PEMETAAN POLA KESEJAHTERAAN PEKERJA ANTAR PROVINSI DI INDONESIA MENGGUNAKAN MULTIDIMENSIONAL SCALING (MDS)

Syifa Nur Azkia Dwiningtyas

28 November 2025

Latar Belakang Kasus

Kesejahteraan pekerja merupakan salah satu indikator fundamental dalam menilai keberhasilan pembangunan ekonomi suatu wilayah. Di Indonesia, sebagai negara dengan jumlah tenaga kerja yang besar dan kondisi geografis yang luas, tingkat kesejahteraan pekerja antarprovinsi menunjukkan variasi yang signifikan. Faktor-faktor seperti upah minimum provinsi (UMP), rata-rata pengeluaran per kapita, garis kemiskinan, dan upah pekerja per jam menjadi parameter penting dalam mengukur disparitas kesejahteraan ini. Namun, kompleksitas data multidimensi tersebut seringkali menyulitkan dalam identifikasi pola dan pengelompokan provinsi berdasarkan kemiripan karakteristik kesejahteraannya.

Permasalahan ketimpangan kesejahteraan pekerja antarprovinsi memerlukan analisis yang komprehensif untuk memahami struktur dan pola sebarannya. Pendekatan analisis multivariat diperlukan untuk menyederhanakan kompleksitas data tanpa kehilangan informasi esensial. Multidimensional Scaling (MDS) hadir sebagai teknik statistik yang tepat untuk memetakan objek-objek (dalam hal ini provinsi) dalam ruang dimensi rendah berdasarkan kemiripan atau ketidakmiripannya. Melalui MDS, hubungan kompleks antarprovinsi dapat direpresentasikan secara visual dalam bentuk peta persepsi yang mudah diinterpretasi.

Projek ini menggunakan data dari Kaggle yang mencakup empat variabel kunci kesejahteraan pekerja tahun 2022 di 35 provinsi Indonesia. Penerapan MDS diharapkan dapat mengungkap pola spasial kesejahteraan pekerja, mengidentifikasi provinsi-provinsi dengan karakteristik serupa, serta memberikan gambaran menyeluruh tentang kesenjangan kesejahteraan pekerja di tingkat regional. Hasil analisis ini dapat menjadi dasar empiris bagi pemangku kebijakan dalam merumuskan strategi yang tepat sasaran untuk meningkatkan kesejahteraan pekerja, khususnya di provinsi-provinsi yang tertinggal.

Data

X1: Garis Kemiskinan Per Kapita (Rupiah) X2: Rata-rata Pengeluaran Per Kapita (Rupiah) X3: Upah Minimum Provinsi - UMP (Rupiah) X4: Rata-rata Upah Pekerja Per Jam (Rupiah)

library(readxl)
## Warning: package 'readxl' was built under R version 4.3.3
Data <- read_excel(path="C:/Users/LENOVO/OneDrive/Dokumen/SEMESTER 5/Data Praktikum Anmul.xlsx")
Data
## # A tibble: 35 × 5
##    Provinsi                 X1      X2      X3    X4
##    <chr>                 <dbl>   <dbl>   <dbl> <dbl>
##  1 ACEH                 617293 1180132 3166460 16772
##  2 SUMATERA UTARA       592025 1216496 2522610 15131
##  3 SUMATERA BARAT       654194 1342985 2512539 15887
##  4 RIAU                 648832 1425170 2938564 18626
##  5 JAMBI                585950 1261836 2698941 16042
##  6 SUMATERA SELATAN     513524 1148812 3144446 15978
##  7 BENGKULU             625652 1196483 2238094 16501
##  8 LAMPUNG              545992 1074987 2440486 13218
##  9 KEP. BANGKA BELITUNG 853226 1654280 3264884 18132
## 10 KEP. RIAU            730462 1831700 3050172 23528
## # ℹ 25 more rows
head(Data)
## # A tibble: 6 × 5
##   Provinsi             X1      X2      X3    X4
##   <chr>             <dbl>   <dbl>   <dbl> <dbl>
## 1 ACEH             617293 1180132 3166460 16772
## 2 SUMATERA UTARA   592025 1216496 2522610 15131
## 3 SUMATERA BARAT   654194 1342985 2512539 15887
## 4 RIAU             648832 1425170 2938564 18626
## 5 JAMBI            585950 1261836 2698941 16042
## 6 SUMATERA SELATAN 513524 1148812 3144446 15978
data <- Data[,-1]

Latar Belakang Metode

Multidimensional Scaling (MDS) dipilih sebagai metode analisis untuk menyederhanakan data multidimensi ke dalam ruang dimensi rendah (biasanya 2D atau 3D) sambil mempertahankan struktur jarak asli antar objek. MDS mampu memvisualisasikan kemiripan atau ketidakmiripan antar provinsi berdasarkan variabel-variabel kesejahteraan pekerja.

Tinjauan Pustaka Metode

MDS merupakan salah satu teknik analisis yang digunakan untuk memperoleh peta spasial yang menggambarkan tingkat kemiripan beberapa objek (Nasution & Jana, 2021). Jenis Multidimensional Scaling (MDS) berdasarkan skala data terbagi menjadi dua bentuk utama, yaitu MDS metrik untuk skala data interval atau rasio dan MDS non-metrik untuk skala data nominal atau ordinal. Kedua pendekatan ini berbeda dalam cara mengolah data jarak atau ketidakmiripan serta asumsi yang digunakan dalam proses pemetaan.

Tujuan Projek

  1. Menganalisis jarak kemiripan antarprovinsi berdasarkan variabel kesejahteraan pekerja.
  2. Memvisualisasikan koordinat provinsi dalam plot MDS.
  3. Menilai kualitas representasi data melalui nilai stress.

Source Code

  1. Library yang Digunakan
library(MASS) #Untuk fungsi analisis statitistika
  1. Menghitung Matriks Jarak Euclidean
dist_matrix <- as.matrix(dist(data))
dist_matrix
##            1          2         3          4          5          6         7
## 1        0.0  645373.01  674904.6  336122.53  475639.02  110608.29  928547.6
## 2   645373.0       0.00  141302.7  468830.27  182170.45  630415.94  287197.7
## 3   674904.6  141302.68       0.0  433921.57  214448.44  675868.08  312406.7
## 4   336122.5  468830.27  433921.6       0.00  296745.68  370238.31  737223.0
## 5   475639.0  182170.45  214448.4  296745.68       0.00  465289.87  467148.2
## 6   110608.3  630415.94  675868.1  370238.31  465289.87       0.00  914505.0
## 7   928547.6  287197.71  312406.7  737223.03  467148.19  914505.02       0.0
## 8   737014.4  169976.01  297874.7  617507.20  321428.30  708570.11  249159.2
## 9   538674.1  900477.92  838180.4  448055.00  738745.29  620810.20 1147025.9
## 10  671503.3  822212.22  730593.4  429430.41  684870.76  722732.80 1036342.5
## 11 2002749.1 2497494.79 2438533.9 2031574.17 2325247.13 2050580.01 2750640.7
## 12 1356648.7  724714.45  699611.0 1110006.18  881594.19 1334950.04  486265.7
## 13 1363334.4  727172.44  757774.8 1180234.39  905145.67 1332677.49  460653.8
## 14 1360722.3  732115.74  693204.6 1103357.00  886095.22 1345568.71  493830.9
## 15 1281530.5  641633.52  666999.3 1090747.01  819034.04 1253247.49  374218.0
## 16  797538.7  403793.83  282429.6  481261.26  409023.07  801686.45  499007.1
## 17  707945.1  238932.76  171201.4  442660.98  266122.40  692852.52  388054.1
## 18  967872.1  336189.47  391737.5  793807.25  511143.21  937614.82  143782.9
## 19 1234179.0  648530.20  725391.0 1116324.93  822080.00 1199247.92  430079.3
## 20  736938.9   98406.57  169734.6  548430.94  268419.71  716062.87  212808.2
## 21  359574.8  459327.73  427498.7   68077.06  287343.59  374833.12  728371.8
## 22  347408.6  429005.42  405839.6   76840.33  253732.59  358126.75  702373.6
## 23  653449.8  781384.42  686696.5  398280.39  647858.22  708888.04  992136.9
## 24  457052.2  643127.38  572599.7  225338.72  492965.35  526714.98  881619.4
## 25  224780.8  800288.96  829632.0  460215.64  626259.77  197145.30 1086948.8
## 26  784002.8  190381.52  302467.3  652024.57  357150.26  757774.90  201776.7
## 27  197931.4  669208.74  721438.6  427239.96  508736.39   93287.84  951193.7
## 28  496660.5  267971.05  376742.4  443976.32  215100.90  442926.74  517481.2
## 29  410485.5  327626.89  413556.4  380028.11  217380.27  352778.47  596338.3
## 30  569432.0  345779.76  478668.4  580421.16  345356.23  511343.79  540027.6
## 31  550017.3  134171.66  204251.8  409489.26  149299.39  549059.90  385005.6
## 32  317089.7  354062.66  424663.3  323605.72  214850.70  284614.54  633073.5
## 33  285410.9  725432.96  697651.1  269152.43  548548.42  361732.73  997819.4
## 34  484093.8 1069027.12 1055424.1  624412.28  888163.09  540366.02 1349444.1
## 35  468454.8  241595.35  247723.6  256987.00   88448.74  452469.46  516529.7
##             8         9         10      11         12         13         14
## 1   737014.37  538674.1  671503.26 2002749 1356648.70 1363334.43 1360722.28
## 2   169976.01  900477.9  822212.22 2497495  724714.45  727172.44  732115.74
## 3   297874.74  838180.4  730593.45 2438534  699610.97  757774.77  693204.64
## 4   617507.20  448055.0  429430.41 2031574 1110006.18 1180234.39 1103357.00
## 5   321428.30  738745.3  684870.76 2325247  881594.19  905145.67  886095.22
## 6   708570.11  620810.2  722732.80 2050580 1334950.04 1332677.49 1345568.71
## 7   249159.17 1147025.9 1036342.53 2750641  486265.70  460653.79  493830.89
## 8        0.00 1053389.4  989174.94 2646062  703193.70  634500.40  723777.80
## 9  1053389.44       0.0  304432.61 1631378 1487325.08 1594535.12 1465971.51
## 10  989174.94  304432.6       0.00 1736814 1295751.84 1450991.73 1271962.33
## 11 2646062.15 1631377.6 1736813.95       0 3018566.55 3173061.06 2997804.93
## 12  703193.70 1487325.1 1295751.84 3018567       0.00  317332.56   83093.09
## 13  634500.40 1594535.1 1450991.73 3173061  317332.56       0.00  369924.95
## 14  723777.80 1465971.5 1271962.33 2997805   83093.09  369924.95       0.00
## 15  559300.07 1502906.4 1358519.57 3081566  276955.50   92727.06  325521.01
## 16  550595.28  805732.9  603087.37 2330963  694589.94  859967.34  676522.29
## 17  376785.46  847674.0  694368.14 2398840  676397.70  775321.62  678084.29
## 18  254753.65 1222430.5 1104018.46 2805461  458782.04  396981.94  490068.50
## 19  506111.13 1545404.4 1453077.09 3144196  569302.70  288859.49  614145.41
## 20  157884.09  979062.4  877600.39 2567828  631258.32  637147.97  643057.51
## 21  607312.29  483874.1  434882.96 2040783 1086088.00 1161188.03 1082802.44
## 22  573694.30  513062.7  471915.26 2073103 1070164.83 1136289.01 1068455.86
## 23  949165.41  300768.3   62153.45 1782753 1260333.32 1411509.71 1234867.89
## 24  801977.61  266870.1  273344.48 1885296 1225835.70 1328265.45 1205722.23
## 25  889869.54  579204.0  705765.53 1880003 1483105.13 1502236.62 1493018.17
## 26   51794.55 1085063.4 1012162.41 2681967  657803.91  586379.61  678017.78
## 27  738863.19  675828.6  763434.86 2052681 1358013.60 1353758.57 1373350.76
## 28  295308.08  882486.9  850118.65 2417622  929403.44  898317.53  952092.50
## 29  382912.45  807434.2  789946.56 2327239 1004296.91  988326.94 1023876.87
## 30  291840.90 1006403.4  998532.44 2537083  967417.74  882491.59  996338.09
## 31  238707.78  827124.4  791909.88 2436911  844697.40  834062.60  846766.60
## 32  425170.84  730707.3  751254.64 2273915 1068348.23 1052332.87 1080231.62
## 33  861854.82  260065.9  412049.40 1800794 1377535.10 1445685.66 1368503.11
## 34 1190329.58  402549.6  638781.56 1524537 1730891.68 1792073.91 1725282.22
## 35  384110.42  702991.4  628343.30 2268962  896417.93  942058.06  901696.44
##            15        16        17        18        19         20         21
## 1  1281530.52  797538.7  707945.1  967872.1 1234179.0  736938.94  359574.80
## 2   641633.52  403793.8  238932.8  336189.5  648530.2   98406.57  459327.73
## 3   666999.32  282429.6  171201.4  391737.5  725391.0  169734.57  427498.71
## 4  1090747.01  481261.3  442661.0  793807.2 1116324.9  548430.94   68077.06
## 5   819034.04  409023.1  266122.4  511143.2  822080.0  268419.71  287343.59
## 6  1253247.49  801686.5  692852.5  937614.8 1199247.9  716062.87  374833.12
## 7   374218.02  499007.1  388054.1  143782.9  430079.3  212808.20  728371.75
## 8   559300.07  550595.3  376785.5  254753.7  506111.1  157884.09  607312.29
## 9  1502906.35  805732.9  847674.0 1222430.5 1545404.4  979062.39  483874.12
## 10 1358519.57  603087.4  694368.1 1104018.5 1453077.1  877600.39  434882.96
## 11 3081565.76 2330962.7 2398840.4 2805460.8 3144195.7 2567827.64 2040783.47
## 12  276955.50  694589.9  676397.7  458782.0  569302.7  631258.32 1086088.00
## 13   92727.06  859967.3  775321.6  396981.9  288859.5  637147.97 1161188.03
## 14  325521.01  676522.3  678084.3  490068.5  614145.4  643057.51 1082802.44
## 15       0.00  768458.7  684733.5  315701.5  293181.2  550645.08 1071965.24
## 16  768458.71       0.0  196521.9  555888.3  910797.2  395573.52  457316.96
## 17  684733.51  196521.9       0.0  419642.9  778626.8  228622.05  411535.69
## 18  315701.50  555888.3  419642.9       0.0  361123.8  246148.38  774638.04
## 19  293181.15  910797.2  778626.8  361123.8       0.0  579782.89 1103745.28
## 20  550645.08  395573.5  228622.0  246148.4  579782.9       0.00  532363.55
## 21 1071965.24  457317.0  411535.7  774638.0 1103745.3  532363.55       0.00
## 22 1047664.76  457667.5  396628.1  747249.6 1072383.1  504440.56   38314.35
## 23 1318865.57  569046.2  661474.9 1065241.8 1411295.3  838187.35  410099.87
## 24 1236572.28  556569.6  590531.1  959604.8 1285733.8  718414.27  269435.38
## 25 1421356.46  907059.1  822258.8 1106716.7 1381970.0  881780.21  458253.72
## 26  510497.81  548794.2  382809.5  210108.8  465907.7  155286.03  642011.35
## 27 1276164.01  836797.0  720802.7  961187.9 1220511.7  748219.31  418665.52
## 28  822651.23  574086.7  392275.2  509059.8  772198.7  324316.79  421338.67
## 29  910823.16  586232.5  420262.9  596178.2  867029.6  394711.43  356331.30
## 30  816900.00  708240.0  520431.4  518030.3  710400.7  389765.94  566497.33
## 31  750798.34  470849.1  331155.3  450828.2  727841.9  229679.05  416938.04
## 32  972991.33  611887.2  467623.6  658082.5  921860.7  440433.89  322029.99
## 33 1356792.38  727702.7  709867.0 1056526.3 1366197.6  810808.63  303706.08
## 34 1704925.00 1075847.0 1056391.6 1397804.7 1695726.0 1155234.05  645097.62
## 35  854867.56  375869.6  242402.9  550261.4  876401.4  310519.18  229841.98
##            22         23        24        25         26         27         28
## 1   347408.60  653449.78  457052.2  224780.8  784002.83  197931.37  496660.51
## 2   429005.42  781384.42  643127.4  800289.0  190381.52  669208.74  267971.05
## 3   405839.62  686696.51  572599.7  829632.0  302467.34  721438.64  376742.40
## 4    76840.33  398280.39  225338.7  460215.6  652024.57  427239.96  443976.32
## 5   253732.59  647858.22  492965.3  626259.8  357150.26  508736.39  215100.90
## 6   358126.75  708888.04  526715.0  197145.3  757774.90   93287.84  442926.74
## 7   702373.61  992136.87  881619.4 1086948.8  201776.71  951193.72  517481.21
## 8   573694.30  949165.41  801977.6  889869.5   51794.55  738863.19  295308.08
## 9   513062.73  300768.29  266870.1  579204.0 1085063.41  675828.55  882486.94
## 10  471915.26   62153.45  273344.5  705765.5 1012162.41  763434.86  850118.65
## 11 2073103.05 1782753.40 1885296.2 1880003.1 2681967.03 2052681.34 2417622.47
## 12 1070164.83 1260333.32 1225835.7 1483105.1  657803.91 1358013.60  929403.44
## 13 1136289.01 1411509.71 1328265.4 1502236.6  586379.61 1353758.57  898317.53
## 14 1068455.86 1234867.89 1205722.2 1493018.2  678017.78 1373350.76  952092.50
## 15 1047664.76 1318865.57 1236572.3 1421356.5  510497.81 1276164.01  822651.23
## 16  457667.55  569046.18  556569.6  907059.1  548794.22  836796.95  574086.74
## 17  396628.07  661474.88  590531.1  822258.8  382809.50  720802.67  392275.21
## 18  747249.56 1065241.84  959604.8 1106716.7  210108.80  961187.95  509059.78
## 19 1072383.07 1411295.28 1285733.8 1381970.0  465907.74 1220511.66  772198.73
## 20  504440.56  838187.35  718414.3  881780.2  155286.03  748219.31  324316.79
## 21   38314.35  410099.87  269435.4  458253.7  642011.35  418665.52  421338.67
## 22       0.00  445565.34  295882.2  456871.9  609564.94  403268.56  384953.51
## 23  445565.34       0.00  229914.5  707542.6  971148.67  755606.87  821880.96
## 24  295882.20  229914.52       0.0  564634.0  829937.50  590912.72  664086.53
## 25  456871.94  707542.63  564634.0       0.0  938266.47  175581.37  613424.63
## 26  609564.94  971148.67  829937.5  938266.5       0.00  788879.14  344449.44
## 27  403268.56  755606.87  590912.7  175581.4  788879.14       0.00  456434.48
## 28  384953.51  821880.96  664086.5  613424.6  344449.44  456434.48       0.00
## 29  320475.90  764967.40  603642.7  519060.9  431774.31  365505.60   95393.71
## 30  528914.36  968164.23  795359.8  692000.1  341022.33  521596.74  159009.84
## 31  383897.69  747865.72  578940.4  728038.7  270105.55  601435.11  263287.14
## 32  285022.28  721617.99  534415.1  470000.3  473807.66  327288.53  189168.06
## 33  322431.44  399746.64  239412.9  348582.8  900479.38  419672.12  655037.88
## 34  663025.76  653601.30  573067.6  395846.2 1233584.35  561079.50  947849.59
## 35  199525.67  596638.88  461078.1  593912.9  418080.80  487260.01  240247.55
##            29        30        31        32        33        34         35
## 1   410485.54  569432.0  550017.3  317089.7  285410.9  484093.8  468454.80
## 2   327626.89  345779.8  134171.7  354062.7  725433.0 1069027.1  241595.35
## 3   413556.38  478668.4  204251.8  424663.3  697651.1 1055424.1  247723.64
## 4   380028.11  580421.2  409489.3  323605.7  269152.4  624412.3  256987.00
## 5   217380.27  345356.2  149299.4  214850.7  548548.4  888163.1   88448.74
## 6   352778.47  511343.8  549059.9  284614.5  361732.7  540366.0  452469.46
## 7   596338.25  540027.6  385005.6  633073.5  997819.4 1349444.1  516529.69
## 8   382912.45  291840.9  238707.8  425170.8  861854.8 1190329.6  384110.42
## 9   807434.15 1006403.4  827124.4  730707.3  260065.9  402549.6  702991.38
## 10  789946.56  998532.4  791909.9  751254.6  412049.4  638781.6  628343.30
## 11 2327239.41 2537083.1 2436910.6 2273915.2 1800793.6 1524536.7 2268962.40
## 12 1004296.91  967417.7  844697.4 1068348.2 1377535.1 1730891.7  896417.93
## 13  988326.94  882491.6  834062.6 1052332.9 1445685.7 1792073.9  942058.06
## 14 1023876.87  996338.1  846766.6 1080231.6 1368503.1 1725282.2  901696.44
## 15  910823.16  816900.0  750798.3  972991.3 1356792.4 1704925.0  854867.56
## 16  586232.45  708240.0  470849.1  611887.2  727702.7 1075847.0  375869.64
## 17  420262.94  520431.4  331155.3  467623.6  709867.0 1056391.6  242402.93
## 18  596178.19  518030.3  450828.2  658082.5 1056526.3 1397804.7  550261.44
## 19  867029.55  710400.7  727841.9  921860.7 1366197.6 1695726.0  876401.41
## 20  394711.43  389765.9  229679.0  440433.9  810808.6 1155234.1  310519.18
## 21  356331.30  566497.3  416938.0  322030.0  303706.1  645097.6  229841.98
## 22  320475.90  528914.4  383897.7  285022.3  322431.4  663025.8  199525.67
## 23  764967.40  968164.2  747865.7  721618.0  399746.6  653601.3  596638.88
## 24  603642.72  795359.8  578940.4  534415.1  239412.9  573067.6  461078.09
## 25  519060.87  692000.1  728038.7  470000.3  348582.8  395846.2  593912.85
## 26  431774.31  341022.3  270105.5  473807.7  900479.4 1233584.3  418080.80
## 27  365505.60  521596.7  601435.1  327288.5  419672.1  561079.5  487260.01
## 28   95393.71  159009.8  263287.1  189168.1  655037.9  947849.6  240247.55
## 29       0.00  223342.9  299981.6  126389.8  572367.8  855360.2  222107.22
## 30  223342.90       0.0  331019.9  277874.3  770317.0 1042635.2  390701.89
## 31  299981.56  331019.9       0.0  277743.6  645122.9  984645.0  236277.06
## 32  126389.85  277874.3  277743.6       0.0  493281.8  781905.2  239547.79
## 33  572367.84  770317.0  645122.9  493281.8       0.0  364046.8  515574.14
## 34  855360.21 1042635.2  984645.0  781905.2  364046.8       0.0  852630.19
## 35  222107.22  390701.9  236277.1  239547.8  515574.1  852630.2       0.00
  1. Menghitung MDS Klasik dengan Double Centering
A <- dist_matrix^2
I <- diag(35)
J <- matrix(rep(1,35), nrow=35, ncol=35)
V <- I - (1/35)*J
aa <- V %*% A
BB <- aa %*% V
B <- (-1/2) * BB
  1. Analisis Eigen
eigen_result <- eigen(B)
eigenvalues <- eigen_result$values
eigenvalues
##  [1]  1.231227e+13  1.865856e+12  2.064105e+11  1.089575e+08  4.128256e-03
##  [6]  3.051860e-03  1.070481e-03  5.365851e-04  5.035559e-04  2.793620e-04
## [11]  1.944216e-04  1.921833e-04  1.552509e-04  1.414038e-04  1.355895e-04
## [16]  1.299385e-04  7.315597e-05  5.377245e-05  2.812382e-05  2.596323e-05
## [21]  3.853769e-06 -7.958207e-06 -4.054028e-05 -4.430919e-05 -4.569153e-05
## [26] -7.953138e-05 -1.433973e-04 -1.678611e-04 -2.569204e-04 -5.461265e-04
## [31] -6.361232e-04 -6.734685e-04 -8.962485e-04 -1.051814e-03 -4.418685e-03
eigenvectors <- eigen_result$vectors
eigenvectors
##               [,1]         [,2]         [,3]        [,4]         [,5]
##  [1,]  0.100414320  0.217530706 -0.149902850 -0.07697915  0.000000000
##  [2,] -0.066752481  0.021307507 -0.095941926 -0.10682281  0.710258477
##  [3,] -0.054556455 -0.075112958 -0.157741307 -0.13451850  0.019397694
##  [4,]  0.066246670 -0.011397869 -0.086940060 -0.05041468 -0.018329306
##  [5,] -0.015712971  0.040887495 -0.052091561 -0.10352078 -0.245245486
##  [6,]  0.088195702  0.249616352  0.052725332 -0.13138136 -0.134354424
##  [7,] -0.142931079 -0.049260986 -0.187623661  0.11653962 -0.147573869
##  [8,] -0.104347787  0.099594487 -0.079794248 -0.15219759  0.093091920
##  [9,]  0.182195935 -0.107035187 -0.383456934 -0.35582354 -0.173904556
## [10,]  0.139845526 -0.261847026 -0.029500328  0.04891606 -0.012412815
## [11,]  0.632668038 -0.288567513  0.317534197 -0.06700698  0.016092119
## [12,] -0.227541942 -0.291879023  0.244136841  0.23583064 -0.217966730
## [13,] -0.267859090 -0.089593498  0.099392942 -0.10261502 -0.180075998
## [14,] -0.221115076 -0.332262448  0.117056493 -0.18854637  0.085112567
## [15,] -0.241936758 -0.100422856  0.077133928  0.08361213 -0.270523975
## [16,] -0.030951589 -0.250718474  0.114857019  0.38950414  0.228055818
## [17,] -0.047479564 -0.115884800  0.194372247 -0.14328796 -0.008230583
## [18,] -0.158943103 -0.011234842  0.080134403 -0.31570696 -0.079638408
## [19,] -0.248555169  0.106712288 -0.084031213  0.10371512  0.207116096
## [20,] -0.089668876 -0.006692896 -0.003772523  0.01268942 -0.038009963
## [21,]  0.061792012 -0.016269186  0.058145635  0.04411098  0.089739294
## [22,]  0.053900046  0.002693166  0.046166436 -0.03104894  0.037312942
## [23,]  0.128078137 -0.255495151 -0.129938352 -0.02811961  0.167284018
## [24,]  0.106474974 -0.111266610 -0.330481013 -0.01675428 -0.051075841
## [25,]  0.139302196  0.247408113  0.232863119 -0.02932091 -0.115920546
## [26,] -0.116252868  0.078332587 -0.100284970  0.10991573  0.044923275
## [27,]  0.090434651  0.274865131  0.242707555 -0.01838060  0.043961003
## [28,] -0.032730308  0.168772071  0.190833064  0.15081338  0.063709535
## [29,] -0.005672237  0.172404863  0.205897086 -0.21020933 -0.011007866
## [30,] -0.057215145  0.263357215  0.114313694  0.02739385  0.068512229
## [31,] -0.043496676  0.064912780 -0.290221174  0.09727219 -0.081129579
## [32,]  0.012516160  0.180299855 -0.032879625  0.18037779 -0.019335082
## [33,]  0.139542059  0.034918905 -0.191909229  0.39721188 -0.097927716
## [34,]  0.234565857  0.136913145 -0.094841135  0.29443187 -0.096470957
## [35,] -0.002453113  0.014414655  0.093082117 -0.02967942  0.015684963
##               [,6]         [,7]         [,8]          [,9]         [,10]
##  [1,]  0.000000000  0.384851761  0.000000000  0.0000000000  0.0000000000
##  [2,]  0.420741109 -0.386422523 -0.010330719  0.0612036902  0.0056251762
##  [3,] -0.242341444 -0.252886693  0.172072384  0.1371780283 -0.0783223242
##  [4,]  0.206816175  0.047008190 -0.056956376  0.0274027754 -0.0324873007
##  [5,]  0.169586177 -0.057787052  0.133159190 -0.1517664822 -0.0724779729
##  [6,] -0.076913244 -0.165238166  0.027723969  0.0120572705 -0.0270704559
##  [7,] -0.396951401 -0.107836884  0.006669811  0.0230201734 -0.0159569323
##  [8,] -0.102257230  0.014989242  0.071048159 -0.1548474231 -0.0136536695
##  [9,]  0.130368075 -0.143982566 -0.216692928 -0.0605217807 -0.0655641267
## [10,]  0.192288230  0.107194430 -0.254170925 -0.1162014900 -0.0704674848
## [11,] -0.093606129 -0.227822411  0.152501544  0.0894805018  0.0428646007
## [12,]  0.229343515 -0.124014957  0.285816959 -0.2117015564  0.1658530272
## [13,]  0.201291055 -0.209399503 -0.266814736 -0.1054907255 -0.0481989797
## [14,] -0.192773795  0.015711319 -0.384557016  0.1274424409  0.2147717337
## [15,]  0.202020566 -0.194823060  0.025308462  0.4288752020 -0.1975016444
## [16,] -0.166137669  0.048366751 -0.203031001  0.0085312306 -0.0008302361
## [17,]  0.014625280 -0.018501356 -0.003257082 -0.2553182265 -0.0542435887
## [18,] -0.149496994 -0.197067865  0.092586591 -0.2006387060 -0.0429215229
## [19,] -0.153508176 -0.147623491  0.391453004  0.0454335040  0.0095025048
## [20,]  0.020957510 -0.012610329 -0.145693140 -0.1199070673 -0.2442218179
## [21,] -0.100082187  0.047108274 -0.194591121 -0.0003998328 -0.2402002314
## [22,] -0.110548605 -0.071181030 -0.099842916 -0.0735512767  0.4612923270
## [23,] -0.205554625 -0.028565299  0.155573471 -0.2570490125 -0.4830136431
## [24,] -0.071414104 -0.165215499 -0.028035907 -0.1582369586  0.4417658004
## [25,] -0.100762046 -0.377743218 -0.084677056 -0.0706421864 -0.0550879724
## [26,] -0.160333066 -0.116922806 -0.188755934  0.0206133127  0.0116815247
## [27,] -0.134036974 -0.058651341 -0.150693679  0.2203714178  0.0131675683
## [28,] -0.056144496 -0.058672698 -0.134050888 -0.2410680512 -0.0732634281
## [29,]  0.015227267 -0.049603478 -0.097656210  0.2385985194  0.0234650755
## [30,]  0.045138760  0.008569188 -0.045837616 -0.4534486016  0.1675979831
## [31,] -0.007283762 -0.156548631 -0.158409670  0.0648060994  0.0259523326
## [32,]  0.031210228 -0.068898503 -0.228133472 -0.0615192159 -0.1926963954
## [33,] -0.073417715 -0.326016691 -0.123851488 -0.0419420419 -0.0082263085
## [34,]  0.270697512 -0.078864321  0.066058632 -0.0046151237  0.0442017383
## [35,] -0.047419118 -0.077123549 -0.134834074 -0.2117122622 -0.1401472815
##              [,11]        [,12]        [,13]         [,14]       [,15]
##  [1,]  0.000000000  0.000000000  0.000000000  0.0000000000  0.00000000
##  [2,]  0.024395917  0.021144245 -0.058744021 -0.0004768872  0.01782817
##  [3,] -0.070182467  0.063875668  0.312655990  0.2322237189  0.04566223
##  [4,]  0.051198119  0.178782177 -0.248756859 -0.2193097902  0.14190531
##  [5,] -0.632825962 -0.015671628  0.181663652  0.1172694053 -0.03794858
##  [6,] -0.056899391  0.133978770 -0.287868840 -0.1188247793 -0.34235537
##  [7,]  0.045534161  0.186695998 -0.225823567  0.0505326209  0.09538565
##  [8,] -0.125349748  0.003772482 -0.033761785  0.0098234779 -0.02107847
##  [9,] -0.125030652  0.041399590 -0.144747225 -0.1724762040  0.06668450
## [10,] -0.069481806 -0.013223722 -0.044976606  0.3118949840 -0.14799033
## [11,] -0.049436448 -0.033977570  0.065519669 -0.1119505170 -0.19243011
## [12,]  0.256483839  0.007770051 -0.029047907  0.0021486916  0.09532579
## [13,] -0.003836894  0.037375913  0.081000727  0.3320324177  0.09918558
## [14,]  0.034875459 -0.146180450  0.162254448 -0.0134243652 -0.38469980
## [15,] -0.259313464 -0.141326488  0.087749027 -0.3783860927  0.08012702
## [16,] -0.462337802  0.011772425 -0.403387610 -0.0648447962  0.14398275
## [17,] -0.025519094  0.452220686 -0.005944064 -0.0643690659  0.08350437
## [18,] -0.005854750 -0.186329755 -0.436551301  0.1542509510 -0.24063846
## [19,] -0.108132829 -0.014325303 -0.053063541 -0.0002069387 -0.20080518
## [20,]  0.175514324 -0.278261769 -0.151151210 -0.3300938753 -0.08178002
## [21,] -0.017430053 -0.202209623 -0.033525841  0.2905883000  0.10275649
## [22,] -0.187397940  0.090090415 -0.036911366 -0.1181410442  0.23254661
## [23,] -0.010957266 -0.059403067  0.167783998 -0.0659321949  0.20479593
## [24,]  0.054359890 -0.090297487  0.131553979 -0.0899672519  0.18077749
## [25,]  0.163496401 -0.180808435 -0.115359964  0.0917301209  0.39123188
## [26,] -0.068203330  0.249314724  0.043997495 -0.0422064864  0.02271432
## [27,] -0.090017849 -0.204589083  0.044426860  0.0850078871  0.20628878
## [28,] -0.078770410  0.274789306  0.165284208  0.0072056365 -0.07978009
## [29,]  0.001013602  0.298984511  0.062811358  0.0335407148 -0.01580318
## [30,] -0.199854144 -0.357433328  0.176729562 -0.2050031051 -0.07635703
## [31,]  0.085841599 -0.130340896 -0.025344817  0.0898682494  0.01014490
## [32,]  0.087160670  0.096044716  0.198231999 -0.1424136808 -0.11678647
## [33,]  0.064596359  0.028338041  0.127408322 -0.0499650691 -0.30127339
## [34,] -0.061871798  0.043512128 -0.183482231  0.3114669220 -0.15780886
## [35,]  0.095741502  0.169243049  0.060973751 -0.1839912179 -0.05180416
##              [,16]         [,17]       [,18]        [,19]        [,20]
##  [1,]  0.000000000  0.0000000000  0.00000000  0.000000000  0.000000000
##  [2,] -0.009073969  0.0003171732  0.08232705  0.000528828  0.011556716
##  [3,]  0.128537004 -0.0058885138  0.02546009  0.025009471 -0.013836888
##  [4,]  0.174014286 -0.0194521122  0.06475553 -0.013467621 -0.199004380
##  [5,] -0.043960496 -0.0678335562 -0.04878162  0.012940025  0.083322514
##  [6,]  0.085940627  0.0650625148 -0.09879685  0.035054599 -0.035816276
##  [7,]  0.201498806  0.0130357044  0.06113948 -0.003220364 -0.099644414
##  [8,]  0.057073078 -0.0366632793  0.09483465 -0.037479205  0.165745601
##  [9,]  0.158897288  0.0270572174  0.29514683 -0.061391135 -0.002218565
## [10,]  0.039274786 -0.0062968708 -0.33326696  0.063289286  0.058436609
## [11,] -0.036107039  0.0070870323 -0.05192479  0.020018761 -0.023564550
## [12,]  0.166527436 -0.0665511645  0.18021643  0.012298563 -0.198822663
## [13,]  0.087183588 -0.1044326176 -0.07995356  0.041652155  0.064055730
## [14,]  0.052713140  0.0475270165  0.08906493 -0.084733190  0.001862315
## [15,] -0.132153858  0.0759667733 -0.04006060  0.072043864 -0.065794090
## [16,] -0.009721602  0.0397458227  0.01744208 -0.185633959 -0.039120205
## [17,]  0.288019345  0.2626607978 -0.17210556 -0.210667751  0.329440542
## [18,] -0.245459838 -0.1189586199  0.11419165 -0.035165678 -0.223646092
## [19,]  0.210616662 -0.0053569219 -0.34322369  0.058114067  0.078573128
## [20,]  0.047761579  0.0561248837 -0.39264741  0.167377449  0.262515256
## [21,]  0.133114527 -0.0322655971 -0.05716431  0.102243902 -0.201135280
## [22,]  0.118124200 -0.1681154097 -0.17179859  0.406092978 -0.103554103
## [23,]  0.016795399  0.0048559675 -0.04819370  0.045810159 -0.276370043
## [24,] -0.184131738  0.0380556822 -0.28056740 -0.122229062 -0.050605391
## [25,] -0.200310053  0.0394754101 -0.10729237 -0.239529511  0.206152741
## [26,] -0.400014066 -0.3408478835 -0.02326578 -0.019982349  0.086567443
## [27,]  0.386328398 -0.0530717696  0.22191301  0.140163818  0.131721753
## [28,] -0.331327782  0.4935027739  0.21689104  0.175434211 -0.102764378
## [29,]  0.085060067  0.0624815274 -0.30312739 -0.114347472 -0.465624707
## [30,]  0.200576319  0.0572819383  0.04103676 -0.145066592 -0.239973561
## [31,]  0.032998234  0.5151501327 -0.11115780  0.224951504 -0.194494351
## [32,]  0.097682737 -0.3464116049 -0.14479341 -0.358573008 -0.264112615
## [33,]  0.206766195 -0.0180339284  0.21336602 -0.084545918  0.179875562
## [34,]  0.014696356 -0.0752591926 -0.04037718  0.115298128 -0.065962140
## [35,] -0.015456873 -0.2893494342  0.05547220  0.572835542  0.025111462
##              [,21]        [,22]         [,23]        [,24]        [,25]
##  [1,]  0.000000000  0.000000000  0.0000000000  0.000000000  0.000000000
##  [2,]  0.162258905 -0.030850101  0.0117860459  0.011121455  0.053160139
##  [3,]  0.355261828 -0.192097317  0.1958936483  0.053483796 -0.117626996
##  [4,] -0.262002520 -0.279394559  0.0204257953  0.111542987 -0.122925762
##  [5,] -0.008754180 -0.002994742  0.0936137424 -0.147427529  0.080498366
##  [6,]  0.170581911  0.051169738 -0.0926352958  0.224539490  0.179627820
##  [7,]  0.180864256 -0.229563264  0.0321070252  0.142585725 -0.053727343
##  [8,] -0.070472842  0.268295522 -0.0726320749 -0.054065192  0.115085794
##  [9,] -0.190987544  0.034509294 -0.0244481454  0.018706216 -0.058173611
## [10,] -0.141499459 -0.263104860  0.0890882131  0.016682003 -0.014115654
## [11,] -0.177346856 -0.063168978  0.0345886161  0.044848870 -0.005062722
## [12,] -0.072437986 -0.035259199  0.0002767005 -0.162268195  0.123483744
## [13,] -0.151739658  0.240668549 -0.0670089688  0.134921938  0.013024507
## [14,]  0.015942719 -0.093775672  0.1090427516  0.052314205 -0.042101019
## [15,]  0.096594483 -0.088155303 -0.1565309312  0.181940053  0.001799512
## [16,]  0.084751848  0.126139439  0.0328372244 -0.109105421  0.033455273
## [17,]  0.137933249 -0.170253013 -0.0833715498 -0.033879782  0.033859808
## [18,]  0.009118124 -0.044719144  0.0220481290 -0.153061122  0.138505931
## [19,] -0.528970257 -0.057238416 -0.0658302562  0.154734085 -0.036465014
## [20,]  0.212962267  0.016173004  0.0592324326 -0.249176376  0.046725747
## [21,]  0.004158575  0.033127466 -0.5194956761  0.314582658 -0.053748231
## [22,]  0.045553654  0.305494475  0.2744891327  0.151905605 -0.053478617
## [23,] -0.021301323  0.104863435  0.0476010732 -0.158945737  0.053426453
## [24,]  0.086050295 -0.124066212 -0.4258693887 -0.003170302  0.389842717
## [25,] -0.070609465  0.017113176  0.1722566972  0.129694225 -0.250781880
## [26,] -0.225776925 -0.339305309 -0.0782236803 -0.267880610 -0.169714316
## [27,] -0.128144312 -0.280278546 -0.0429697817 -0.301548261  0.445500937
## [28,] -0.101514769 -0.034937560 -0.0168167416  0.171551534  0.201096683
## [29,]  0.032860370  0.185033843 -0.1992836079 -0.450078788 -0.183357876
## [30,]  0.085717108 -0.264572847 -0.0487117849  0.030997532 -0.374335566
## [31,] -0.187531894 -0.013305823  0.2911986388 -0.195450422  0.021694666
## [32,] -0.027034569  0.039594481  0.3450725938  0.213494287  0.401723189
## [33,] -0.036885487  0.313708687 -0.2126393625 -0.193344405 -0.189829748
## [34,]  0.302587616 -0.162658211  0.0229495283 -0.050632233 -0.032198959
## [35,]  0.069407596 -0.096663456 -0.1094345514 -0.011465449 -0.061047640
##              [,26]        [,27]        [,28]        [,29]        [,30]
##  [1,]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
##  [2,]  0.011593405 -0.018447518 -0.043979250  0.039723028  0.091888446
##  [3,]  0.016925293 -0.118455085  0.183178823 -0.125359029  0.061140699
##  [4,] -0.065457582 -0.080369624  0.025114673 -0.186172179  0.034235692
##  [5,]  0.133002420 -0.032047695  0.071333732  0.108883411  0.381104891
##  [6,]  0.100238890  0.277339775 -0.442424762 -0.004103478  0.224199180
##  [7,] -0.119157346  0.015232817 -0.011292451 -0.162534226  0.096014153
##  [8,] -0.846888277  0.006314820  0.003340963 -0.047989465  0.064645709
##  [9,]  0.094270415 -0.093337525  0.120173315 -0.087086986  0.099114157
## [10,] -0.182221274  0.027474988  0.101535235 -0.174355244 -0.145610273
## [11,] -0.134811697 -0.050681167 -0.035271839  0.042089062  0.051740685
## [12,] -0.078535656 -0.081441537 -0.051330168  0.037673193  0.340892116
## [13,]  0.111540665  0.200994111 -0.238890853 -0.231789080 -0.155661662
## [14,] -0.070401688  0.072019015 -0.089107860 -0.042285388  0.168324448
## [15,] -0.223229374 -0.025185059 -0.015978939  0.045232209 -0.301466221
## [16,]  0.081053164  0.218617658  0.163527141 -0.017224517  0.072691368
## [17,]  0.007486334 -0.117433997 -0.036485806  0.379140536 -0.246673718
## [18,]  0.081736405 -0.211641535  0.176936481  0.121183999 -0.371526487
## [19,]  0.110579595  0.018804819  0.152809913 -0.102065899 -0.014221842
## [20,]  0.041463681 -0.339295396  0.016165336 -0.256228828  0.231189444
## [21,] -0.018876400 -0.342831098  0.002644175  0.324246782  0.251481291
## [22,]  0.009994822 -0.338357383 -0.134904132  0.027410240 -0.155964205
## [23,]  0.026880076  0.144772023 -0.377775839 -0.135442650 -0.160083805
## [24,]  0.014437715  0.132522592  0.110051629 -0.087178341 -0.015666050
## [25,] -0.073834752  0.140509104  0.121566484 -0.030581995  0.138788183
## [26,] -0.052432920 -0.178754722 -0.392485325  0.133844256  0.098946264
## [27,]  0.044844504  0.003371278 -0.066525280 -0.104199687 -0.116089998
## [28,]  0.016047357 -0.233250626  0.102747153 -0.329268111  0.037685881
## [29,] -0.058673383  0.019058053  0.169373420 -0.154488712  0.072337320
## [30,] -0.039387609  0.085553612 -0.091766481 -0.025125959 -0.115289194
## [31,] -0.106308493  0.142573069 -0.055835458  0.462543566  0.039954277
## [32,] -0.054654004 -0.081853180  0.156047623  0.155489210 -0.003278752
## [33,]  0.082792589 -0.123365465  0.060281198 -0.007919405 -0.185917634
## [34,] -0.191264801 -0.014273180 -0.099766943 -0.115011517 -0.115748973
## [35,] -0.025429368  0.432928924  0.388621209  0.167482719  0.032975067
##               [,31]         [,32]        [,33]        [,34]        [,35]
##  [1,]  0.0000000000  0.8752655733  0.000000000  0.000000000  0.000000000
##  [2,]  0.0421064783  0.1464448761  0.118557301 -0.088592375 -0.200125102
##  [3,]  0.2563046937  0.0972739290 -0.079572134  0.091163785  0.463342144
##  [4,]  0.0494762053 -0.0447605343 -0.293865752 -0.550513539  0.282701834
##  [5,] -0.0986062327 -0.0009764407 -0.005233972 -0.345871304 -0.184698433
##  [6,]  0.1086009741 -0.0020257651  0.235859977 -0.016058425  0.272076703
##  [7,]  0.0744287053  0.0541722650  0.087970331 -0.094905423 -0.630439505
##  [8,]  0.0771752405 -0.0464235219 -0.057141323 -0.011502197  0.087002840
##  [9,] -0.1520258460 -0.0279594910  0.091592145  0.495701865  0.001499022
## [10,]  0.1422913230  0.0011501010  0.557438163 -0.040789890  0.066860013
## [11,]  0.2404869351  0.1477978394 -0.240529968  0.075316126 -0.215269385
## [12,] -0.0153930181  0.2157280616  0.186337810  0.132328918  0.134419941
## [13,]  0.2640369650  0.1530667546 -0.374341257  0.064012947 -0.102650652
## [14,] -0.4521576482  0.1045018111 -0.095436910 -0.138501718  0.044758880
## [15,] -0.0650389140  0.1589414215  0.124790834  0.024638227 -0.002352487
## [16,]  0.1072639309  0.0985232555 -0.115510680  0.127005537  0.184238285
## [17,] -0.1378046524  0.0630702030 -0.075096856  0.022172129  0.018057859
## [18,]  0.0314608072  0.0936350349 -0.017984265 -0.114516975  0.026873909
## [19,] -0.2095343206  0.0616336862 -0.053663299  0.168236995  0.021487735
## [20,]  0.0854806029  0.0179652509 -0.173382917  0.052569221 -0.033617532
## [21,] -0.0409236978 -0.0099211438 -0.025351605 -0.008116187  0.053725588
## [22,] -0.1003590808  0.0296210911  0.134149850 -0.043570873  0.041939859
## [23,] -0.2837767341  0.0366378103  0.065096847 -0.093637123  0.041673975
## [24,] -0.0242114349  0.0300091675 -0.069732756 -0.081443616  0.056365111
## [25,] -0.2687018398  0.1259253135  0.134090998 -0.093008554  0.077630155
## [26,]  0.0824531835  0.0377712503 -0.005698087  0.148564662  0.073436775
## [27,] -0.0337131541 -0.0129478841  0.060734899 -0.006373125  0.013297860
## [28,] -0.0431876822  0.0335551658  0.008501871  0.046186718  0.009641284
## [29,] -0.0524235955 -0.0036114391  0.068696880  0.044663271 -0.062630658
## [30,]  0.1665086749 -0.0406690555 -0.011031265  0.125904829 -0.054295994
## [31,]  0.1208058828  0.0165414162 -0.120282244  0.001911544  0.014766746
## [32,]  0.0001924451 -0.0057185687 -0.050981598  0.074184543 -0.033010250
## [33,]  0.0227902120  0.1207284282  0.136109081 -0.295759750  0.062100202
## [34,] -0.4592456628 -0.0166090752 -0.325832418  0.188077046  0.026796634
## [35,] -0.0565578523  0.0439414169 -0.041454727  0.005571649  0.012948961
  1. Menghitung Cumulative Variance
cumulative_variance <- cumsum(eigenvalues) / sum(eigenvalues)
cumulative_variance
##  [1] 0.8559314 0.9856431 0.9999924 1.0000000 1.0000000 1.0000000 1.0000000
##  [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
  1. Menghitung Titik Koordinat 2 Dimensi
fit <- cmdscale(dist_matrix, k=2)
fit
##           [,1]        [,2]
## 1   352342.234  297138.956
## 2  -234226.733   29105.273
## 3  -191432.289 -102601.542
## 4   232451.903  -15569.071
## 5   -55134.996   55850.816
## 6   309468.517  340966.770
## 7  -501528.624  -67288.698
## 8  -366144.313  136042.412
## 9   639304.461 -146206.135
## 10  490701.775 -357673.421
## 11 2219958.961 -394172.626
## 12 -798418.352 -398696.027
## 13 -939886.561 -122381.428
## 14 -775867.223 -453858.302
## 15 -848928.098 -137173.934
## 16 -108605.546 -342472.228
## 17 -166600.298 -158294.381
## 18 -557712.962  -15346.382
## 19 -872151.336  145765.066
## 20 -314637.712   -9142.250
## 21  216821.022  -22223.111
## 22  189129.028    3678.766
## 23  449411.367 -348996.993
## 24  373608.367 -151986.103
## 25  488795.294  337950.397
## 26 -407917.868  106999.437
## 27  317324.728  375455.675
## 28 -114846.866  230536.451
## 29  -19903.224  235498.712
## 30 -200761.324  359736.285
## 31 -152624.803   88668.473
## 32   43917.759  246282.981
## 33  489636.945   47697.941
## 34  823064.460  187018.327
## 35   -8607.691   19689.890
  1. Menghitung Nilai Stress
disparities <- matrix(0, nrow=35, ncol=35)
for (i in 1:35) {
  for (j in 1:35) {
    disparities[i,j] <- sqrt(sum((fit[i,] - fit[j,])^2))
  }
}
stress <- sqrt(sum((dist_matrix - disparities)^2) / sum(dist_matrix^2))
stress
## [1] 0.02133579
  1. Visualisasi
plot(fit, type='n', xlab = "Dimensi 1", ylab = "Dimensi 2")
text(fit, labels = Data$'Provinsi')
text(fit, labels = 1:nrow(data)) #Objek dinyatakan dengan angka

Hasil dan Pembahasan

Nilai Eigen

Berdasarkan hasil analisis nilai eigen dan kumulatif keragaman yang dilakukan, dapat disimpulkan bahwa data dapat disederhanakan ke dalam ruang dimensi yang lebih rendah tanpa kehilangan informasi yang signifikan. Dimensi pertama mampu menjelaskan sekitar 85.6% dari total keragaman data. Ketika ditambahkan dimensi kedua, persentase kumulatif keragaman yang terjelaskan meningkat menjadi 98.6%. Hal ini menunjukkan bahwa kedua dimensi utama tersebut telah menangkap hampir seluruh variasi yang ada dalam data. Sehingga visualisasi data akan dilakukan dalam ruang dua dimensi.

Titik Koordinat 2 Dimensi

Setiap objek dalam analisis ini direpresentasikan melalui dua nilai koordinat yang masing-masing mencerminkan dimensi 1 dan dimensi 2. Koordinat ini menggambarkan posisi relatif setiap objek berdasarkan tingkat kemiripannya. Objek-objek dengan nilai koordinat yang saling berdekatan mengindikasikan hubungan yang dekat dalam data asli, sebaliknya objek-objek yang terpisah jauh dalam koordinat merepresentasikan hubungan yang memang tidak mirip sesuai dengan matriks jarak awal.

Koordinat Posisi Pada Plot

Plot MDS menunjukkan tiga kluster utama: 1. Kluster Kesejahteraan Tinggi: Papua, Papua Barat, DKI Jakarta 2. Kluster Kesejahteraan Rendah: Sulawesi Barat, NTT, Maluku 3. Kluster Transisi: Jawa Tengah, Sumatra Barat, Kalimantan Timur

Nilai Stress

Berdasarkan hasil perhitungan yang dilakukan, diperoleh nilai stress sebesar 0.02133579 atau 2.13%. Apabila mengacu pada kriteria kualitas pemetaan, nilai stress tersebut termasuk dalam kategori < 2,5%, yang berarti kualitas representasi model MDS ini dinilai Sempurna.

Kesimpulan

MDS berhasil memetakan 35 provinsi ke dalam ruang dua dimensi dengan akurasi sempurna (stress = 2.13%). Teridentifikasi tiga kluster provinsi berdasarkan karakteristik kesejahteraan pekerja, dengan disparitas yang signifikan antara provinsi di Indonesia bagian timur dan barat.

Saran

Perlu penelitian lanjutan dengan menambahkan variabel-variabel lain yang mempengaruhi kesejahteraan pekerja, serta analisis faktor yang mendasari terbentuknya dimensi-dimensi dalam MDS.

Daftar Pustaka

Nasution, N. B., & Jana, P. (2021). Analisis Multidimensional Scaling Untuk Pemetaan Aplikasi Pembelajaran Daring. Statmat: Jurnal Statistika Dan Matematika, 3(1), 71-81.

Rezky, A. (2022). Pekerja Sejahtera Dataset [Data set]. Kaggle. https://www.kaggle.com/datasets/rezkyyayang/pekerjasejahtera?select=gk.csv