Escritura
setwd("/cloud/project")
Datos <- read.csv("DataSet_.csv", sep = ";", fileEncoding = "latin1")
install.packages("dplyr")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
install.packages("ggplot2")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library(ggplot2)
Tabla Base
Pais <- Datos$country
TDF_pais <- table(Pais)
tabla_pais <- as.data.frame(TDF_pais)
hi <- tabla_pais$Freq/sum(tabla_pais$Freq)
hi_porc <- hi*100
tabla_PAIS <- data.frame(tabla_pais, hi_porc)
colnames(tabla_PAIS)[1] <- "Pais"
Agrupación
tabla_resumen <- tabla_PAIS %>%
mutate(grupo = case_when(
grepl("Argentina", Pais, ignore.case = TRUE) ~ "Argentina",
grepl("Bolivia", Pais, ignore.case = TRUE) ~ "Bolivia",
grepl("Brazil", Pais, ignore.case = TRUE) ~ "Brazil",
grepl("Chile", Pais, ignore.case = TRUE) ~ "Chile",
grepl("Colombia", Pais, ignore.case = TRUE) ~ "Colombia",
grepl("Ecuador", Pais, ignore.case = TRUE) ~ "Ecuador",
grepl("Guyana", Pais, ignore.case = TRUE) ~ "Guyana",
grepl("Paraguay", Pais, ignore.case = TRUE) ~ "Paraguay",
grepl("Peru", Pais, ignore.case = TRUE) ~ "Peru",
grepl("Suriname", Pais, ignore.case = TRUE) ~ "Suriname",
grepl("Uruguay", Pais, ignore.case = TRUE) ~ "Uruguay",
grepl("Venezuela", Pais, ignore.case = TRUE) ~ "Venezuela",
TRUE ~ "Otros"
)) %>%
group_by(grupo) %>%
summarise(
Frecuencia = sum(Freq),
Porcentaje = sum(hi_porc)
) %>%
arrange(desc(Frecuencia))
colnames(tabla_resumen) <- c("Pais","ni","hi (%)")
tabla_resumen
## # A tibble: 13 × 3
## Pais ni `hi (%)`
## <chr> <int> <dbl>
## 1 Brazil 5745 80.4
## 2 Colombia 703 9.84
## 3 Chile 422 5.91
## 4 Argentina 96 1.34
## 5 Peru 75 1.05
## 6 Ecuador 49 0.686
## 7 Uruguay 23 0.322
## 8 Bolivia 13 0.182
## 9 Guyana 8 0.112
## 10 Paraguay 3 0.0420
## 11 Suriname 3 0.0420
## 12 Otros 1 0.0140
## 13 Venezuela 1 0.0140
Totales
totales <- c(
Pais = "TOTAL",
ni = sum(tabla_resumen$ni),
hi = sum(tabla_resumen$`hi (%)`)
)
tabla_Pais_Final <- rbind(tabla_resumen, totales)
tabla_Pais_Final
## # A tibble: 14 × 3
## Pais ni `hi (%)`
## <chr> <chr> <chr>
## 1 Brazil 5745 80.439652758331
## 2 Colombia 703 9.84318118174181
## 3 Chile 422 5.90870904508541
## 4 Argentina 96 1.34416129935592
## 5 Peru 75 1.05012601512181
## 6 Ecuador 49 0.686082329879586
## 7 Uruguay 23 0.322038644637356
## 8 Bolivia 13 0.182021842621115
## 9 Guyana 8 0.112013441612994
## 10 Paraguay 3 0.0420050406048726
## 11 Suriname 3 0.0420050406048726
## 12 Otros 1 0.0140016802016242
## 13 Venezuela 1 0.0140016802016242
## 14 TOTAL 7142 100
GRÁFICOS
Gráfico 1 – Frecuencia local
par(mar = c(9, 4, 4, 2))
barplot(tabla_resumen$ni,main="Gráfica N°1: Distribución de proyectos solares por País",
ylab = "Cantidad",
col = "skyblue",
names.arg=tabla_resumen$Pais,
cex.names = 0.8, las = 2)
mtext("País", side = 1, line = 8)

Gráfico 2 – Frecuencia global
barplot(tabla_resumen$ni,main="Gráfica N°2: Distribución de proyectos por País (Global)",
ylab = "Cantidad",
col = "skyblue",
ylim = c(0,8000),
names.arg=tabla_resumen$Pais,
cex.names = 0.8, las = 2)
mtext("País", side = 1, line = 8)

Gráfico 3 – Porcentaje local
barplot(tabla_resumen$`hi (%)`,main="Gráfica N°3: Distribución porcentual por País",
ylab = "Porcentaje %",
col = "skyblue",
names.arg=tabla_resumen$Pais,
cex.names = 0.8, las = 2)
mtext("País", side = 1, line = 8)

Gráfico 4 – Porcentaje global
barplot(tabla_resumen$`hi (%)`,main="Gráfica N°4: Distribución porcentual global",
ylab = "Porcentaje %",
col = "skyblue",
ylim = c(0,100),
names.arg=tabla_resumen$Pais,
cex.names = 0.8, las = 2)
mtext("País", side = 1, line = 8)

Gráfico 5 – Diagrama Circular
pie(tabla_resumen$`hi (%)`,
main = "Gráfica N°5: Distribución porcentual de proyectos por País",
radius = 0.9,
labels = paste0(round(tabla_resumen$`hi (%)`,2),"%"),
col = colores <- c(rev(heat.colors(length(tabla_resumen$Pais)))),
cex = 0.6)
legend(x = 1.4, y = 0.8,
legend = tabla_resumen$Pais,
fill = colores,
cex = 0.6,
title = "País")

par(xpd = TRUE)
Tabla de Conlusiones
install.packages("knitr")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library(knitr)
tabla_indicadores <- data.frame(
"Variable" = "País del proyecto",
"Rango" = "Países de Sudamérica",
"X" = "-",
"Me" = "-",
"Mo" = "Brazil",
"V" = "-",
"Sd" = "-",
"Cv" = "-",
"As" = "-",
"K" = "-",
"Valores Atipicos" = "-"
)
kable(tabla_indicadores, align = 'c', caption = "Conclusiones de la variable País")
Conclusiones de la variable País
| País del proyecto |
Países de Sudamérica |
- |
- |
Brazil |
- |
- |
- |
- |
- |
- |