  404572.74
10  457854.52  55078.45 361326.11  551975.76  653391.88  604796.53  641489.47
11 1000827.03 597881.10 904260.34 1093758.68 1193066.94 1141766.00 1176633.87
12   95177.69 312494.34  29688.45  185747.85  289922.50  247697.74  287027.06
13  187982.47 565834.45 273394.01   81221.12   37444.92   24497.05   43282.11
14  281393.50 207054.99 204376.65  347493.30  436170.37  380948.07  413501.00
15  129119.32 507657.17 213106.06   28958.04   92320.70   56676.20   96117.03
16  180376.06 224221.77  84200.68  281192.41  386818.25  346014.17  385400.38
17  333723.97 130541.60 244579.31  412559.14  506847.74  453730.63  487954.06
18  199651.63 602501.45 296295.19  118069.02   94518.77  136376.54  147191.53
19  395751.11 783230.06 487361.96  289948.79  184066.09  232323.41  198705.84
20  103962.16 501963.38 198145.99   21644.25  112278.25   99303.41  134930.13
21   41253.07 372600.61  69414.81  148440.70  254513.50  226545.78  266389.47
22       0.00 402954.11  96644.83  107565.85  214045.19  185337.34  225150.78
23  402954.11      0.00 306379.76  497874.66  599961.45  552251.18  589394.21
24   96644.83 306379.76      0.00  197472.15  303627.95  265447.80  305294.89
25  107565.85 497874.66 197472.15       0.00  106793.13   83251.84  121162.27
26  214045.19 599961.45 303627.95  106793.13       0.00   59896.20   54144.77
27  185337.34 552251.18 265447.80   83251.84   59896.20       0.00   40082.89
28  225150.78 589394.21 305294.89  121162.27   54144.77   40082.89       0.00
29  201665.68 564891.57 280604.00   99797.70   59306.67   16596.77   24848.00
30  300344.73 681481.72 388923.64  192943.16   86334.07  129725.86   96378.09
31  186515.09 558405.66 269051.05   81898.37   49761.72   10636.50   39264.33
32   74601.40 443439.46 149021.30   56910.83  156934.22  116647.17  156656.27
33   81483.70 322601.42  18311.68  185350.18  292005.04  256377.41  296407.06
34   98382.36 307334.36  23426.93  191433.94  296051.76  254434.26  293853.43
35   86601.60 343210.10  68756.27  156371.67  256752.41  210920.67  249557.57
36   75744.06 473350.99 169364.68   34168.48  138714.39  117051.03  155303.77
37  159348.29 517653.80 230556.14  180775.56  243002.66  254534.24  283882.44
38  393096.09 593034.88 411935.24  449506.36  513406.48  526362.09  555981.04
           29         30         31         32        33         34        35
1   141968.03  143241.56  124717.86  178511.39 288146.81 302769.408 274583.32
2   118652.48  172581.96   98069.45  114337.13 224819.15 237849.785 209142.71
3   181748.50  266482.79  163566.02   80519.28 129696.51 149320.832 134325.92
4   225562.19  321702.77  209925.10   99358.10  69035.14  93887.277  94982.18
5   163262.23  257222.81  146601.03   51973.26 125030.63 138136.120 114966.12
6   110970.73  140121.40   92134.17  144059.93 261270.34 273090.968 242083.81
7   115077.43  216982.54   99940.28   29279.72 160889.81 164799.971 128641.21
8   103419.41   78586.67   93520.80  189476.00 317962.10 325962.793 290007.48
9   380211.29  483418.44  367058.97  248076.80 108697.11 122548.301 171338.91
10  617118.55  734271.41  611189.33  497179.65 377625.19 361877.152 396756.54
11 1152906.61 1271444.65 1148924.25 1038199.91 920392.67 904659.171 937677.38
12  262190.32  373932.93  252218.66  133157.54  39687.46   7514.038  41526.74
13   31516.22  116186.74   13875.44  124781.17 262953.32 264206.532 222967.82
14  390584.53  509480.42  389094.20  290726.12 222204.17 189483.692 197931.70
15   73229.97  176065.73   57418.31   64839.71 202705.16 204288.605 164448.31
16  360566.15  471542.14  350366.46  230776.31  99067.14  91580.581 137582.63
17  464406.62  583179.06  461276.78  355768.83 262845.70 235984.292 257340.40
18  144368.74  151319.20  126415.50  173730.74 280788.15 296036.852 268764.19
19  221628.73  102739.84  225308.84  340917.85 475208.21 480117.580 440235.92
20  115472.50  198350.03   96165.05   69091.38 184551.00 194637.835 163905.39
21  242842.32  340847.55  227767.66  114095.88  51417.04  80213.764  90824.96
22  201665.68  300344.73  186515.09   74601.40  81483.70  98382.355  86601.60
23  564891.57  681481.72  558405.66  443439.46 322601.42 307334.360 343210.10
24  280604.00  388923.64  269051.05  149021.30  18311.68  23426.926  68756.27
25   99797.70  192943.16   81898.37   56910.83 185350.18 191433.938 156371.67
26   59306.67   86334.07   49761.72  156934.22 292005.04 296051.763 256752.41
27   16596.77  129725.86   10636.50  116647.17 256377.41 254434.258 210920.67
28   24848.00   96378.09   39264.33  156656.27 296407.06 293853.429 249557.57
29       0.00  118915.34   20633.87  132169.40 271909.91 269026.688 224729.63
30  118915.34       0.00  123088.52  240831.73 377790.60 380304.960 339004.89
31   20633.87  123088.52       0.00  120030.07 259374.82 258823.355 216258.52
32  132169.40  240831.73  120030.07       0.00 139754.04 139475.040 100545.26
33  271909.91  377790.60  259374.82  139754.04      0.00  35925.023  71559.13
34  269026.69  380304.96  258823.36  139475.04  35925.02      0.000  49039.07
35  224729.63  339004.89  216258.52  100545.26  71559.13  49039.075      0.00
36  133638.87  225044.40  116040.41   48860.12 155880.25 166018.012 136814.28
37  269323.88  315354.01  248764.03  200462.10 212266.48 243443.107 245160.61
38  541363.64  579293.21  520843.02  456332.56 398326.56 433944.841 461147.36
           36        37        38
1   137992.22  174641.1  436076.2
2    72540.23  152888.3  424810.7
3    48567.45  121567.9  376935.7
4    96687.40  151882.8  373298.3
5    32178.60  149977.7  404658.0
6   107081.66  177050.2  446109.6
7    28677.81  186310.4  449646.8
8   162089.84  236844.9  501327.9
9   258832.46  266628.2  371544.4
10  527876.92  572119.2  638258.0
11 1070542.43 1107912.1 1116443.9
12  161029.68  243213.3  437990.7
13  115206.89  240898.5  513053.3
14  333069.51  432907.8  600836.9
15   61120.03  208972.6  478339.0
16  253552.57  298562.8  434057.2
17  394090.76  474281.4  609264.1
18  131982.03  165861.0  428164.0
19  320020.48  383582.6  631201.1
20   28787.04  159827.3  429566.6
21  115819.44  163234.7  371418.7
22   75744.06  159348.3  393096.1
23  473350.99  517653.8  593034.9
24  169364.68  230556.1  411935.2
25   34168.48  180775.6  449506.4
26  138714.39  243002.7  513406.5
27  117051.03  254534.2  526362.1
28  155303.77  283882.4  555981.0
29  133638.87  269323.9  541363.6
30  225044.40  315354.0  579293.2
31  116040.41  248764.0  520843.0
32   48860.12  200462.1  456332.6
33  155880.25  212266.5  398326.6
34  166018.01  243443.1  433944.8
35  136814.28  245160.6  461147.4
36       0.00  157632.6  421818.2
37  157632.64       0.0  272162.3
38  421818.22  272162.3       0.0

3.6 Menghitung Eigen secara manual

> n <- nrow(Data)
> A <- D^2
> I <- diag(n)
> J <- matrix(1, n, n)
> V <- I - (1/n)*J
> aa <- V %*% A
> BB <- aa %*% V
> B <- (-1/2) * BB
> eigen_result <- eigen(B)
> eigenvalues <- eigen_result$values
> eigenvectors <- eigen_result$vectors
> eigenvalues
 [1]  2.235670e+12  3.235232e+11  3.328804e-04  3.199061e-04  1.821462e-04
 [6]  1.724790e-04  1.266828e-04  7.434840e-05  6.065175e-05  5.002769e-05
[11]  4.828613e-05  2.129603e-05  2.117812e-05  2.021574e-05  1.297957e-05
[16]  9.752181e-06  2.401228e-06  1.462427e-06  9.809272e-07  1.025535e-07
[21] -7.897566e-07 -1.425771e-06 -1.446314e-06 -3.583884e-06 -4.330417e-06
[26] -4.348951e-06 -1.078011e-05 -1.677824e-05 -2.458666e-05 -3.244065e-05
[31] -3.451826e-05 -3.958902e-05 -4.163962e-05 -6.992310e-05 -9.089616e-05
[36] -1.031816e-04 -1.058883e-04 -2.891005e-04
> eigenvectors
              [,1]         [,2]         [,3]         [,4]         [,5]
 [1,] -0.137188453 -0.065545124  0.000000000  0.000000000  0.000000000
 [2,] -0.094548593 -0.039402678  0.614631555 -0.561404308  0.111594326
 [3,] -0.030729415 -0.087999632 -0.146659349 -0.254948393 -0.016556975
 [4,]  0.010569544 -0.091517133 -0.184438455  0.293145165  0.146563799
 [5,] -0.027526538 -0.038187591 -0.109558688  0.013044395 -0.251927241
 [6,] -0.118530451 -0.023223953 -0.148541711  0.038593264 -0.156923887
 [7,] -0.045143189  0.036087501 -0.081024562 -0.154487392 -0.149438088
 [8,] -0.153314267  0.041591726 -0.345926784 -0.210890320 -0.101529361
 [9,]  0.115235762 -0.172827497  0.016273070 -0.076023974  0.135579905
[10,]  0.305697007  0.027129740 -0.252246127 -0.092450868  0.174643357
[11,]  0.667266552  0.116042025  0.050490383 -0.031648260  0.182425975
[12,]  0.060459854  0.004726381  0.050444987  0.022918209  0.037642848
[13,] -0.106939665  0.113171154  0.072394523 -0.017125069  0.040959907
[14,]  0.156867501  0.221897753  0.118873584  0.025340439  0.079976577
[15,] -0.069135894  0.076239296  0.083697425  0.014506191 -0.132015770
[16,]  0.121744651 -0.058218762  0.177267623 -0.028585406 -0.282317422
[17,]  0.207048301  0.170447429 -0.121281471 -0.390650836 -0.033054343
[18,] -0.132224190 -0.074504867 -0.029601835 -0.190395580  0.104036409
[19,] -0.251628546  0.150811052  0.002402631  0.152910685  0.663457038
[20,] -0.066182357 -0.009816459 -0.013821246 -0.051470207 -0.001865494
[21,]  0.023635905 -0.097672757  0.030796587  0.014633715 -0.018381868
[22,]  0.001112734 -0.055784011  0.010488714 -0.008918965 -0.154160164
[23,]  0.269446654  0.009924644  0.125260526  0.243284026 -0.171485472
[24,]  0.065634075 -0.045665915  0.013964101  0.049551056 -0.061669036
[25,] -0.063464242  0.027559760 -0.003561697 -0.074410489 -0.099255231
[26,] -0.130602287  0.091615294  0.203757061  0.059080993 -0.074989299
[27,] -0.096262214  0.145837173 -0.086461994  0.021758616 -0.111087731
[28,] -0.119265577  0.182022855  0.274024750  0.197136886 -0.009899218
[29,] -0.103545199  0.167857065 -0.014297038 -0.038955108  0.096070447
[30,] -0.182941468  0.155712999 -0.217019844 -0.152829651 -0.013585420
[31,] -0.101109340  0.132149952  0.162991397  0.231904955 -0.172499561
[32,] -0.026669180  0.053159571  0.074362474  0.075514101 -0.114199140
[33,]  0.055522974 -0.063831197 -0.033601916 -0.035503231  0.100230987
[34,]  0.063976894 -0.004709715  0.081861720  0.051428611 -0.106276360
[35,]  0.040568640  0.055678492  0.079241819  0.120191407 -0.066829035
[36,] -0.046998507 -0.014094931  0.131248124  0.122165113  0.167472992
[37,] -0.057437321 -0.289869324 -0.059787629 -0.008559912  0.105135778
[38,] -0.003400153 -0.746790316  0.092122367  0.056392317  0.042827423
              [,6]         [,7]          [,8]          [,9]        [,10]
 [1,]  0.693418827  0.000000000  0.0000000000  0.0000000000  0.000000000
 [2,] -0.145170809  0.309609154 -0.1257577513 -0.0621040613  0.027518423
 [3,]  0.006600160 -0.087466665  0.1000891783 -0.0794291216  0.187883735
 [4,] -0.014398939  0.390182465 -0.4174659123  0.1731200950  0.100240206
 [5,] -0.186339771  0.264785764 -0.2039680089 -0.0431732978 -0.092610716
 [6,]  0.008243978  0.315168317  0.1044321451 -0.1157335755  0.124437571
 [7,] -0.031814702 -0.225995380 -0.1293997629 -0.1340820662  0.275677179
 [8,]  0.103834420  0.062168221 -0.1565622589 -0.0007107262 -0.175610355
 [9,]  0.110558639  0.465535986  0.3376442166  0.1077414474  0.159158460
[10,] -0.493716395 -0.046435762  0.1826239760  0.0431937175  0.035503455
[11,]  0.237561365  0.010992336 -0.0137255811 -0.0619815947  0.002808037
[12,] -0.006560123  0.023575643 -0.0394920355  0.0492055766 -0.082580800
[13,] -0.026031499  0.037091419 -0.1062493358 -0.3074369031 -0.067368113
[14,]  0.120568375  0.043609506 -0.1564683134  0.1287273301 -0.192582122
[15,]  0.006880083  0.079288345  0.1659207423 -0.0611339291  0.067254587
[16,] -0.094376039 -0.142095993  0.1218905760  0.0386997561  0.054672631
[17,]  0.145188925  0.049247484 -0.2457209166  0.3392030925 -0.066541049
[18,] -0.096212133 -0.202033275 -0.0748961216  0.1546501750 -0.268544187
[19,] -0.132856129 -0.081867922 -0.1231196234 -0.0127491454 -0.024854476
[20,] -0.034622487  0.017325978 -0.1676286648 -0.0241046453  0.202852732
[21,] -0.026078987  0.031902325 -0.1322022643 -0.0019861364  0.070308961
[22,] -0.069201815 -0.087285324 -0.1833912667  0.0300733984  0.038578427
[23,] -0.073043273  0.165138584 -0.0354319548 -0.4332622818 -0.258149663
[24,] -0.101939408 -0.013667044 -0.1492196983  0.1688365080  0.154261493
[25,]  0.049863709 -0.177148910  0.1905486405  0.1701782202 -0.231908888
[26,] -0.046455878 -0.084618930 -0.0009438096  0.0840122584 -0.021165312
[27,]  0.048213450  0.085779544 -0.0247081777 -0.0050374311 -0.034485492
[28,]  0.004765668  0.035545166 -0.0166058865 -0.0196681955 -0.158155912
[29,]  0.063991897 -0.011753803 -0.0859312177 -0.2633205670  0.422420054
[30,] -0.103072799  0.345198035  0.2410312607  0.1146979217 -0.166613076
[31,] -0.089116637  0.080631714  0.1440449773  0.3597896587  0.035758516
[32,] -0.011610488 -0.033807670 -0.0769054300  0.1058109256  0.313507049
[33,]  0.034712356 -0.035066052  0.1332078484  0.0346181744  0.263248210
[34,] -0.058737570 -0.077197702 -0.1409858197  0.2007192348  0.061457326
[35,] -0.050105110  0.017562748 -0.0009070246  0.2090534094  0.200691458
[36,]  0.085098595 -0.008524769  0.2623287104  0.2199799735  0.085941052
[37,]  0.007047829 -0.045200888  0.1832346935 -0.1729788572 -0.099939212
[38,] -0.002861608 -0.022253925 -0.1601003288  0.1031788559 -0.091291934
             [,11]        [,12]       [,13]       [,14]       [,15]
 [1,]  0.000000000  0.000000000  0.00000000  0.00000000  0.00000000
 [2,] -0.039291098  0.065884177 -0.03181125  0.11191840  0.03915760
 [3,]  0.179118188 -0.253018430 -0.35222596  0.11019499 -0.03655764
 [4,] -0.097214341  0.103316180 -0.09695456  0.06996785  0.26477624
 [5,]  0.253904322 -0.208683741 -0.12786287 -0.28428066 -0.14903420
 [6,] -0.300109340  0.003573990 -0.10697298  0.17520491  0.01009274
 [7,] -0.039297603  0.068142225 -0.09457614  0.10624526  0.09526655
 [8,] -0.123224725  0.153429796 -0.04649496  0.36680400 -0.04068201
 [9,] -0.081374277  0.081095355 -0.07183665 -0.05762245  0.01091211
[10,] -0.274241979  0.046022855 -0.05532404 -0.04323062 -0.03888236
[11,] -0.022833166 -0.014315837 -0.05487867  0.05808457  0.02125364
[12,]  0.360491325  0.274051846 -0.20945891 -0.03523719  0.07217933
[13,] -0.050706989  0.112858374 -0.33515603 -0.12724739 -0.18780129
[14,]  0.169805107 -0.269964594 -0.03444780  0.14116037 -0.07846101
[15,] -0.150508932 -0.036645343  0.11985490  0.28431967 -0.07549624
[16,]  0.197295738 -0.076138773  0.08161626  0.38319431  0.12668674
[17,] -0.035370079 -0.065023277  0.09516227 -0.10862033 -0.04121288
[18,] -0.184783865 -0.036541350  0.22601803 -0.11333416  0.09915432
[19,]  0.178484915 -0.085124597 -0.05581984  0.34195227 -0.04533874
[20,]  0.170687707  0.264942650  0.18418404 -0.15956734  0.27559531
[21,] -0.137236138 -0.198268488  0.06649345 -0.03580605  0.47813322
[22,] -0.081469447 -0.377682999  0.10262845  0.13351470  0.08858880
[23,]  0.119103455  0.007637752  0.04595174  0.09601214  0.06242034
[24,]  0.090647446 -0.136672691 -0.29782822  0.02673632 -0.10546831
[25,]  0.105622203  0.216180456 -0.38889004 -0.06632933  0.30699617
[26,] -0.172408397 -0.045355811 -0.23607767 -0.21267074  0.01366184
[27,] -0.099000541 -0.239891364 -0.07170806 -0.04926478 -0.17074997
[28,] -0.223145097 -0.165475771  0.08211517 -0.21832062  0.02485006
[29,]  0.100322713 -0.066803965  0.09015105 -0.20242680  0.08251576
[30,]  0.362782681 -0.123134664  0.22258049 -0.04997870 -0.03801879
[31,]  0.065698101 -0.003732014 -0.12470831  0.16435525  0.25713165
[32,]  0.049064622  0.159409740  0.07852091  0.08233453 -0.34684875
[33,]  0.150045632 -0.340002144 -0.05084300 -0.17783557  0.15368503
[34,] -0.004872241  0.238777284  0.01788850 -0.14544593 -0.22342965
[35,]  0.143523017  0.128101855  0.28936786  0.04104405 -0.15941366
[36,] -0.133971306 -0.105375572 -0.08520906 -0.04974097 -0.13656849
[37,]  0.159753008  0.023484387  0.20029301 -0.08729597  0.05197418
[38,]  0.025094469 -0.096484502 -0.04211966  0.04323913 -0.20810783
             [,16]        [,17]        [,18]        [,19]        [,20]
 [1,]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
 [2,] -0.010100744 -0.071528087  0.049164859 -0.131893810 -0.095903026
 [3,] -0.380586609 -0.007439030  0.068185951 -0.038588563  0.135455116
 [4,] -0.260804148 -0.102584581 -0.014902063 -0.072065804  0.135738038
 [5,]  0.124029112 -0.097068575  0.155729694  0.312520398  0.182369129
 [6,]  0.074260870 -0.022850821 -0.049784191 -0.447454207 -0.069167230
 [7,] -0.032130653 -0.054589806  0.030931720  0.118019065  0.336319189
 [8,]  0.050145741 -0.021435886 -0.049588756  0.248930178 -0.071052179
 [9,]  0.006693646  0.026863662 -0.082891306  0.574979992 -0.066135564
[10,] -0.004217622 -0.041556695 -0.001254957 -0.002230126 -0.029312156
[11,] -0.019758571 -0.038759929 -0.003970722  0.040267889  0.032160785
[12,] -0.034545191 -0.123687956 -0.155124573 -0.044777013 -0.179046658
[13,]  0.069905104  0.131944115 -0.198236105 -0.003542486  0.364915972
[14,] -0.165139245  0.004599706  0.105640439  0.023644737  0.063774576
[15,] -0.027285287  0.112303429  0.223257864  0.155934059  0.016418156
[16,]  0.156599437  0.017710468 -0.010138465  0.135493474  0.229326287
[17,]  0.030366023  0.081787333 -0.079633313 -0.139136638  0.149124694
[18,] -0.319805982 -0.206408105  0.078505689  0.071848259  0.038695228
[19,]  0.202489494  0.026879131  0.067557781  0.132603008 -0.023440798
[20,]  0.196649504  0.012619742 -0.044759629  0.036286272  0.216283790
[21,]  0.208204990 -0.027240490  0.269045502  0.017892355  0.027712099
[22,]  0.018250423  0.114925750 -0.584713307  0.116732832 -0.265150067
[23,] -0.122866822 -0.060400432  0.043275621 -0.124344518 -0.038822015
[24,]  0.002494039  0.093419551 -0.086169673 -0.053723590 -0.243240790
[25,]  0.164446157 -0.200570140  0.078976550 -0.029494221 -0.231672370
[26,] -0.346472252  0.043401408  0.050786033  0.136157721 -0.022209541
[27,]  0.127423812 -0.169747451  0.405098561  0.019732995 -0.196211010
[28,]  0.103898227 -0.179173572 -0.238435076  0.143068512  0.065610542
[29,] -0.197678226  0.208161860  0.065695986  0.018703646 -0.297106428
[30,]  0.008437584  0.087182270 -0.134383825 -0.197347538  0.054988980
[31,] -0.209556410  0.183202939 -0.035640675  0.018104604  0.091295242
[32,] -0.031725829 -0.600445389 -0.199253182  0.036989804 -0.053760297
[33,]  0.230508780 -0.205726501 -0.019444174 -0.103948615 -0.021404829
[34,]  0.140337054  0.491742123  0.104880260  0.021648687 -0.120659543
[35,] -0.157959342 -0.100683008  0.245867679 -0.056685096 -0.011842020
[36,]  0.078191232  0.013616000 -0.067865283 -0.208663681  0.387717381
[37,] -0.306791395  0.017026345 -0.106920526  0.047252472  0.039264993
[38,]  0.075233356  0.044819582  0.087049784 -0.086187871  0.009439358
              [,21]        [,22]        [,23]        [,24]         [,25]
 [1,]  0.0000000000  0.000000000  0.000000000  0.000000000  0.0000000000
 [2,] -0.0095135405  0.100746466 -0.031911108 -0.101038047  0.0397948652
 [3,] -0.2982831608  0.065557165  0.062884431  0.231912419  0.0389778344
 [4,] -0.0792214329 -0.009541716 -0.033146295 -0.053379715 -0.0449823103
 [5,]  0.0158168222  0.036531011  0.152555613 -0.023418533  0.1271868252
 [6,]  0.1378126978 -0.310658629  0.231341118 -0.085513857  0.0293247165
 [7,] -0.0494003059 -0.156431488 -0.054138584 -0.368085821  0.1440946581
 [8,]  0.0508128373  0.511913838  0.076592672 -0.025000886 -0.0131192952
 [9,] -0.0277136727 -0.242407583 -0.058941271 -0.006593932  0.0689080461
[10,]  0.0970431738  0.174484191 -0.096596927  0.065930521  0.0134391520
[11,] -0.0296407177 -0.004551531  0.067250345  0.016703386  0.0391824269
[12,] -0.1049350185  0.077601611 -0.026146817 -0.065200216  0.0095894830
[13,]  0.1371969438 -0.138114883 -0.131325921  0.288525469  0.1745884012
[14,]  0.1993881562 -0.183404422  0.078923117  0.048387586  0.0076860953
[15,] -0.3566496785  0.118263546  0.217855283  0.098969846 -0.0696527352
[16,]  0.2531119471 -0.133112726 -0.101437408 -0.044516059 -0.1865946320
[17,]  0.0849049855  0.106079699 -0.068778628  0.005990586 -0.0390383764
[18,] -0.3037159396 -0.361468363 -0.069901060  0.052432893 -0.0379556032
[19,] -0.0049496596 -0.083754338  0.114754224 -0.018761839  0.0225650691
[20,] -0.2317551214  0.014556288  0.023956944 -0.054422438 -0.0693055511
[21,]  0.2365319497  0.079011761  0.116905141  0.362840651  0.1032570426
[22,] -0.1477645392 -0.088141270  0.040786615  0.073052482  0.3813618107
[23,] -0.2893125288  0.119892254 -0.020807204  0.010190568  0.0008701292
[24,]  0.0028275920 -0.010112678 -0.017324818 -0.387789837 -0.0821035205
[25,] -0.0183077934 -0.047992296  0.056179915  0.119478018  0.3067608249
[26,]  0.2333986280  0.085141863  0.449967393 -0.059079004 -0.2153112756
[27,] -0.0493430639 -0.058147633 -0.487429738 -0.192173283  0.0384684590
[28,] -0.0726955441  0.221983857 -0.028729373 -0.117285294 -0.0167076592
[29,]  0.1268471623  0.150058901 -0.254602753  0.192077748  0.0384690602
[30,] -0.0009553878 -0.053094342  0.059809015  0.110548530 -0.0685091741
[31,]  0.0078411820  0.121049305 -0.364622368  0.119707941 -0.0801036669
[32,]  0.0847228816 -0.018357739 -0.009748938  0.350024598 -0.1953883669
[33,] -0.1585475573  0.120793633  0.209158449 -0.098828253 -0.2351695338
[34,] -0.2083178306 -0.092923274  0.149551657  0.087717628 -0.0989849839
[35,]  0.0852976382  0.071760102  0.200216215 -0.071607494  0.6218939170
[36,] -0.1668534054  0.290355059 -0.061453546 -0.071902889  0.2467594412
[37,]  0.3212374643  0.137143722 -0.007554768 -0.281267672  0.0549441281
[38,]  0.0330992360  0.098845784 -0.119005197  0.167456921 -0.0163785670
              [,26]       [,27]        [,28]        [,29]        [,30]
 [1,]  0.0000000000  0.00000000  0.000000000  0.000000000  0.000000000
 [2,]  0.0456177954  0.09418243 -0.075241525 -0.030329671  0.038453415
 [3,] -0.1623740648  0.20768563  0.138217020  0.259902506 -0.228290771
 [4,] -0.0761943082  0.17394546 -0.214303609  0.012612614 -0.112273380
 [5,] -0.0005563272  0.06194794 -0.124955466 -0.302398122  0.114300154
 [6,]  0.0087867332  0.04285754 -0.032342552 -0.066439381 -0.011704436
 [7,]  0.0514113249 -0.18783827 -0.270294084  0.085165914  0.182456987
 [8,]  0.0006640760 -0.02892826  0.080638670 -0.024095379  0.073518032
 [9,] -0.0434575763 -0.03590298  0.082222823  0.057321200 -0.037854159
[10,]  0.0545973454 -0.03594763 -0.092180786 -0.044870400 -0.081680764
[11,] -0.0055889279  0.02644745 -0.001923448  0.011304703  0.049353058
[12,]  0.0397719527 -0.01237784  0.199889072  0.005391871  0.417164732
[13,]  0.1491062993 -0.11381716  0.044131466  0.242308095  0.060032070
[14,]  0.0458220569 -0.16973563 -0.237717924 -0.152706352 -0.002756676
[15,]  0.0299407750 -0.22867051 -0.291438573  0.023665931  0.090067203
[16,] -0.2410420685  0.21700028  0.059954000 -0.098326136 -0.186091698
[17,]  0.0375399530  0.04965789 -0.060819133  0.109649928 -0.132169811
[18,] -0.1204877135 -0.10475033  0.065475004 -0.082152399  0.188588148
[19,]  0.0041018188  0.12867742 -0.007347233  0.046775189 -0.062826358
[20,]  0.0354549037  0.02094105  0.217535758 -0.125364062 -0.308692461
[21,] -0.2573128754 -0.01277457  0.149912030  0.272540209  0.375935479
[22,]  0.1434782660  0.20567834  0.010542552 -0.097364434  0.039765208
[23,] -0.0613195404  0.04641324  0.022671997  0.009472727 -0.041450943
[24,] -0.4179380595 -0.37635539  0.124175679  0.160739541  0.054368614
[25,] -0.1114300158  0.01724404 -0.387612877 -0.066605797 -0.256367263
[26,]  0.1061069398  0.13962010  0.233886719 -0.129021309 -0.095070886
[27,]  0.1077223235  0.34185531  0.122831092  0.127134587  0.001007423
[28,] -0.2274178901 -0.12386784 -0.139549235  0.352761576 -0.286890699
[29,] -0.1803676733 -0.13375088 -0.190358163 -0.302884758 -0.072166001
[30,] -0.1640161874 -0.13219393 -0.025464504  0.118862727  0.016959126
[31,]  0.3505992163 -0.08270111 -0.031341688  0.064281616  0.110710588
[32,] -0.1039373405  0.09476273 -0.141820881  0.044834782  0.114329345
[33,]  0.4216115774 -0.02649442 -0.147995004  0.122194193  0.082383458
[34,] -0.1119992189  0.35723366 -0.266075487  0.227246797  0.140034974
[35,]  0.1305670936 -0.10429224  0.190217671  0.206473718 -0.152160886
[36,] -0.2994481834  0.16698344  0.018489511 -0.374389248  0.239353997
[37,] -0.0302883160  0.29345766 -0.325835074  0.243415732  0.155534474
[38,]  0.1126782967 -0.24143091 -0.064199104 -0.035811343 -0.179448822
              [,31]        [,32]         [,33]        [,34]        [,35]
 [1,]  0.0000000000  0.000000000  0.000000e+00  0.000000000  0.000000000
 [2,] -0.0050008723  0.006087313  7.172497e-02  0.026900651 -0.060390057
 [3,] -0.2015192274 -0.015111587 -1.609932e-02  0.172404105 -0.097637825
 [4,]  0.0485491456 -0.211619408 -3.455857e-02 -0.261760496 -0.067353767
 [5,]  0.0688930272 -0.038598470 -1.471516e-01  0.282938749 -0.110717146
 [6,] -0.1209256019 -0.032482350 -1.280631e-01  0.309574356  0.248474521
 [7,] -0.0479360126  0.002563104  3.920942e-01 -0.150819594 -0.048795263
 [8,] -0.0097145815 -0.066791786  1.770061e-01  0.137407327  0.325228213
 [9,]  0.0519910819  0.025653003  1.025203e-01  0.019833873  0.064636762
[10,] -0.1920383775  0.017663100 -2.326354e-02 -0.069772035  0.083328183
[11,]  0.0347386208  0.015815382  2.063037e-02  0.013838238  0.185376245
[12,] -0.3371405757 -0.307608678 -2.530391e-01 -0.147622671  0.057414635
[13,]  0.1642184168 -0.040017849 -1.842929e-01 -0.147962049  0.294045574
[14,] -0.4783008768  0.183797934  7.721023e-02  0.026705645  0.191246007
[15,] -0.0003330675  0.081004638 -4.972955e-01 -0.315849253 -0.009553851
[16,]  0.0785828428 -0.365713230 -1.382534e-01 -0.096903036  0.212521194
[17,]  0.2957760242  0.043438133 -2.538204e-01  0.009031273 -0.070978225
[18,]  0.1546922825 -0.137628644 -6.850577e-02  0.167028546  0.352298081
[19,]  0.1837411308  0.058277582 -1.902325e-02  0.101315268  0.020359683
[20,] -0.2556634237  0.448778300 -1.329819e-01 -0.003169558  0.297311014
[21,] -0.0496409366  0.133744170  3.848833e-02 -0.033261958 -0.018663014
[22,] -0.0242815772  0.091451859 -1.186481e-02 -0.170177983  0.022870882
[23,]  0.3064626288  0.148060562  2.320478e-01  0.039103760  0.144861077
[24,]  0.1981054270  0.247102065 -1.404212e-01  0.029808317  0.115077479
[25,]  0.1361845083  0.088593129 -3.235489e-03 -0.083562133  0.079908012
[26,]  0.1038516657  0.070780425  1.185872e-01 -0.314284029  0.163033019
[27,] -0.0940273618  0.108966347 -3.488633e-02 -0.269878712  0.197008569
[28,] -0.2692773953 -0.235107795  2.687548e-05  0.152934499  0.055124701
[29,]  0.0661561209 -0.204052389 -1.286727e-02  0.028232105  0.220683105
[30,]  0.0170619469  0.002206848  3.012752e-01 -0.340949969  0.093953633
[31,]  0.0815992270  0.145934477  3.466784e-02  0.313941696  0.044790756
[32,]  0.0700943193  0.231236911  5.761923e-02  0.006459068  0.029871616
[33,]  0.1598345539 -0.202246720  5.036414e-02  0.038269622  0.271227880
[34,] -0.0917812773 -0.081396125  1.977279e-01  0.112887150  0.195235129
[35,]  0.0765809283 -0.166736205 -1.063696e-02  0.032785546  0.137213215
[36,]  0.0258699500  0.060439728  5.782380e-02 -0.050691097  0.124835107
[37,]  0.0033886519  0.256154892 -2.472832e-01  0.053832699  0.150380372
[38,] -0.0684410329 -0.023019181  9.538158e-02 -0.124091566  0.161386081
             [,36]        [,37]        [,38]
 [1,]  0.000000000  0.704310652  0.000000000
 [2,] -0.143391457  0.120842334 -0.068983640
 [3,]  0.024357085 -0.020673183  0.002433953
 [4,] -0.218809741  0.007718204  0.002524767
 [5,]  0.044252494  0.174542542 -0.199298060
 [6,]  0.268484939 -0.033365612 -0.068248427
 [7,]  0.305325606  0.025887935 -0.030011495
 [8,] -0.137801736 -0.128221196  0.013658459
 [9,]  0.117617688 -0.102486630  0.250780420
[10,]  0.032455359  0.548150967  0.090147909
[11,]  0.017984081 -0.093115541 -0.613001668
[12,]  0.327349372  0.018675137  0.087850083
[13,] -0.200967764  0.015330822  0.049403019
[14,] -0.134444049 -0.067498135  0.342257738
[15,]  0.060980696 -0.013145210 -0.047535053
[16,] -0.037025903  0.111212469  0.044225292
[17,]  0.424205891 -0.086751635  0.253983175
[18,] -0.029939289  0.062035469 -0.044315703
[19,]  0.284925596  0.095823255 -0.045402872
[20,] -0.003439573  0.020282255 -0.046820301
[21,]  0.066814492  0.021189883  0.058555059
[22,]  0.001733657  0.063156968 -0.031268171
[23,]  0.208317269  0.125321209  0.331040694
[24,] -0.179657249  0.108897635 -0.002814995
[25,] -0.009754035 -0.058889621 -0.021065982
[26,]  0.212676072  0.028824199 -0.064550335
[27,]  0.043846538 -0.052646176 -0.075778200
[28,]  0.170421264 -0.010983439 -0.093942620
[29,]  0.138812093 -0.067549993 -0.007234677
[30,]  0.038089916  0.080335844 -0.260951822
[31,]  0.085364635  0.080342254 -0.192000264
[32,]  0.052544095  0.011183386 -0.011856862
[33,] -0.195635552 -0.029300869  0.181414041
[34,] -0.025441408  0.069852598  0.036028089
[35,] -0.057718194  0.062413978  0.036589730
[36,] -0.001744445 -0.094248858  0.106012125
[37,] -0.012583773 -0.045102761 -0.030879484
[38,]  0.259107614 -0.067343341 -0.121092618

3.7 Menghitung Tingkat Kumulatif Keragaman

> cumulative_variance <- cumsum(eigenvalues) / sum(eigenvalues)
> cumulative_variance
 [1] 0.8735839 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
 [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[36] 1.0000000 1.0000000 1.0000000

3.8 MDS Klasik (2 dimensi)

> fit <- cmdscale(D, k=2)
> fit
          [,1]        [,2]
1  -205126.333  -37281.477
2  -141370.543  -22411.889
3   -45947.105  -50053.399
4    15803.748  -52054.122
5   -41158.112  -21720.758
6  -177228.594  -13209.576
7   -67498.806   20526.246
8  -229237.903   23656.999
9   172302.324  -98302.725
10  457082.973   15431.152
11  997707.444   66003.660
12   90400.524    2688.323
13 -159897.870   64370.734
14  234550.754  126213.445
15 -103373.075   43364.226
16  182034.517  -33114.308
17  309581.876   96948.964
18 -197703.688  -42377.698
19 -376238.960   85779.969
20  -98956.901   -5583.514
21   35340.776  -55555.385
22    1663.777  -31729.444
23  402880.876    5645.048
24   98137.101  -25974.362
25  -94892.733   15675.744
26 -195278.593   52109.955
27 -143932.777   82950.872
28 -178327.767  103532.962
29 -154822.410   95475.588
30 -273536.961   88568.153
31 -151180.276   75165.704
32  -39876.178   30236.685
33   83018.825  -36306.610
34   95659.259   -2678.844
35   60658.869   31669.425
36  -70272.907   -8017.070
37  -85881.186 -164875.063
38   -5083.963 -424767.611

3.9 Visualisasi

> plot(fit, type="n",
+      xlab="Dimensi 1",
+      ylab="Dimensi 2",
+      main="MDS Pengeluaran Per Kapita Provinsi")
> text(fit, labels = data$Provinsi, cex=0.6)

3.10 Hitung Disparities

> disparities <- matrix(0, n, n)
> disparities
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0    0    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[10,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[11,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[12,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[13,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[14,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[15,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[16,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[17,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[18,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[19,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[20,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[21,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[22,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[23,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[24,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[25,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[26,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[27,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[28,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[29,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[30,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[31,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[32,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[33,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[34,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[35,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[36,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[37,]    0    0    0    0    0    0    0    0    0     0     0     0     0
[38,]    0    0    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]     0     0     0     0     0     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0     0     0     0     0     0
[10,]     0     0     0     0     0     0     0     0     0     0     0     0
[11,]     0     0     0     0     0     0     0     0     0     0     0     0
[12,]     0     0     0     0     0     0     0     0     0     0     0     0
[13,]     0     0     0     0     0     0     0     0     0     0     0     0
[14,]     0     0     0     0     0     0     0     0     0     0     0     0
[15,]     0     0     0     0     0     0     0     0     0     0     0     0
[16,]     0     0     0     0     0     0     0     0     0     0     0     0
[17,]     0     0     0     0     0     0     0     0     0     0     0     0
[18,]     0     0     0     0     0     0     0     0     0     0     0     0
[19,]     0     0     0     0     0     0     0     0     0     0     0     0
[20,]     0     0     0     0     0     0     0     0     0     0     0     0
[21,]     0     0     0     0     0     0     0     0     0     0     0     0
[22,]     0     0     0     0     0     0     0     0     0     0     0     0
[23,]     0     0     0     0     0     0     0     0     0     0     0     0
[24,]     0     0     0     0     0     0     0     0     0     0     0     0
[25,]     0     0     0     0     0     0     0     0     0     0     0     0
[26,]     0     0     0     0     0     0     0     0     0     0     0     0
[27,]     0     0     0     0     0     0     0     0     0     0     0     0
[28,]     0     0     0     0     0     0     0     0     0     0     0     0
[29,]     0     0     0     0     0     0     0     0     0     0     0     0
[30,]     0     0     0     0     0     0     0     0     0     0     0     0
[31,]     0     0     0     0     0     0     0     0     0     0     0     0
[32,]     0     0     0     0     0     0     0     0     0     0     0     0
[33,]     0     0     0     0     0     0     0     0     0     0     0     0
[34,]     0     0     0     0     0     0     0     0     0     0     0     0
[35,]     0     0     0     0     0     0     0     0     0     0     0     0
[36,]     0     0     0     0     0     0     0     0     0     0     0     0
[37,]     0     0     0     0     0     0     0     0     0     0     0     0
[38,]     0     0     0     0     0     0     0     0     0     0     0     0
      [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
 [1,]     0     0     0     0     0     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0     0     0     0     0     0
[10,]     0     0     0     0     0     0     0     0     0     0     0     0
[11,]     0     0     0     0     0     0     0     0     0     0     0     0
[12,]     0     0     0     0     0     0     0     0     0     0     0     0
[13,]     0     0     0     0     0     0     0     0     0     0     0     0
[14,]     0     0     0     0     0     0     0     0     0     0     0     0
[15,]     0     0     0     0     0     0     0     0     0     0     0     0
[16,]     0     0     0     0     0     0     0     0     0     0     0     0
[17,]     0     0     0     0     0     0     0     0     0     0     0     0
[18,]     0     0     0     0     0     0     0     0     0     0     0     0
[19,]     0     0     0     0     0     0     0     0     0     0     0     0
[20,]     0     0     0     0     0     0     0     0     0     0     0     0
[21,]     0     0     0     0     0     0     0     0     0     0     0     0
[22,]     0     0     0     0     0     0     0     0     0     0     0     0
[23,]     0     0     0     0     0     0     0     0     0     0     0     0
[24,]     0     0     0     0     0     0     0     0     0     0     0     0
[25,]     0     0     0     0     0     0     0     0     0     0     0     0
[26,]     0     0     0     0     0     0     0     0     0     0     0     0
[27,]     0     0     0     0     0     0     0     0     0     0     0     0
[28,]     0     0     0     0     0     0     0     0     0     0     0     0
[29,]     0     0     0     0     0     0     0     0     0     0     0     0
[30,]     0     0     0     0     0     0     0     0     0     0     0     0
[31,]     0     0     0     0     0     0     0     0     0     0     0     0
[32,]     0     0     0     0     0     0     0     0     0     0     0     0
[33,]     0     0     0     0     0     0     0     0     0     0     0     0
[34,]     0     0     0     0     0     0     0     0     0     0     0     0
[35,]     0     0     0     0     0     0     0     0     0     0     0     0
[36,]     0     0     0     0     0     0     0     0     0     0     0     0
[37,]     0     0     0     0     0     0     0     0     0     0     0     0
[38,]     0     0     0     0     0     0     0     0     0     0     0     0
      [,38]
 [1,]     0
 [2,]     0
 [3,]     0
 [4,]     0
 [5,]     0
 [6,]     0
 [7,]     0
 [8,]     0
 [9,]     0
[10,]     0
[11,]     0
[12,]     0
[13,]     0
[14,]     0
[15,]     0
[16,]     0
[17,]     0
[18,]     0
[19,]     0
[20,]     0
[21,]     0
[22,]     0
[23,]     0
[24,]     0
[25,]     0
[26,]     0
[27,]     0
[28,]     0
[29,]     0
[30,]     0
[31,]     0
[32,]     0
[33,]     0
[34,]     0
[35,]     0
[36,]     0
[37,]     0
[38,]     0
> for (i in 1:n) {
+   for (j in 1:n) {
+     disparities[i, j] <- sqrt(sum((fit[i,] - fit[j,])^2))
+   }
+ }

3.11 Hitung Stress

> stress <- sqrt(sum((D - disparities)^2) / sum(D^2))
> cat("Nilai Stress:", stress, "\n")
Nilai Stress: 5.768386e-16 

4 HASIL DAN PEMBAHASAN

Data yang digunakan dalam penelitian ini adalah Rata-rata Pengeluaran per Kapita Sebulan untuk Komoditas Makanan dan Bukan Makanan di Indonesia Menurut Provinsi Tahun 2024. Data terdiri dari beberapa provinsi sebagai objek (observasi) dan dua variabel numerik, yaitu: - Rata-rata Pengeluaran per Kapita Sebulan di Perkotaan dan Perdesaan - Makanan (X1) - Rata-rata Pengeluaran per Kapita Sebulan di Perkotaan dan Perdesaan - Bukan Makanan (X2)

Matriks jarak D berukuran n x n yakni 38x38 dengan elemen matriks dij, yaitu jarak Euclidean antar objek.

> D <- as.matrix(dist(Data))
> head(D)
          1         2         3         4         5         6         7
1      0.00  65466.83 159690.79 221423.42 164704.93  36847.53 149275.15
2  65466.83      0.00  99346.29 159945.05 100214.81  37020.03  85444.23
3 159690.79  99346.29      0.00  61783.26  28734.53 136353.57  73796.76
4 221423.42 159945.05  61783.26      0.00  64535.00 196901.97 110486.31
5 164704.93 100214.81  28734.53  64535.00      0.00 136336.41  49785.96
6  36847.53  37020.03 136353.57 196901.97 136336.41      0.00 114798.66
          8        9       10        11        12        13       14        15
1  65535.22 382329.7 664304.0 1207260.1 298217.55 111259.99 469091.2 129836.26
2  99211.97 322722.9 599648.8 1142504.3 233126.25  88738.30 404235.5  75962.52
3 197556.93 223519.2 507274.6 1050087.6 146192.90 161485.79 331283.9 109656.71
4 256471.41 163189.3 446409.7  988975.5  92527.91 210774.30 282187.1 152668.84
5 193476.48 226782.2 499624.3 1042562.8 133803.88 146665.86 312889.6  90037.53
6  63750.39 359739.8 634957.8 1177603.3 268100.89  79492.51 434742.5  93033.50
        16       17         18       19        20        21        22       23
1 387183.3 531923.3   9003.729 210769.2 110800.31 241160.46 206864.63 609520.7
2 323582.1 466481.6  59766.686 258589.7  45630.16 179792.61 143337.48 544974.1
3 228610.0 384721.4 151950.574 357132.2  69192.55  81473.87  51015.33 452270.8
4 167306.3 329404.8 213726.597 415566.7 123812.45  19848.28  24759.47 391353.9
5 223483.2 370271.6 157902.585 351902.8  60009.25  83647.25  43975.99 444881.5
6 359814.1 499118.6  35637.183 222270.2  78642.32 216746.18 179848.45 580415.8
         24        25        26       27       28       29       30        31
1 303474.15 122294.37  89932.23 134909.1 143341.8 141968.0 143241.6 124717.86
2 239534.14  60090.39  91975.99 105393.9 131255.3 118652.5 172582.0  98069.45
3 146082.37  81951.17 180934.36 165200.9 202764.4 181748.5 266482.8 163566.02
4  86365.13 129773.05 235384.60 209146.1 248785.8 225562.2 321702.8 209925.10
5 139360.14  65466.85 170892.06 146692.8 185752.5 163262.2 257222.8 146601.03
6 275661.40  87255.69  67767.57 101761.7 116747.7 110970.7 140121.4  92134.17
         32        33        34        35        36       37       38
1 178511.39 288146.81 302769.41 274583.32 137992.22 174641.1 436076.2
2 114337.13 224819.15 237849.78 209142.71  72540.23 152888.3 424810.7
3  80519.28 129696.51 149320.83 134325.92  48567.45 121567.9 376935.7
4  99358.10  69035.14  93887.28  94982.18  96687.40 151882.8 373298.3
5  51973.26 125030.63 138136.12 114966.12  32178.60 149977.7 404658.0
6 144059.93 261270.34 273090.97 242083.81 107081.66 177050.2 446109.6

Nilai eigen dan vektor eigen melalui perhitungan matriks pusat B.

> n <- nrow(Data)
> A <- D^2
> I <- diag(n)
> J <- matrix(1, n, n)
> 
> V <- I - (1/n)*J
> 
> aa <- V %*% A
> BB <- aa %*% V
> B <- (-1/2) * BB
> 
> eigen_result <- eigen(B)

Nilai eigen dan vektor eigen melalui perhitungan matriks pusat B.

> eigenvalues <- eigen_result$values
> head(eigenvalues)
[1] 2.235670e+12 3.235232e+11 3.328804e-04 3.199061e-04 1.821462e-04
[6] 1.724790e-04
> eigenvectors <- eigen_result$vectors
> head(eigenvectors)
            [,1]        [,2]       [,3]        [,4]        [,5]         [,6]
[1,] -0.13718845 -0.06554512  0.0000000  0.00000000  0.00000000  0.693418827
[2,] -0.09454859 -0.03940268  0.6146316 -0.56140431  0.11159433 -0.145170809
[3,] -0.03072942 -0.08799963 -0.1466593 -0.25494839 -0.01655698  0.006600160
[4,]  0.01056954 -0.09151713 -0.1844385  0.29314516  0.14656380 -0.014398939
[5,] -0.02752654 -0.03818759 -0.1095587  0.01304440 -0.25192724 -0.186339771
[6,] -0.11853045 -0.02322395 -0.1485417  0.03859326 -0.15692389  0.008243978
            [,7]       [,8]        [,9]       [,10]       [,11]       [,12]
[1,]  0.00000000  0.0000000  0.00000000  0.00000000  0.00000000  0.00000000
[2,]  0.30960915 -0.1257578 -0.06210406  0.02751842 -0.03929110  0.06588418
[3,] -0.08746667  0.1000892 -0.07942912  0.18788374  0.17911819 -0.25301843
[4,]  0.39018247 -0.4174659  0.17312010  0.10024021 -0.09721434  0.10331618
[5,]  0.26478576 -0.2039680 -0.04317330 -0.09261072  0.25390432 -0.20868374
[6,]  0.31516832  0.1044321 -0.11573358  0.12443757 -0.30010934  0.00357399
           [,13]       [,14]       [,15]       [,16]       [,17]       [,18]
[1,]  0.00000000  0.00000000  0.00000000  0.00000000  0.00000000  0.00000000
[2,] -0.03181125  0.11191840  0.03915760 -0.01010074 -0.07152809  0.04916486
[3,] -0.35222596  0.11019499 -0.03655764 -0.38058661 -0.00743903  0.06818595
[4,] -0.09695456  0.06996785  0.26477624 -0.26080415 -0.10258458 -0.01490206
[5,] -0.12786287 -0.28428066 -0.14903420  0.12402911 -0.09706857  0.15572969
[6,] -0.10697298  0.17520491  0.01009274  0.07426087 -0.02285082 -0.04978419
           [,19]       [,20]       [,21]        [,22]       [,23]       [,24]
[1,]  0.00000000  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
[2,] -0.13189381 -0.09590303 -0.00951354  0.100746466 -0.03191111 -0.10103805
[3,] -0.03858856  0.13545512 -0.29828316  0.065557165  0.06288443  0.23191242
[4,] -0.07206580  0.13573804 -0.07922143 -0.009541716 -0.03314630 -0.05337972
[5,]  0.31252040  0.18236913  0.01581682  0.036531011  0.15255561 -0.02341853
[6,] -0.44745421 -0.06916723  0.13781270 -0.310658629  0.23134112 -0.08551386
           [,25]         [,26]      [,27]       [,28]       [,29]       [,30]
[1,]  0.00000000  0.0000000000 0.00000000  0.00000000  0.00000000  0.00000000
[2,]  0.03979487  0.0456177954 0.09418243 -0.07524153 -0.03032967  0.03845342
[3,]  0.03897783 -0.1623740648 0.20768563  0.13821702  0.25990251 -0.22829077
[4,] -0.04498231 -0.0761943082 0.17394546 -0.21430361  0.01261261 -0.11227338
[5,]  0.12718683 -0.0005563272 0.06194794 -0.12495547 -0.30239812  0.11430015
[6,]  0.02932472  0.0087867332 0.04285754 -0.03234255 -0.06643938 -0.01170444
            [,31]        [,32]       [,33]       [,34]       [,35]       [,36]
[1,]  0.000000000  0.000000000  0.00000000  0.00000000  0.00000000  0.00000000
[2,] -0.005000872  0.006087313  0.07172497  0.02690065 -0.06039006 -0.14339146
[3,] -0.201519227 -0.015111587 -0.01609932  0.17240411 -0.09763783  0.02435708
[4,]  0.048549146 -0.211619408 -0.03455857 -0.26176050 -0.06735377 -0.21880974
[5,]  0.068893027 -0.038598470 -0.14715157  0.28293875 -0.11071715  0.04425249
[6,] -0.120925602 -0.032482350 -0.12806314  0.30957436  0.24847452  0.26848494
            [,37]        [,38]
[1,]  0.704310652  0.000000000
[2,]  0.120842334 -0.068983640
[3,] -0.020673183  0.002433953
[4,]  0.007718204  0.002524767
[5,]  0.174542542 -0.199298060
[6,] -0.033365612 -0.068248427

Tingkat kumulatif keragaman untuk menentukan banyak dimensi.

> head(cumulative_variance)
[1] 0.8735839 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Berdasarkan nilai eigen dan tingkat kumulatif keragaman, komponen pertama menjelaskan sebesar 87.36%, sedangkan komponen kedua meningkatkan keragaman total menjadi 100%. Karena dua komponen pertama telah mampu menjelaskan seluruh variasi data dan memenuhi kriteria keragaman kumulatif ≥ 80%, maka penggunaan dua dimensi sudah sesuai dan layak digunakan dalam analisis MDS

Titik koordinat pada dimensi 2

> head(fit)
        [,1]      [,2]
1 -205126.33 -37281.48
2 -141370.54 -22411.89
3  -45947.11 -50053.40
4   15803.75 -52054.12
5  -41158.11 -21720.76
6 -177228.59 -13209.58

Titik koordinat yang diperoleh digunakan untuk menggambarkan posisi 38 provinsi menggunakan peta persepsi, dengan dimensi 1 adalah koordinat X dan dimensi 2 adalah koordinat Y.

> plot(fit, type="n",
+      xlab="Dimensi 1",
+      ylab="Dimensi 2",
+      main="MDS Pengeluaran Per Kapita Provinsi")
> text(fit, labels = data$Provinsi, cex=0.6)

Hasil MDS menunjukkan bahwa provinsi-provinsi di Indonesia memiliki pola pengeluaran per kapita yang berbeda. DKI Jakarta berada paling jauh dari provinsi lain, menandakan pengeluaran per kapita yang jauh lebih tinggi. Beberapa provinsi seperti Riau, Kepulauan Riau, Bali, dan Kalimantan Timur juga berada di sisi kanan grafik, menunjukkan pengeluaran yang relatif tinggi. Sementara itu, sebagian besar provinsi lainnya berkelompok rapat di tengah, mencerminkan pola pengeluaran yang serupa. Secara keseluruhan, pemetaan dua dimensi sudah mampu menggambarkan variasi pengeluaran antarprovinsi secara jelas.

Disparities yang merupakan jarak Euclidean dari koordinat yang terbentuk.

> head(disparities)
          [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
[1,]      0.00  65466.83 159690.79 221423.42 164704.93  36847.53 149275.15
[2,]  65466.83      0.00  99346.29 159945.05 100214.81  37020.03  85444.23
[3,] 159690.79  99346.29      0.00  61783.26  28734.53 136353.57  73796.76
[4,] 221423.42 159945.05  61783.26      0.00  64535.00 196901.97 110486.31
[5,] 164704.93 100214.81  28734.53  64535.00      0.00 136336.41  49785.96
[6,]  36847.53  37020.03 136353.57 196901.97 136336.41      0.00 114798.66
          [,8]     [,9]    [,10]     [,11]     [,12]     [,13]    [,14]
[1,]  65535.22 382329.7 664304.0 1207260.1 298217.55 111259.99 469091.2
[2,]  99211.97 322722.9 599648.8 1142504.3 233126.25  88738.30 404235.5
[3,] 197556.93 223519.2 507274.6 1050087.6 146192.90 161485.79 331283.9
[4,] 256471.41 163189.3 446409.7  988975.5  92527.91 210774.30 282187.1
[5,] 193476.48 226782.2 499624.3 1042562.8 133803.88 146665.86 312889.6
[6,]  63750.39 359739.8 634957.8 1177603.3 268100.89  79492.51 434742.5
         [,15]    [,16]    [,17]      [,18]    [,19]     [,20]     [,21]
[1,] 129836.26 387183.3 531923.3   9003.729 210769.2 110800.31 241160.46
[2,]  75962.52 323582.1 466481.6  59766.686 258589.7  45630.16 179792.61
[3,] 109656.71 228610.0 384721.4 151950.574 357132.2  69192.55  81473.87
[4,] 152668.84 167306.3 329404.8 213726.597 415566.7 123812.45  19848.28
[5,]  90037.53 223483.2 370271.6 157902.585 351902.8  60009.25  83647.25
[6,]  93033.50 359814.1 499118.6  35637.183 222270.2  78642.32 216746.18
         [,22]    [,23]     [,24]     [,25]     [,26]    [,27]    [,28]
[1,] 206864.63 609520.7 303474.15 122294.37  89932.23 134909.1 143341.8
[2,] 143337.48 544974.1 239534.14  60090.39  91975.99 105393.9 131255.3
[3,]  51015.33 452270.8 146082.37  81951.17 180934.36 165200.9 202764.4
[4,]  24759.47 391353.9  86365.13 129773.05 235384.60 209146.1 248785.8
[5,]  43975.99 444881.5 139360.14  65466.85 170892.06 146692.8 185752.5
[6,] 179848.45 580415.8 275661.40  87255.69  67767.57 101761.7 116747.7
        [,29]    [,30]     [,31]     [,32]     [,33]     [,34]     [,35]
[1,] 141968.0 143241.6 124717.86 178511.39 288146.81 302769.41 274583.32
[2,] 118652.5 172582.0  98069.45 114337.13 224819.15 237849.78 209142.71
[3,] 181748.5 266482.8 163566.02  80519.28 129696.51 149320.83 134325.92
[4,] 225562.2 321702.8 209925.10  99358.10  69035.14  93887.28  94982.18
[5,] 163262.2 257222.8 146601.03  51973.26 125030.63 138136.12 114966.12
[6,] 110970.7 140121.4  92134.17 144059.93 261270.34 273090.97 242083.81
         [,36]    [,37]    [,38]
[1,] 137992.22 174641.1 436076.2
[2,]  72540.23 152888.3 424810.7
[3,]  48567.45 121567.9 376935.7
[4,]  96687.40 151882.8 373298.3
[5,]  32178.60 149977.7 404658.0
[6,] 107081.66 177050.2 446109.6

Nilai STRESS:

> cat("Nilai Stress:", stress, "\n")
Nilai Stress: 5.768386e-16 

Berdasarkan output, diperoleh nilai STRESS sebesar 5.768386×10⁻¹⁶ atau sekitar 0.0000000000005768% yang menunjukkan kriteria yang tergolong sangat baik (mendekati 0). Dengan kata lain, hubungan antara jarak dalam data asli dan peta dimensi dapat direpresentasikan dengan sangat akurat melalui MDS.

5 KESIMPULAN

5.1 Kesesuaian model MDS:

Hasil analisis menunjukkan bahwa nilai STRESS sebesar 5.768386 × 10⁻¹⁶, yang tergolong sangat baik karena mendekati nol. Hal ini menandakan bahwa konfigurasi dua dimensi yang digunakan mampu merepresentasikan jarak antarprovinsi pada data asli hampir tanpa distorsi. Dengan demikian, MDS dua dimensi merupakan pilihan yang tepat untuk menggambarkan pola kemiripan pengeluaran per kapita antar provinsi di Indonesia.

5.2 Tingkat keragaman yang dijelaskan:

Berdasarkan nilai eigen dan tingkat kumulatif keragaman, dua dimensi pertama mampu menjelaskan 87,35% dari total variasi data. Persentase ini menunjukkan bahwa sebagian besar informasi dalam data telah berhasil divisualisasikan dalam peta MDS dua dimensi sehingga interpretasi menjadi valid dan representatif.

5.3 Pola pengelompokan provinsi:

Hasil pemetaan MDS menunjukkan pola pengelompokan yang jelas antara provinsi dengan tingkat pengeluaran yang relatif sama. Provinsi dengan pengeluaran per kapita tinggi seperti DKI Jakarta, Kepulauan Riau, Bali, dan Kalimantan Timur muncul pada posisi terpisah dari provinsi lain, menandakan karakteristik ekonomi rumah tangga yang lebih kuat. Sebaliknya, provinsi seperti Nusa Tenggara Timur, Sulawesi Barat, dan Lampung berada lebih berdekatan, mencerminkan tingkat pengeluaran yang lebih rendah dan lebih homogen.

5.4 Interpretasi makna praktis:

Secara praktis, hasil MDS memberikan gambaran yang informatif mengenai ketimpangan pengeluaran antarprovinsi di Indonesia. Perbedaan posisi pada peta MDS mencerminkan kondisi sosial ekonomi yang beragam, yang dapat menjadi dasar untuk identifikasi provinsi yang membutuhkan perhatian lebih dalam perencanaan ekonomi, pemberdayaan masyarakat, maupun kebijakan pemerataan kesejahteraan.

5.5 Kesimpulan umum:

Secara keseluruhan, analisis MDS berhasil memvisualisasikan kemiripan dan perbedaan pola pengeluaran antarprovinsi dengan sangat baik. MDS dua dimensi memberikan peta persepsi yang akurat dan mudah dipahami, serta mampu mengungkap struktur pengelompokan provinsi berdasarkan tingkat pengeluaran makanan, non-makanan, dan total per kapita.

6 DAFTAR PUSTAKA