1 GỌI CÁC GÓI CẦN THIẾT

library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
library(readxl)
library(xlsx)
library(moments)
## 
## Attaching package: 'moments'
## The following objects are masked from 'package:PerformanceAnalytics':
## 
##     kurtosis, skewness
library(dplyr)
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(psych)
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(knitr)
library(kableExtra)
library(corrplot)
## corrplot 0.95 loaded
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ ggplot2   4.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.4     ✔ tibble    3.2.1
## ✔ purrr     1.0.4     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()           masks psych::%+%()
## ✖ ggplot2::alpha()         masks psych::alpha()
## ✖ dplyr::filter()          masks stats::filter()
## ✖ dplyr::first()           masks xts::first()
## ✖ kableExtra::group_rows() masks dplyr::group_rows()
## ✖ dplyr::lag()             masks stats::lag()
## ✖ dplyr::last()            masks xts::last()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(psych)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(forecast)
library(lmtest)
library(fGarch)
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
## 
## Attaching package: 'fGarch'
## 
## The following objects are masked from 'package:PerformanceAnalytics':
## 
##     ES, VaR
library(rugarch)
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## 
## The following object is masked from 'package:purrr':
## 
##     reduce
library(goftest)
library(copula)
## 
## Attaching package: 'copula'
## 
## The following object is masked from 'package:lubridate':
## 
##     interval
library(ggplot2)
library(scatterplot3d)
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## 
## The following object is masked from 'package:forecast':
## 
##     gghistogram
library(VineCopula)
## 
## Attaching package: 'VineCopula'
## 
## The following object is masked from 'package:copula':
## 
##     pobs
library(MASS)
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(copula)
library(ggplot2)
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
library(reshape2)   
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths

2 GỌI DỮ LIỆU VÀ TÍNH TỶ SUẤT LỢI NHUẬN

data <- read_xlsx("C:/Users/PC/OneDrive/Máy tính/KLTN/KLTN.xlsx")
lg1<- diff(log(data$MBB), lag = 1)
lg2<- diff(log(data$VCB), lag = 1)
lg3<- diff(log(data$HPG), lag = 1)
lg4<- diff(log(data$NKG), lag = 1)
lg5<- diff(log(data$SSI), lag = 1)
lg6<- diff(log(data$VND), lag = 1)
lg7<- diff(log(data$MSN), lag = 1)
lg8<- diff(log(data$MWG), lag = 1)
lg9<- diff(log(data$GEX), lag = 1)
lg10<- diff(log(data$VIC), lag = 1)


mhnn <- data.frame( MBB= lg1, VCB = lg2, HPG = lg3, NKG = lg4, SSI = lg5, VND = lg6, MSN = lg7, MWG = lg8, GEX = lg9, VIC = lg10)
# Tạo lưới 5x2 cho 10 biểu đồ
par(mfrow=c(5,2), mar=c(3,3,2,1)) # cài margin nhỏ gọn
cols <- c("darkorange2", "deeppink3", "red", "blue", "seagreen", 
          "goldenrod1", "purple3", "brown2", "cyan3", "gray30")
for(i in 1:ncol(mhnn)) {
  plot.ts(mhnn[[i]], col=cols[i], lwd=2,
          main=colnames(mhnn)[i],
          ylab="Tỷ suất sinh lợi", xlab="Phiên giao dịch")
  grid()}

par(mfrow=c(1,1)) # reset layout
matplot(mhnn, type="l", lty=1, lwd=2, col=cols,
        xlab="Phiên giao dịch", ylab="Tỷ suất sinh lợi logarit",
        main="Biểu đồ chồng 10 cổ phiếu")
grid()
legend("topright", legend=colnames(mhnn), col=cols, lty=1, lwd=2, cex=0.8)

# Vẽ boxplot
mhnn %>%
  pivot_longer(cols = everything(),
               names_to = "TSLN",
               values_to = "Value") %>%
  ggplot(aes(x = TSLN, y = Value)) +
  geom_boxplot(fill = "lightpink", color = "darkblue", outlier.color = "red") +
  theme_minimal(base_size = 13) +
  labs(title = "Biểu đồ hộp thể hiện phân phối tỷ suất sinh lợi của các cổ phiếu",
       x = "Cổ phiếu",
       y = "Tỷ suất sinh lợi logarit") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5),
        axis.text.x = element_text(angle = 45, hjust = 1))

apply(mhnn, 2, function(x) adf.test(na.omit(x))$p.value)
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
## Warning in adf.test(na.omit(x)): p-value smaller than printed p-value
##  MBB  VCB  HPG  NKG  SSI  VND  MSN  MWG  GEX  VIC 
## 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
apply(mhnn, 2, function(x) Box.test(na.omit(x), lag=10, type="Ljung-Box")$p.value)
##          MBB          VCB          HPG          NKG          SSI          VND 
## 6.349238e-01 2.141271e-01 2.874831e-01 3.409428e-11 5.350444e-01 5.774336e-01 
##          MSN          MWG          GEX          VIC 
## 1.984884e-03 2.071152e-02 1.372236e-03 1.388945e-02
library(tidyverse)
library(reshape2)
library(ggplot2)

# Tính ma trận tương quan
cor_matrix <- cor(mhnn, use = "pairwise.complete.obs")

# Làm tròn giá trị (cho đẹp)
cor_matrix_rounded <- round(cor_matrix, 2)

# Chuyển sang dạng long để ggplot vẽ được
cor_melted <- melt(cor_matrix_rounded)

# Vẽ biểu đồ heatmap tương quan
ggplot(cor_melted, aes(x = Var1, y = Var2, fill = value)) +
  geom_tile(color = "white") +
  geom_text(aes(label = value), color = "black", size = 3) +
  scale_fill_gradient2(low = "blue", high = "red", mid = "white",
                       midpoint = 0, limit = c(-1, 1),
                       name = "Hệ số\nTương quan") +
  labs(title = "Biểu đồ tương quan giữa các cổ phiếu",
       x = "Cổ phiếu", y = "Cổ phiếu") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

3 TẠO THỐNG KÊ MÔ TẢ DỮ LIỆU

# Tính thống kê mô tả chi tiết cho từng cổ phiếu
desc_stats <- mhnn %>%
  summarise(across(everything(), list(
    Mean = ~mean(.x, na.rm = TRUE),
    SD = ~sd(.x, na.rm = TRUE),
    Min = ~min(.x, na.rm = TRUE),
    Q1 = ~quantile(.x, 0.25, na.rm = TRUE),
    Median = ~median(.x, na.rm = TRUE),
    Q3 = ~quantile(.x, 0.75, na.rm = TRUE),
    Max = ~max(.x, na.rm = TRUE),
    Skewness = ~psych::skew(.x, na.rm = TRUE),
    Kurtosis = ~psych::kurtosi(.x, na.rm = TRUE)
  ), .names = "{.col}_{.fn}")) %>%
  tidyr::pivot_longer(everything(),
                      names_to = c("Cổ phiếu", "Chỉ tiêu"),
                      names_sep = "_",
                      values_to = "Giá trị") %>%
  tidyr::pivot_wider(names_from = "Chỉ tiêu", values_from = "Giá trị")

# Làm đẹp bảng
desc_stats %>%
  mutate(across(where(is.numeric), ~ round(.x, 4))) %>%
  kable("html", caption = "Bảng 1. Thống kê mô tả tỷ suất sinh lợi logarit của các cổ phiếu") %>%
  kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover", "condensed")) %>%
  column_spec(1, bold = TRUE, color = "white", background = "#4B72B0") %>%
  row_spec(0, bold = TRUE, color = "white", background = "#2E3B4E") %>%
  footnote(general = "Nguồn: Tính toán từ dữ liệu giá cổ phiếu (log-return).")
Bảng 1. Thống kê mô tả tỷ suất sinh lợi logarit của các cổ phiếu
Cổ phiếu Mean SD Min Q1 Median Q3 Max Skewness Kurtosis
MBB 8e-04 0.0188 -0.0724 -0.0072 0 0.0093 0.0670 -0.3047 3.1460
VCB 3e-04 0.0193 -0.4021 -0.0079 0 0.0083 0.0672 -3.9804 80.2291
HPG 8e-04 0.0207 -0.0726 -0.0095 0 0.0113 0.0671 -0.0898 1.8463
NKG 6e-04 0.0287 -0.3056 -0.0135 0 0.0149 0.0859 -0.5572 5.6848
SSI 5e-04 0.0243 -0.2312 -0.0099 0 0.0113 0.0848 -0.4585 4.9330
VND 4e-04 0.0344 -0.8915 -0.0116 0 0.0139 0.0947 -8.4525 202.1106
MSN 2e-04 0.0216 -0.2098 -0.0100 0 0.0105 0.0676 -0.3717 5.2690
MWG 8e-04 0.0210 -0.0726 -0.0085 0 0.0106 0.0676 -0.2032 2.2896
GEX 8e-04 0.0260 -0.1450 -0.0110 0 0.0131 0.1172 -0.1446 1.7925
VIC 5e-04 0.0196 -0.1717 -0.0071 0 0.0070 0.0677 -0.1554 6.0841
Note:
Nguồn: Tính toán từ dữ liệu giá cổ phiếu (log-return).

4 TÍNH SỰ TƯƠNG QUAN VÀ THỂ HIỆN BÀNG BIỂU ĐỒ

# Chuyển sang dạng long
mh <- melt(cor_matrix_rounded)

ggplot(mh, aes(Var1, Var2, fill = value)) +
  geom_tile(color = "white") +
  geom_text(aes(label = round(value, 2)), color = "black", size = 3.5) +
  scale_fill_gradient2(low = "#2166AC", mid = "white", high = "#B2182B", midpoint = 0,
                       limit = c(-1, 1), name = "Hệ số\nTương quan") +
  labs(title = "Hình 5. Bản đồ nhiệt hệ số tương quan giữa các cổ phiếu",
       x = "", y = "") +
  theme_minimal(base_size = 13) +
  theme(
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1),
    plot.title = element_text(face = "bold", hjust = 0.5))

# Hàm kiểm định an toàn trả p-value (tránh lỗi)
get_stationarity_pvalues <- function(x) {
  adf_p <- tryCatch({
    adf.test(x, alternative = "stationary")$p.value
  }, error = function(e) NA_real_)
  
  kpss_p <- tryCatch({
    kpss.test(x, null = "Level")$p.value
  }, error = function(e) NA_real_)
  
  tibble(ADF_p = adf_p, KPSS_p = kpss_p)
}

# Áp dụng cho từng cột trong mhnn
stationarity_tests <- map_dfr(names(mhnn), function(colname) {
  vals <- mhnn[[colname]]
  # loại NA trước khi kiểm định (nếu cần)
  vals <- vals[!is.na(vals)]
  get_stationarity_pvalues(vals) %>%
    mutate(Stock = colname, .before = 1)})
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
## Warning in adf.test(x, alternative = "stationary"): p-value smaller than
## printed p-value
## Warning in kpss.test(x, null = "Level"): p-value greater than printed p-value
# Kết luận dựa trên p-value (quy ước: ADF_p < 0.05 và KPSS_p > 0.05 => dừng)
stationarity_tests <- stationarity_tests %>%
  mutate(
    ADF_p = round(ADF_p, 4),
    KPSS_p = round(KPSS_p, 4),
    Conclusion = case_when(
      !is.na(ADF_p) & !is.na(KPSS_p) & (ADF_p < 0.05) & (KPSS_p > 0.05) ~ "Chuỗi dừng",
      !is.na(ADF_p) & !is.na(KPSS_p) ~ "Không dừng (hoặc mâu thuẫn)",
      TRUE ~ "Không đủ dữ liệu / lỗi kiểm định"))

stationarity_tests %>%
  arrange(Stock) %>%
  kable("html", caption = "Bảng: Kết quả kiểm định tính dừng (ADF & KPSS)") %>%
  kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover"))
Bảng: Kết quả kiểm định tính dừng (ADF & KPSS)
Stock ADF_p KPSS_p Conclusion
GEX 0.01 0.1 Chuỗi dừng
HPG 0.01 0.1 Chuỗi dừng
MBB 0.01 0.1 Chuỗi dừng
MSN 0.01 0.1 Chuỗi dừng
MWG 0.01 0.1 Chuỗi dừng
NKG 0.01 0.1 Chuỗi dừng
SSI 0.01 0.1 Chuỗi dừng
VCB 0.01 0.1 Chuỗi dừng
VIC 0.01 0.1 Chuỗi dừng
VND 0.01 0.1 Chuỗi dừng

5 THỰC HIỆN KIỂM ĐỊNH BẬC ARIMA HNX VÀ DJ

library(forecast)
library(dplyr)
library(tibble)
library(knitr)
library(kableExtra)

# Danh sách cổ phiếu
stocks <- colnames(mhnn)

# Lặp qua tất cả cổ phiếu và chạy auto.arima
models <- lapply(mhnn, auto.arima)
names(models) <- stocks

# Lấy thông số thống kê quan trọng của từng mô hình
model_summary <- lapply(models, function(mod) {
  tibble(
    ARIMA = paste0("(", paste(mod$arma[c(1,6,2)], collapse=","), ")"),
    AIC = round(mod$aic, 2),
    BIC = round(mod$bic, 2),
    logLik = round(mod$loglik, 2),
    sigma2 = round(mod$sigma2, 6)
  )
})

# Ghép thành bảng
model_summary_df <- bind_rows(model_summary, .id = "Stock")

# In bảng đẹp
model_summary_df %>%
  kable("html", caption="Bảng: Thống kê mô hình ARIMA cho 10 cổ phiếu") %>%
  kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover"))
Bảng: Thống kê mô hình ARIMA cho 10 cổ phiếu
Stock ARIMA AIC BIC logLik sigma2
MBB (0,0,0) -12436.59 -12425.00 6220.30 0.000354
VCB (0,0,0) -12309.61 -12303.81 6155.81 0.000373
HPG (0,0,1) -11975.69 -11958.29 5990.84 0.000427
NKG (1,0,0) -10420.84 -10409.24 5212.42 0.000810
SSI (0,0,0) -11194.73 -11188.93 5598.36 0.000590
VND (0,0,0) -9504.55 -9498.75 4753.28 0.001180
MSN (0,0,4) -11792.04 -11763.05 5901.02 0.000461
MWG (0,0,1) -11904.34 -11886.95 5955.17 0.000440
GEX (2,0,1) -10883.23 -10854.24 5446.61 0.000669
VIC (0,0,1) -12249.20 -12237.61 6126.60 0.000382

6 Ước lượng ARIMA cho từng cổ phiếu và lấy phần dư

tickers <- colnames(mhnn)
arima_fits <- list()
resid_mat <- data.frame(matrix(NA, nrow=nrow(mhnn), ncol=length(tickers)))
colnames(resid_mat) <- tickers

for(i in tickers){
  x <- na.omit(mhnn[[i]])
  fit <- auto.arima(x, stationary=TRUE, seasonal=FALSE)
  arima_fits[[i]] <- fit
  r <- residuals(fit)
  resid_mat[1:length(r), i] <- r
}

7 Kiểm tra ARCH effect và fit GARCH

library(FinTS)
## 
## Attaching package: 'FinTS'
## The following object is masked from 'package:forecast':
## 
##     Acf
std_resid <- resid_mat
for(i in tickers){
  r <- na.omit(resid_mat[[i]])
  if(ArchTest(r)$p.value < 0.05){
    spec <- ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)),
                       mean.model=list(armaOrder=c(0,0), include.mean=FALSE))
    gfit <- ugarchfit(spec, r)
    std_resid[1:length(r), i] <- residuals(gfit, standardize=TRUE)
  } else {
    std_resid[1:length(r), i] <- scale(r)
  }
}
library(FinTS)
library(rugarch)

for(i in tickers){
  cat("=====================================\n")
  cat("XỬ LÝ MÃ:", i, "\n")
  cat("=====================================\n")
  
  r <- na.omit(resid_mat[[i]])
  test_arch <- ArchTest(r)
  
  cat("ARCH Test p-value:", test_arch$p.value, "\n")
  
  if(test_arch$p.value < 0.05){
    cat("=> Có ARCH effect → Ước lượng GARCH(1,1)\n")
    
    spec <- ugarchspec(
      variance.model = list(model="sGARCH", garchOrder=c(1,1)),
      mean.model     = list(armaOrder=c(0,0), include.mean=FALSE)
    )
    
    gfit <- ugarchfit(spec, r)
    
    # In kết quả GARCH và tham số
    show(gfit)
    
    # Lưu residual chuẩn hóa
    std_resid[1:length(r), i] <- residuals(gfit, standardize=TRUE)
    
  } else {
    cat("=> Không có ARCH effect → Chuẩn hóa bằng scale()\n")
    
    std_resid[1:length(r), i] <- scale(r)
  }
  
  cat("\n\n")
}
## =====================================
## XỬ LÝ MÃ: MBB 
## =====================================
## ARCH Test p-value: 1.382558e-64 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000002   4.9744    1e-06
## alpha1  0.114585    0.009658  11.8643    0e+00
## beta1   0.865595    0.008170 105.9528    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000005   1.8427 0.065372
## alpha1  0.114585    0.015668   7.3133 0.000000
## beta1   0.865595    0.021991  39.3614 0.000000
## 
## LogLikelihood : 6524.655 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.3566
## Bayes        -5.3495
## Shibata      -5.3566
## Hannan-Quinn -5.3540
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.5005  0.4793
## Lag[2*(p+q)+(p+q)-1][2]    1.2266  0.4302
## Lag[4*(p+q)+(p+q)-1][5]    1.8423  0.6561
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2212  0.6381
## Lag[2*(p+q)+(p+q)-1][5]    1.7781  0.6717
## Lag[4*(p+q)+(p+q)-1][9]    3.0326  0.7536
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01369 0.500 2.000  0.9069
## ARCH Lag[5]   0.16698 1.440 1.667  0.9731
## ARCH Lag[7]   0.45345 2.315 1.543  0.9824
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.4087
## Individual Statistics:             
## omega  0.9312
## alpha1 0.1365
## beta1  0.2257
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.02172 0.9827    
## Negative Sign Bias 1.20512 0.2283    
## Positive Sign Bias 1.15897 0.2466    
## Joint Effect       5.40075 0.1447    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     377.8    1.786e-68
## 2    30     551.7    6.321e-98
## 3    40     527.9    5.578e-87
## 4    50     801.9   9.294e-137
## 
## 
## Elapsed time : 0.5679469 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VCB 
## =====================================
## ARCH Test p-value: 0.9999999 
## => Không có ARCH effect → Chuẩn hóa bằng scale()
## 
## 
## =====================================
## XỬ LÝ MÃ: HPG 
## =====================================
## ARCH Test p-value: 3.026608e-51 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000021    0.000005   4.4207    1e-05
## alpha1  0.093620    0.013380   6.9968    0e+00
## beta1   0.856854    0.021395  40.0487    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000021    0.000008   2.5318 0.011349
## alpha1  0.093620    0.020410   4.5869 0.000004
## beta1   0.856854    0.037446  22.8826 0.000000
## 
## LogLikelihood : 6161.499 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.0583
## Bayes        -5.0512
## Shibata      -5.0583
## Hannan-Quinn -5.0557
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.0154  0.9012
## Lag[2*(p+q)+(p+q)-1][2]    0.1276  0.9007
## Lag[4*(p+q)+(p+q)-1][5]    0.8694  0.8885
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.6589  0.4170
## Lag[2*(p+q)+(p+q)-1][5]    2.7742  0.4498
## Lag[4*(p+q)+(p+q)-1][9]    4.3564  0.5295
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]     0.101 0.500 2.000  0.7506
## ARCH Lag[5]     0.448 1.440 1.667  0.8989
## ARCH Lag[7]     1.859 2.315 1.543  0.7472
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.5328
## Individual Statistics:             
## omega  0.2078
## alpha1 0.1965
## beta1  0.2298
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias            3.230 0.0012535 ***
## Negative Sign Bias   3.564 0.0003729 ***
## Positive Sign Bias   2.601 0.0093486 ***
## Joint Effect        19.498 0.0002157 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     122.7    3.450e-17
## 2    30     160.1    4.436e-20
## 3    40     177.8    1.244e-19
## 4    50     184.2    1.539e-17
## 
## 
## Elapsed time : 0.2303178 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: NKG 
## =====================================
## ARCH Test p-value: 2.029502e-27 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000016    0.000004   3.9602  7.5e-05
## alpha1  0.085767    0.009497   9.0309  0.0e+00
## beta1   0.895850    0.011474  78.0777  0.0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000016    0.000007   2.3817 0.017231
## alpha1  0.085767    0.011733   7.3100 0.000000
## beta1   0.895850    0.014096  63.5532 0.000000
## 
## LogLikelihood : 5428.323 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.4561
## Bayes        -4.4490
## Shibata      -4.4561
## Hannan-Quinn -4.4535
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.06752  0.7950
## Lag[2*(p+q)+(p+q)-1][2]   0.76974  0.5793
## Lag[4*(p+q)+(p+q)-1][5]   3.08991  0.3909
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      6.063 0.01380
## Lag[2*(p+q)+(p+q)-1][5]     6.317 0.07567
## Lag[4*(p+q)+(p+q)-1][9]     7.856 0.13748
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1489 0.500 2.000  0.6996
## ARCH Lag[5]    0.2374 1.440 1.667  0.9564
## ARCH Lag[7]    1.3828 2.315 1.543  0.8445
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.3084
## Individual Statistics:             
## omega  0.7337
## alpha1 0.1423
## beta1  0.1133
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias            1.462 1.439e-01    
## Negative Sign Bias   4.559 5.397e-06 ***
## Positive Sign Bias   1.366 1.722e-01    
## Joint Effect        27.305 5.082e-06 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     135.0    1.667e-19
## 2    30     145.7    1.725e-17
## 3    40     151.4    3.664e-15
## 4    50     163.5    3.001e-14
## 
## 
## Elapsed time : 0.214535 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: SSI 
## =====================================
## ARCH Test p-value: 4.131669e-46 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000004   2.2042 0.027509
## alpha1  0.107081    0.014028   7.6336 0.000000
## beta1   0.880688    0.010336  85.2045 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000017  0.56701 0.570710
## alpha1  0.107081    0.044440  2.40956 0.015972
## beta1   0.880688    0.023059 38.19239 0.000000
## 
## LogLikelihood : 5957.951 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.8911
## Bayes        -4.8840
## Shibata      -4.8911
## Hannan-Quinn -4.8885
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      4.919 0.02656
## Lag[2*(p+q)+(p+q)-1][2]     5.312 0.03356
## Lag[4*(p+q)+(p+q)-1][5]     6.292 0.07673
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.04452  0.8329
## Lag[2*(p+q)+(p+q)-1][5]   0.32254  0.9813
## Lag[4*(p+q)+(p+q)-1][9]   1.12481  0.9805
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.0192 0.500 2.000  0.8898
## ARCH Lag[5]    0.2377 1.440 1.667  0.9563
## ARCH Lag[7]    0.8007 2.315 1.543  0.9437
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.292
## Individual Statistics:             
## omega  0.5432
## alpha1 0.2942
## beta1  0.1983
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value     prob sig
## Sign Bias           0.2512 0.801702    
## Negative Sign Bias  1.7036 0.088578   *
## Positive Sign Bias  1.8530 0.064010   *
## Joint Effect       13.6901 0.003359 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     269.0    4.346e-46
## 2    30     366.3    4.672e-60
## 3    40     471.9    1.030e-75
## 4    50     577.5    2.223e-91
## 
## 
## Elapsed time : 0.269922 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VND 
## =====================================
## ARCH Test p-value: 1 
## => Không có ARCH effect → Chuẩn hóa bằng scale()
## 
## 
## =====================================
## XỬ LÝ MÃ: MSN 
## =====================================
## ARCH Test p-value: 8.905524e-11 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000031    0.000005   5.5837        0
## alpha1  0.127931    0.015836   8.0786        0
## beta1   0.811236    0.021896  37.0499        0
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000031    0.000008   3.8789 0.000105
## alpha1  0.127931    0.021688   5.8986 0.000000
## beta1   0.811236    0.027331  29.6818 0.000000
## 
## LogLikelihood : 6053.198 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.9694
## Bayes        -4.9622
## Shibata      -4.9694
## Hannan-Quinn -4.9668
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.05084  0.8216
## Lag[2*(p+q)+(p+q)-1][2]   0.05137  0.9553
## Lag[4*(p+q)+(p+q)-1][5]   0.53318  0.9524
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.7045  0.4013
## Lag[2*(p+q)+(p+q)-1][5]    3.8021  0.2798
## Lag[4*(p+q)+(p+q)-1][9]    6.5585  0.2390
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.02824 0.500 2.000  0.8665
## ARCH Lag[5]   0.12479 1.440 1.667  0.9820
## ARCH Lag[7]   2.04447 2.315 1.543  0.7079
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.3762
## Individual Statistics:             
## omega  0.2558
## alpha1 0.1134
## beta1  0.1788
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           1.2163 0.22398    
## Negative Sign Bias  2.2355 0.02547  **
## Positive Sign Bias  0.7561 0.44964    
## Joint Effect        5.6541 0.12971    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     229.8    3.738e-38
## 2    30     261.6    2.816e-39
## 3    40     277.9    8.413e-38
## 4    50     306.3    6.466e-39
## 
## 
## Elapsed time : 0.2676971 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: MWG 
## =====================================
## ARCH Test p-value: 3.304668e-65 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000017    0.000004   4.7087    2e-06
## alpha1  0.080461    0.008379   9.6032    0e+00
## beta1   0.878420    0.014207  61.8321    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000017    0.000007   2.4456 0.014462
## alpha1  0.080461    0.011226   7.1674 0.000000
## beta1   0.878420    0.024004  36.5942 0.000000
## 
## LogLikelihood : 6144.679 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.0445
## Bayes        -5.0374
## Shibata      -5.0445
## Hannan-Quinn -5.0419
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.5158  0.4726
## Lag[2*(p+q)+(p+q)-1][2]    0.5224  0.6832
## Lag[4*(p+q)+(p+q)-1][5]    3.7263  0.2902
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      5.827 0.01578
## Lag[2*(p+q)+(p+q)-1][5]     6.466 0.06972
## Lag[4*(p+q)+(p+q)-1][9]     8.053 0.12588
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.4105 0.500 2.000  0.5217
## ARCH Lag[5]    1.3825 1.440 1.667  0.6237
## ARCH Lag[7]    2.7401 2.315 1.543  0.5639
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  6.8531
## Individual Statistics:              
## omega  0.54509
## alpha1 0.11304
## beta1  0.08973
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias           1.0282 0.3039730    
## Negative Sign Bias  3.2975 0.0009894 ***
## Positive Sign Bias  0.7336 0.4632425    
## Joint Effect       13.0933 0.0044391 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     175.3    2.608e-27
## 2    30     207.6    6.993e-29
## 3    40     224.3    6.973e-28
## 4    50     226.4    1.258e-24
## 
## 
## Elapsed time : 0.223556 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: GEX 
## =====================================
## ARCH Test p-value: 6.773923e-73 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.00002    0.000004   5.0408        0
## alpha1   0.13473    0.015527   8.6769        0
## beta1    0.83741    0.017786  47.0813        0
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.00002    0.000007   2.8418 0.004486
## alpha1   0.13473    0.021936   6.1418 0.000000
## beta1    0.83741    0.026893  31.1390 0.000000
## 
## LogLikelihood : 5734.389 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.7075
## Bayes        -4.7004
## Shibata      -4.7075
## Hannan-Quinn -4.7049
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2062  0.6498
## Lag[2*(p+q)+(p+q)-1][2]    0.2150  0.8450
## Lag[4*(p+q)+(p+q)-1][5]    0.6931  0.9242
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.666  0.1025
## Lag[2*(p+q)+(p+q)-1][5]     3.555  0.3150
## Lag[4*(p+q)+(p+q)-1][9]     4.401  0.5223
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.6928 0.500 2.000  0.4052
## ARCH Lag[5]    1.4085 1.440 1.667  0.6167
## ARCH Lag[7]    1.8695 2.315 1.543  0.7449
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.8629
## Individual Statistics:             
## omega  0.3527
## alpha1 0.5672
## beta1  0.6728
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.9561 0.3391    
## Negative Sign Bias  1.1535 0.2488    
## Positive Sign Bias  0.5157 0.6061    
## Joint Effect        1.6374 0.6509    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     132.3    5.457e-19
## 2    30     152.0    1.280e-18
## 3    40     155.5    7.650e-16
## 4    50     168.1    5.715e-15
## 
## 
## Elapsed time : 0.2040031 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VIC 
## =====================================
## ARCH Test p-value: 9.165337e-28 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000048    0.000010   4.9248    1e-06
## alpha1  0.230541    0.038345   6.0124    0e+00
## beta1   0.666652    0.052031  12.8125    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000048    0.000031   1.5471 0.121837
## alpha1  0.230541    0.108134   2.1320 0.033007
## beta1   0.666652    0.159933   4.1683 0.000031
## 
## LogLikelihood : 6375.35 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.2340
## Bayes        -5.2268
## Shibata      -5.2340
## Hannan-Quinn -5.2314
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2015  0.6535
## Lag[2*(p+q)+(p+q)-1][2]    0.2216  0.8410
## Lag[4*(p+q)+(p+q)-1][5]    0.5291  0.9531
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1622  0.6872
## Lag[2*(p+q)+(p+q)-1][5]    1.8102  0.6639
## Lag[4*(p+q)+(p+q)-1][9]    2.5517  0.8300
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.6735 0.500 2.000  0.4118
## ARCH Lag[5]    0.8493 1.440 1.667  0.7781
## ARCH Lag[7]    1.3811 2.315 1.543  0.8449
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.3924
## Individual Statistics:              
## omega  0.05699
## alpha1 0.05790
## beta1  0.04625
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           1.7362 0.08266   *
## Negative Sign Bias  1.0677 0.28578    
## Positive Sign Bias  0.2797 0.77972    
## Joint Effect        3.3791 0.33679    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     689.7   5.448e-134
## 2    30     803.0   2.682e-150
## 3    40     799.4   1.295e-142
## 4    50     844.8   1.543e-145
## 
## 
## Elapsed time : 0.2510321
library(forecast)
library(FinTS)
library(rugarch)

tickers <- colnames(mhnn)

run_garch_analysis <- function(series, name){
  cat("\n\n=====================================\n")
  cat(paste("XỬ LÝ MÃ:", name, "\n"))
  cat("=====================================\n")

  x <- na.omit(series)

  # 1. ARIMA
  fit_arima <- auto.arima(x, stationary=TRUE, seasonal=FALSE)
  resid_arima <- residuals(fit_arima)

  # 2. ARCH Test
  arch_p <- ArchTest(resid_arima)$p.value
  cat("ARCH Test p-value:", arch_p, "\n")

  if(arch_p < 0.05){
    cat("=> Có ARCH effect → Ước lượng GARCH(1,1)\n\n")
    spec <- ugarchspec(
      variance.model=list(model="sGARCH", garchOrder=c(1,1)),
      mean.model=list(armaOrder=c(0,0), include.mean=FALSE),
      distribution.model="norm"
    )
    fit_g <- ugarchfit(spec, resid_arima)

    show(fit_g)

  } else {
    cat("=> Không có ARCH effect → KHÔNG cần GARCH\n")
    cat("=> Dùng residuals ARIMA đã chuẩn hóa.\n")
  }
}

# LOOP cho tất cả 8 mã
for(tk in tickers){
  run_garch_analysis(mhnn[[tk]], tk)
}
## 
## 
## =====================================
## XỬ LÝ MÃ: MBB 
## =====================================
## ARCH Test p-value: 1.382558e-64 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000002   4.9744    1e-06
## alpha1  0.114585    0.009658  11.8643    0e+00
## beta1   0.865595    0.008170 105.9528    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000005   1.8427 0.065372
## alpha1  0.114585    0.015668   7.3133 0.000000
## beta1   0.865595    0.021991  39.3614 0.000000
## 
## LogLikelihood : 6524.655 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.3566
## Bayes        -5.3495
## Shibata      -5.3566
## Hannan-Quinn -5.3540
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.5005  0.4793
## Lag[2*(p+q)+(p+q)-1][2]    1.2266  0.4302
## Lag[4*(p+q)+(p+q)-1][5]    1.8423  0.6561
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2212  0.6381
## Lag[2*(p+q)+(p+q)-1][5]    1.7781  0.6717
## Lag[4*(p+q)+(p+q)-1][9]    3.0326  0.7536
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01369 0.500 2.000  0.9069
## ARCH Lag[5]   0.16698 1.440 1.667  0.9731
## ARCH Lag[7]   0.45345 2.315 1.543  0.9824
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.4087
## Individual Statistics:             
## omega  0.9312
## alpha1 0.1365
## beta1  0.2257
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.02172 0.9827    
## Negative Sign Bias 1.20512 0.2283    
## Positive Sign Bias 1.15897 0.2466    
## Joint Effect       5.40075 0.1447    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     377.8    1.786e-68
## 2    30     551.7    6.321e-98
## 3    40     527.9    5.578e-87
## 4    50     801.9   9.294e-137
## 
## 
## Elapsed time : 0.2160759 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VCB 
## =====================================
## ARCH Test p-value: 0.9999999 
## => Không có ARCH effect → KHÔNG cần GARCH
## => Dùng residuals ARIMA đã chuẩn hóa.
## 
## 
## =====================================
## XỬ LÝ MÃ: HPG 
## =====================================
## ARCH Test p-value: 3.026608e-51 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000021    0.000005   4.4207    1e-05
## alpha1  0.093620    0.013380   6.9968    0e+00
## beta1   0.856854    0.021395  40.0487    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000021    0.000008   2.5318 0.011349
## alpha1  0.093620    0.020410   4.5869 0.000004
## beta1   0.856854    0.037446  22.8826 0.000000
## 
## LogLikelihood : 6161.499 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.0583
## Bayes        -5.0512
## Shibata      -5.0583
## Hannan-Quinn -5.0557
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.0154  0.9012
## Lag[2*(p+q)+(p+q)-1][2]    0.1276  0.9007
## Lag[4*(p+q)+(p+q)-1][5]    0.8694  0.8885
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.6589  0.4170
## Lag[2*(p+q)+(p+q)-1][5]    2.7742  0.4498
## Lag[4*(p+q)+(p+q)-1][9]    4.3564  0.5295
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]     0.101 0.500 2.000  0.7506
## ARCH Lag[5]     0.448 1.440 1.667  0.8989
## ARCH Lag[7]     1.859 2.315 1.543  0.7472
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.5328
## Individual Statistics:             
## omega  0.2078
## alpha1 0.1965
## beta1  0.2298
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias            3.230 0.0012535 ***
## Negative Sign Bias   3.564 0.0003729 ***
## Positive Sign Bias   2.601 0.0093486 ***
## Joint Effect        19.498 0.0002157 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     122.7    3.450e-17
## 2    30     160.1    4.436e-20
## 3    40     177.8    1.244e-19
## 4    50     184.2    1.539e-17
## 
## 
## Elapsed time : 0.1780291 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: NKG 
## =====================================
## ARCH Test p-value: 2.029502e-27 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000016    0.000004   3.9602  7.5e-05
## alpha1  0.085767    0.009497   9.0309  0.0e+00
## beta1   0.895850    0.011474  78.0777  0.0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000016    0.000007   2.3817 0.017231
## alpha1  0.085767    0.011733   7.3100 0.000000
## beta1   0.895850    0.014096  63.5532 0.000000
## 
## LogLikelihood : 5428.323 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.4561
## Bayes        -4.4490
## Shibata      -4.4561
## Hannan-Quinn -4.4535
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.06752  0.7950
## Lag[2*(p+q)+(p+q)-1][2]   0.76974  0.5793
## Lag[4*(p+q)+(p+q)-1][5]   3.08991  0.3909
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      6.063 0.01380
## Lag[2*(p+q)+(p+q)-1][5]     6.317 0.07567
## Lag[4*(p+q)+(p+q)-1][9]     7.856 0.13748
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1489 0.500 2.000  0.6996
## ARCH Lag[5]    0.2374 1.440 1.667  0.9564
## ARCH Lag[7]    1.3828 2.315 1.543  0.8445
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.3084
## Individual Statistics:             
## omega  0.7337
## alpha1 0.1423
## beta1  0.1133
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias            1.462 1.439e-01    
## Negative Sign Bias   4.559 5.397e-06 ***
## Positive Sign Bias   1.366 1.722e-01    
## Joint Effect        27.305 5.082e-06 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     135.0    1.667e-19
## 2    30     145.7    1.725e-17
## 3    40     151.4    3.664e-15
## 4    50     163.5    3.001e-14
## 
## 
## Elapsed time : 0.1459711 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: SSI 
## =====================================
## ARCH Test p-value: 4.131669e-46 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000004   2.2042 0.027509
## alpha1  0.107081    0.014028   7.6336 0.000000
## beta1   0.880688    0.010336  85.2045 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000009    0.000017  0.56701 0.570710
## alpha1  0.107081    0.044440  2.40956 0.015972
## beta1   0.880688    0.023059 38.19239 0.000000
## 
## LogLikelihood : 5957.951 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.8911
## Bayes        -4.8840
## Shibata      -4.8911
## Hannan-Quinn -4.8885
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      4.919 0.02656
## Lag[2*(p+q)+(p+q)-1][2]     5.312 0.03356
## Lag[4*(p+q)+(p+q)-1][5]     6.292 0.07673
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.04452  0.8329
## Lag[2*(p+q)+(p+q)-1][5]   0.32254  0.9813
## Lag[4*(p+q)+(p+q)-1][9]   1.12481  0.9805
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.0192 0.500 2.000  0.8898
## ARCH Lag[5]    0.2377 1.440 1.667  0.9563
## ARCH Lag[7]    0.8007 2.315 1.543  0.9437
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.292
## Individual Statistics:             
## omega  0.5432
## alpha1 0.2942
## beta1  0.1983
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value     prob sig
## Sign Bias           0.2512 0.801702    
## Negative Sign Bias  1.7036 0.088578   *
## Positive Sign Bias  1.8530 0.064010   *
## Joint Effect       13.6901 0.003359 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     269.0    4.346e-46
## 2    30     366.3    4.672e-60
## 3    40     471.9    1.030e-75
## 4    50     577.5    2.223e-91
## 
## 
## Elapsed time : 0.3375199 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VND 
## =====================================
## ARCH Test p-value: 1 
## => Không có ARCH effect → KHÔNG cần GARCH
## => Dùng residuals ARIMA đã chuẩn hóa.
## 
## 
## =====================================
## XỬ LÝ MÃ: MSN 
## =====================================
## ARCH Test p-value: 8.905524e-11 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000031    0.000005   5.5837        0
## alpha1  0.127931    0.015836   8.0786        0
## beta1   0.811236    0.021896  37.0499        0
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000031    0.000008   3.8789 0.000105
## alpha1  0.127931    0.021688   5.8986 0.000000
## beta1   0.811236    0.027331  29.6818 0.000000
## 
## LogLikelihood : 6053.198 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.9694
## Bayes        -4.9622
## Shibata      -4.9694
## Hannan-Quinn -4.9668
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.05084  0.8216
## Lag[2*(p+q)+(p+q)-1][2]   0.05137  0.9553
## Lag[4*(p+q)+(p+q)-1][5]   0.53318  0.9524
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.7045  0.4013
## Lag[2*(p+q)+(p+q)-1][5]    3.8021  0.2798
## Lag[4*(p+q)+(p+q)-1][9]    6.5585  0.2390
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.02824 0.500 2.000  0.8665
## ARCH Lag[5]   0.12479 1.440 1.667  0.9820
## ARCH Lag[7]   2.04447 2.315 1.543  0.7079
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.3762
## Individual Statistics:             
## omega  0.2558
## alpha1 0.1134
## beta1  0.1788
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           1.2163 0.22398    
## Negative Sign Bias  2.2355 0.02547  **
## Positive Sign Bias  0.7561 0.44964    
## Joint Effect        5.6541 0.12971    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     229.8    3.738e-38
## 2    30     261.6    2.816e-39
## 3    40     277.9    8.413e-38
## 4    50     306.3    6.466e-39
## 
## 
## Elapsed time : 0.298466 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: MWG 
## =====================================
## ARCH Test p-value: 3.304668e-65 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000017    0.000004   4.7087    2e-06
## alpha1  0.080461    0.008379   9.6032    0e+00
## beta1   0.878420    0.014207  61.8321    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000017    0.000007   2.4456 0.014462
## alpha1  0.080461    0.011226   7.1674 0.000000
## beta1   0.878420    0.024004  36.5942 0.000000
## 
## LogLikelihood : 6144.679 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.0445
## Bayes        -5.0374
## Shibata      -5.0445
## Hannan-Quinn -5.0419
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.5158  0.4726
## Lag[2*(p+q)+(p+q)-1][2]    0.5224  0.6832
## Lag[4*(p+q)+(p+q)-1][5]    3.7263  0.2902
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      5.827 0.01578
## Lag[2*(p+q)+(p+q)-1][5]     6.466 0.06972
## Lag[4*(p+q)+(p+q)-1][9]     8.053 0.12588
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.4105 0.500 2.000  0.5217
## ARCH Lag[5]    1.3825 1.440 1.667  0.6237
## ARCH Lag[7]    2.7401 2.315 1.543  0.5639
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  6.8531
## Individual Statistics:              
## omega  0.54509
## alpha1 0.11304
## beta1  0.08973
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value      prob sig
## Sign Bias           1.0282 0.3039730    
## Negative Sign Bias  3.2975 0.0009894 ***
## Positive Sign Bias  0.7336 0.4632425    
## Joint Effect       13.0933 0.0044391 ***
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     175.3    2.608e-27
## 2    30     207.6    6.993e-29
## 3    40     224.3    6.973e-28
## 4    50     226.4    1.258e-24
## 
## 
## Elapsed time : 0.4917281 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: GEX 
## =====================================
## ARCH Test p-value: 6.773923e-73 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.00002    0.000004   5.0408        0
## alpha1   0.13473    0.015527   8.6769        0
## beta1    0.83741    0.017786  47.0813        0
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.00002    0.000007   2.8418 0.004486
## alpha1   0.13473    0.021936   6.1418 0.000000
## beta1    0.83741    0.026893  31.1390 0.000000
## 
## LogLikelihood : 5734.389 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -4.7075
## Bayes        -4.7004
## Shibata      -4.7075
## Hannan-Quinn -4.7049
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2062  0.6498
## Lag[2*(p+q)+(p+q)-1][2]    0.2150  0.8450
## Lag[4*(p+q)+(p+q)-1][5]    0.6931  0.9242
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.666  0.1025
## Lag[2*(p+q)+(p+q)-1][5]     3.555  0.3150
## Lag[4*(p+q)+(p+q)-1][9]     4.401  0.5223
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.6928 0.500 2.000  0.4052
## ARCH Lag[5]    1.4085 1.440 1.667  0.6167
## ARCH Lag[7]    1.8695 2.315 1.543  0.7449
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.8629
## Individual Statistics:             
## omega  0.3527
## alpha1 0.5672
## beta1  0.6728
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.9561 0.3391    
## Negative Sign Bias  1.1535 0.2488    
## Positive Sign Bias  0.5157 0.6061    
## Joint Effect        1.6374 0.6509    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     132.3    5.457e-19
## 2    30     152.0    1.280e-18
## 3    40     155.5    7.650e-16
## 4    50     168.1    5.715e-15
## 
## 
## Elapsed time : 0.2385938 
## 
## 
## 
## =====================================
## XỬ LÝ MÃ: VIC 
## =====================================
## ARCH Test p-value: 9.165337e-28 
## => Có ARCH effect → Ước lượng GARCH(1,1)
## 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000048    0.000010   4.9248    1e-06
## alpha1  0.230541    0.038345   6.0124    0e+00
## beta1   0.666652    0.052031  12.8125    0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.000048    0.000031   1.5471 0.121837
## alpha1  0.230541    0.108134   2.1320 0.033007
## beta1   0.666652    0.159933   4.1683 0.000031
## 
## LogLikelihood : 6375.35 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       -5.2340
## Bayes        -5.2268
## Shibata      -5.2340
## Hannan-Quinn -5.2314
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2015  0.6535
## Lag[2*(p+q)+(p+q)-1][2]    0.2216  0.8410
## Lag[4*(p+q)+(p+q)-1][5]    0.5291  0.9531
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1622  0.6872
## Lag[2*(p+q)+(p+q)-1][5]    1.8102  0.6639
## Lag[4*(p+q)+(p+q)-1][9]    2.5517  0.8300
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.6735 0.500 2.000  0.4118
## ARCH Lag[5]    0.8493 1.440 1.667  0.7781
## ARCH Lag[7]    1.3811 2.315 1.543  0.8449
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.3924
## Individual Statistics:              
## omega  0.05699
## alpha1 0.05790
## beta1  0.04625
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           1.7362 0.08266   *
## Negative Sign Bias  1.0677 0.28578    
## Positive Sign Bias  0.2797 0.77972    
## Joint Effect        3.3791 0.33679    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     689.7   5.448e-134
## 2    30     803.0   2.682e-150
## 3    40     799.4   1.295e-142
## 4    50     844.8   1.543e-145
## 
## 
## Elapsed time : 0.408509

8 Chuyển phần dư thành pseudo-observations (Uniform(0,1))

u_mat <- apply(std_resid, 2, function(x){
  x <- na.omit(x)
  u <- rank(x)/(length(x)+1)
  # pad để đúng kích thước
  out <- rep(NA, nrow(std_resid))
  out[1:length(u)] <- u
  out
})
u_mat <- na.omit(u_mat)

9 Ước lượng Copula song phương hoặc đa biến (Vine Copula)

#So sánh logLik và AIC để chọn Copula tốt hơn.

u <- u_mat[, c("MBB", "VCB")]

# Gaussian Copula
cop.gauss <- normalCopula(dim=2)
fit.gauss <- fitCopula(cop.gauss, u, method="ml")
summary(fit.gauss)
## Call: fitCopula(cop.gauss, u, method = "ml")
## Fit based on "maximum likelihood" and 2435 2-dimensional observations.
## Normal copula, dim. d = 2 
##       Estimate Std. Error
## rho.1   0.4626      0.015
## The maximized loglikelihood is 290.7 
## Optimization converged
## Number of loglikelihood evaluations:
## function gradient 
##        6        6
# Student-t Copula
cop.t <- tCopula(dim=2)
fit.t <- fitCopula(cop.t, u, method="ml")
summary(fit.t)
## Call: fitCopula(cop.t, u, method = "ml")
## Fit based on "maximum likelihood" and 2435 2-dimensional observations.
## t-copula, dim. d = 2 
##       Estimate Std. Error
## rho.1   0.4622      0.016
## df     13.8107      4.470
## The maximized loglikelihood is 296.4 
## Optimization converged
## Number of loglikelihood evaluations:
## function gradient 
##       20       20

=====

d <- read_xlsx("C:/Users/PC/OneDrive/Máy tính/KLTN/KLTN.xlsx")
d <- xts(d[,-1],order.by = d$Ngày)

data_train <- d["2015-10-30/2025-07-31"]
acf_gex <- acf(data_train$GEX, plot = FALSE)
Acf(data_train$GEX,plot = FALSE)

library(FinTS)
arma_mbb <- auto.arima(y = data_train$MBB)
arma_vcb <- auto.arima(y = data_train$VCB)
arma_hpg <- auto.arima(y = data_train$HPG)
arma_nkg <- auto.arima(y = data_train$NKG)
arma_msn <- auto.arima(y = data_train$MSN)
arma_mwg <- auto.arima(y = data_train$MWG)
arma_vic <- auto.arima(y = data_train$VIC)
arma_ssi <- auto.arima(y = data_train$SSI)
arma_vnd <- auto.arima(y = data_train$VND)
arma_gex <- auto.arima(y = data_train$GEX)
ArchTest(residuals(arma_mbb), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_mbb)
## Chi-squared = 292.95, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_vcb), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vcb)
## Chi-squared = 0.083452, df = 10, p-value = 1
ArchTest(residuals(arma_hpg), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_hpg)
## Chi-squared = 386.58, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_nkg), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_nkg)
## Chi-squared = 625.37, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_msn), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_msn)
## Chi-squared = 358.5, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_mwg), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_mwg)
## Chi-squared = 381.22, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_vic), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vic)
## Chi-squared = 238.08, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_ssi), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_ssi)
## Chi-squared = 482.52, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_vnd), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vnd)
## Chi-squared = 89.574, df = 10, p-value = 6.505e-15
ArchTest(residuals(arma_gex), lags = 10)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_gex)
## Chi-squared = 1033.2, df = 10, p-value < 2.2e-16
ArchTest(residuals(arma_mbb), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_mbb)
## Chi-squared = 298.32, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_vcb), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vcb)
## Chi-squared = 0.10783, df = 15, p-value = 1
ArchTest(residuals(arma_hpg), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_hpg)
## Chi-squared = 395.2, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_nkg), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_nkg)
## Chi-squared = 682.09, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_msn), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_msn)
## Chi-squared = 381.73, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_mwg), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_mwg)
## Chi-squared = 412.64, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_vic), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vic)
## Chi-squared = 250.85, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_ssi), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_ssi)
## Chi-squared = 496.36, df = 15, p-value < 2.2e-16
ArchTest(residuals(arma_vnd), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_vnd)
## Chi-squared = 97.633, df = 15, p-value = 3.66e-14
ArchTest(residuals(arma_gex), lags = 15)
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  residuals(arma_gex)
## Chi-squared = 1035, df = 15, p-value < 2.2e-16
#MBB
##Norm
garchspec_mbb_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_mbb_norm <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_norm)

##Snorm
garchspec_mbb_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_mbb_snorm <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_snorm)

##std
garchspec_mbb_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_mbb_std <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_std)

##sstd
garchspec_mbb_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_mbb_sstd <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_sstd)
##ged
garchspec_mbb_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_mbb_ged <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_ged)
##sged
garchspec_mbb_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_mbb_sged <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_sged)
##ghyp
garchspec_mbb_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_mbb_ghyp <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_ghyp)

##jsu
garchspec_mbb_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_mbb_jsu <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_jsu)

##nig
garchspec_mbb_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_mbb)[1],arimaorder(arma_mbb)[3])),
  variance.model=list(model = "gjrGARCH",garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_mbb_nig <- ugarchfit(d=data_train$MBB,spec=garchspec_mbb_nig)

#Lựa chọn mô hình tối ưu
mbb.model.list <- list(garch11n   = garchfit_mbb_norm, garch11sn  = garchfit_mbb_snorm, garch11t   = garchfit_mbb_std,   garch11st  = garchfit_mbb_sstd, garch11g   = garchfit_mbb_ged, garch11sg  = garchfit_mbb_sged, garch11nig = garchfit_mbb_nig,garch11ghyp = garchfit_mbb_ghyp, garch11jsu = garchfit_mbb_jsu)

# Lấy AIC/BIC/AICc của các mô hình MBB
mbb.info.mat <- sapply(mbb.model.list, infocriteria)

# Gán tên dòng cho bảng
rownames(mbb.info.mat) <- rownames(infocriteria(garchfit_mbb_norm))

# Tìm mô hình có AIC nhỏ nhất
mbb.inds <- which(mbb.info.mat == min(mbb.info.mat[1,]), arr.ind = TRUE)

# Lấy tên mô hình tối ưu cho MBB
model.mbb <- colnames(mbb.info.mat)[mbb.inds[,2]]
# VCB
## Norm
garchspec_vcb_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_vcb_norm <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_norm)

## Snorm
garchspec_vcb_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_vcb_snorm <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_snorm)

## Std
garchspec_vcb_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_vcb_std <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_std)

## Sstd
garchspec_vcb_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_vcb_sstd <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_sstd)

## Ged
garchspec_vcb_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_vcb_ged <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_ged)

## Sged
garchspec_vcb_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_vcb_sged <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_sged)

## Ghyp
garchspec_vcb_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_vcb_ghyp <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_ghyp)

## Jsu
garchspec_vcb_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_vcb_jsu <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_jsu)

## NIG
garchspec_vcb_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vcb)[1], arimaorder(arma_vcb)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_vcb_nig <- ugarchfit(data=data_train$VCB, spec=garchspec_vcb_nig)

# Danh sách mô hình
vcb.safe.list <- list(
  garch11n   = garchfit_vcb_norm,
  garch11t   = garchfit_vcb_std,
  garch11g   = garchfit_vcb_ged,
  garch11sn  = garchfit_vcb_snorm,
  garch11st  = garchfit_vcb_sstd,
  garch11sg  = garchfit_vcb_sged
)

vcb.info.mat <- sapply(vcb.safe.list, function(mod){
  if(!is.null(mod)) infocriteria(mod) else NA
})

rownames(vcb.info.mat) <- rownames(infocriteria(garchfit_vcb_norm))

# Tìm mô hình AIC nhỏ nhất
vcb.inds <- which(vcb.info.mat[1,] == min(vcb.info.mat[1,], na.rm=TRUE))
model.vcb <- colnames(vcb.info.mat)[vcb.inds]
#HPG
##Norm
garchspec_hpg_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_hpg_norm <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_norm)

##Snorm
garchspec_hpg_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_hpg_snorm <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_snorm)

##std
garchspec_hpg_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_hpg_std <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_std)

##sstd
garchspec_hpg_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_hpg_sstd <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_sstd)

##ged
garchspec_hpg_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_hpg_ged <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_ged)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##sged
garchspec_hpg_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_hpg_sged <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_sged)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##ghyp
garchspec_hpg_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_hpg_ghyp <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_ghyp)

##jsu
garchspec_hpg_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_hpg_jsu <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_jsu)

##nig
garchspec_hpg_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_hpg)[1], arimaorder(arma_hpg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_hpg_nig <- ugarchfit(d = data_train$HPG, spec = garchspec_hpg_nig)

# Lựa chọn mô hình tối ưu
hpg.model.list <- list(
  garch11n   = garchfit_hpg_norm,
  garch11sn  = garchfit_hpg_snorm,
  garch11t   = garchfit_hpg_std,
  garch11st  = garchfit_hpg_sstd,
  garch11g   = garchfit_hpg_ged,
  garch11sg  = garchfit_hpg_sged,
  garch11nig = garchfit_hpg_nig,
  garch11ghyp = garchfit_hpg_ghyp,
  garch11jsu = garchfit_hpg_jsu
)

# Lấy AIC/BIC/AICc
hpg.info.mat <- sapply(hpg.model.list, infocriteria)

rownames(hpg.info.mat) <- rownames(infocriteria(garchfit_hpg_norm))

# Tìm mô hình AIC nhỏ nhất
hpg.inds <- which(hpg.info.mat == min(hpg.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho HPG
model.hpg <- colnames(hpg.info.mat)[hpg.inds[,2]]
#NKG
##Norm
garchspec_nkg_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_nkg_norm <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_norm)

##Snorm
garchspec_nkg_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_nkg_snorm <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_snorm)

##std
garchspec_nkg_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_nkg_std <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_std)

##sstd
garchspec_nkg_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_nkg_sstd <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_sstd)

##ged
garchspec_nkg_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_nkg_ged <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_ged)

##sged
garchspec_nkg_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_nkg_sged <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_sged)

##ghyp
garchspec_nkg_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_nkg_ghyp <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_ghyp)

##jsu
garchspec_nkg_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_nkg_jsu <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_jsu)

##nig
garchspec_nkg_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_nkg)[1], arimaorder(arma_nkg)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_nkg_nig <- ugarchfit(d = data_train$NKG, spec = garchspec_nkg_nig)

# Lựa chọn mô hình tối ưu
nkg.model.list <- list(
  garch11n   = garchfit_nkg_norm,
  garch11sn  = garchfit_nkg_snorm,
  garch11t   = garchfit_nkg_std,
  garch11st  = garchfit_nkg_sstd,
  garch11g   = garchfit_nkg_ged,
  garch11sg  = garchfit_nkg_sged,
  garch11nig = garchfit_nkg_nig,
  garch11ghyp = garchfit_nkg_ghyp,
  garch11jsu = garchfit_nkg_jsu
)

# Lấy AIC/BIC/AICc
nkg.info.mat <- sapply(nkg.model.list, infocriteria)

rownames(nkg.info.mat) <- rownames(infocriteria(garchfit_nkg_norm))

# Tìm mô hình AIC nhỏ nhất
nkg.inds <- which(nkg.info.mat == min(nkg.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho NKG
model.nkg <- colnames(nkg.info.mat)[nkg.inds[,2]]
#SSI
##Norm
garchspec_ssi_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_ssi_norm <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_norm)

##Snorm
garchspec_ssi_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_ssi_snorm <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_snorm)

##std
garchspec_ssi_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_ssi_std <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_std)

##sstd
garchspec_ssi_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_ssi_sstd <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_sstd)

##ged
garchspec_ssi_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_ssi_ged <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_ged)

##sged
garchspec_ssi_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_ssi_sged <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_sged)

##ghyp
garchspec_ssi_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_ssi_ghyp <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_ghyp)

##jsu
garchspec_ssi_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_ssi_jsu <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_jsu)

##nig
garchspec_ssi_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_ssi)[1], arimaorder(arma_ssi)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_ssi_nig <- ugarchfit(d = data_train$SSI, spec = garchspec_ssi_nig)

# Lựa chọn mô hình tối ưu
ssi.model.list <- list(
  garch11n   = garchfit_ssi_norm,
  garch11sn  = garchfit_ssi_snorm,
  garch11t   = garchfit_ssi_std,
  garch11st  = garchfit_ssi_sstd,
  garch11g   = garchfit_ssi_ged,
  garch11sg  = garchfit_ssi_sged,
  garch11nig = garchfit_ssi_nig,
  garch11ghyp = garchfit_ssi_ghyp,
  garch11jsu = garchfit_ssi_jsu
)

# Lấy AIC/BIC/AICc
ssi.info.mat <- sapply(ssi.model.list, infocriteria)

rownames(ssi.info.mat) <- rownames(infocriteria(garchfit_ssi_norm))

# Tìm mô hình AIC nhỏ nhất
ssi.inds <- which(ssi.info.mat == min(ssi.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho SSI
model.ssi <- colnames(ssi.info.mat)[ssi.inds[,2]]
#VND
##Norm
garchspec_vnd_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_vnd_norm <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_norm)

##Snorm
garchspec_vnd_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_vnd_snorm <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_snorm)

##std
garchspec_vnd_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_vnd_std <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_std)

##sstd
garchspec_vnd_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_vnd_sstd <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_sstd)

##ged
garchspec_vnd_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_vnd_ged <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_ged)

##sged
garchspec_vnd_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_vnd_sged <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_sged)

##ghyp
garchspec_vnd_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_vnd_ghyp <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_ghyp)

##jsu
garchspec_vnd_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_vnd_jsu <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_jsu)

##nig
garchspec_vnd_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_vnd)[1], arimaorder(arma_vnd)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_vnd_nig <- ugarchfit(d = data_train$VND, spec = garchspec_vnd_nig)

# Lựa chọn mô hình tối ưu
vnd.model.list <- list(
  garch11n   = garchfit_vnd_norm,
  garch11sn  = garchfit_vnd_snorm,
  garch11t   = garchfit_vnd_std,
  garch11st  = garchfit_vnd_sstd,
  garch11g   = garchfit_vnd_ged,
  garch11sg  = garchfit_vnd_sged,
  garch11nig = garchfit_vnd_nig,
  garch11ghyp = garchfit_vnd_ghyp,
  garch11jsu = garchfit_vnd_jsu
)

# Lấy AIC/BIC/AICc
vnd.info.mat <- sapply(vnd.model.list, infocriteria)

rownames(vnd.info.mat) <- rownames(infocriteria(garchfit_vnd_norm))

# Tìm mô hình AIC nhỏ nhất
vnd.inds <- which(vnd.info.mat == min(vnd.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho VND
model.vnd <- colnames(vnd.info.mat)[vnd.inds[,2]]
#MSN
##Norm
garchspec_msn_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_msn_norm <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_norm)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##Snorm
garchspec_msn_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_msn_snorm <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_snorm)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##std
garchspec_msn_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_msn_std <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_std)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##sstd
garchspec_msn_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_msn_sstd <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_sstd)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##ged
garchspec_msn_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_msn_ged <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_ged)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##sged
garchspec_msn_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_msn_sged <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_sged)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##ghyp
garchspec_msn_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_msn_ghyp <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_ghyp)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##jsu
garchspec_msn_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_msn_jsu <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_jsu)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
##nig
garchspec_msn_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_msn)[1], arimaorder(arma_msn)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_msn_nig <- ugarchfit(d = data_train$MSN, spec = garchspec_msn_nig)
## Warning in .makefitmodel(garchmodel = "gjrGARCH", f = .gjrgarchLLH, T = T, : 
## rugarch-->warning: failed to invert hessian
# Lựa chọn mô hình tối ưu
msn.model.list <- list(
  garch11n   = garchfit_msn_norm,
  garch11sn  = garchfit_msn_snorm,
  garch11t   = garchfit_msn_std,
  garch11st  = garchfit_msn_sstd,
  garch11g   = garchfit_msn_ged,
  garch11sg  = garchfit_msn_sged,
  garch11nig = garchfit_msn_nig,
  garch11ghyp = garchfit_msn_ghyp,
  garch11jsu = garchfit_msn_jsu
)

# Lấy AIC/BIC/AICc
msn.info.mat <- sapply(msn.model.list, infocriteria)

rownames(msn.info.mat) <- rownames(infocriteria(garchfit_msn_norm))

# Tìm mô hình AIC nhỏ nhất
msn.inds <- which(msn.info.mat == min(msn.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho MSN
model.msn <- colnames(msn.info.mat)[msn.inds[,2]]
#GEX
##Norm
garchspec_gex_norm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "norm")

garchfit_gex_norm <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_norm)

##Snorm
garchspec_gex_snorm <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "snorm")

garchfit_gex_snorm <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_snorm)

##std
garchspec_gex_std <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "std")

garchfit_gex_std <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_std)

##sstd
garchspec_gex_sstd <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sstd")

garchfit_gex_sstd <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_sstd)

##ged
garchspec_gex_ged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ged")

garchfit_gex_ged <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_ged)

##sged
garchspec_gex_sged <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "sged")

garchfit_gex_sged <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_sged)

##ghyp
garchspec_gex_ghyp <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "ghyp")

garchfit_gex_ghyp <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_ghyp)

##jsu
garchspec_gex_jsu <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "jsu")

garchfit_gex_jsu <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_jsu)

##nig
garchspec_gex_nig <- ugarchspec(
  mean.model=list(armaOrder=c(arimaorder(arma_gex)[1], arimaorder(arma_gex)[3])),
  variance.model=list(model = "gjrGARCH", garchOrder = c(1, 1)),
  distribution.model = "nig")

garchfit_gex_nig <- ugarchfit(d = data_train$GEX, spec = garchspec_gex_nig)

# Lựa chọn mô hình tối ưu
gex.model.list <- list(
  garch11n   = garchfit_gex_norm,
  garch11sn  = garchfit_gex_snorm,
  garch11t   = garchfit_gex_std,
  garch11st  = garchfit_gex_sstd,
  garch11g   = garchfit_gex_ged,
  garch11sg  = garchfit_gex_sged,
  garch11nig = garchfit_gex_nig,
  garch11ghyp = garchfit_gex_ghyp,
  garch11jsu = garchfit_gex_jsu
)

# Lấy AIC/BIC/AICc
gex.info.mat <- sapply(gex.model.list, infocriteria)

rownames(gex.info.mat) <- rownames(infocriteria(garchfit_gex_norm))

# Tìm mô hình AIC nhỏ nhất
gex.inds <- which(gex.info.mat == min(gex.info.mat[1,]), arr.ind = TRUE)

# Tên mô hình tối ưu cho GEX
model.gex <- colnames(gex.info.mat)[gex.inds[,2]]
model.mbb
## [1] "garch11sg"
model.vcb
## [1] "garch11sg"
model.hpg
## [1] "garch11jsu"
model.nkg
## [1] "garch11g"
model.ssi
## [1] "garch11sg"
model.vnd
## [1] "garch11ghyp"
model.gex
## [1] "garch11g"
model.msn
## [1] "garch11g"
library(rugarch)
library(FinTS)

# --- Bước 1: Chuẩn hóa residuals ---
standardize_residuals <- list(
  mbb = residuals(garchfit_mbb_sged)/sigma(garchfit_mbb_sged),
  vcb = residuals(garchfit_vcb_sged)/sigma(garchfit_vcb_sged),
  hpg = residuals(garchfit_hpg_jsu)/sigma(garchfit_hpg_jsu),
  nkg = residuals(garchfit_nkg_ged)/sigma(garchfit_nkg_ged),
  ssi = residuals(garchfit_ssi_sged)/sigma(garchfit_ssi_sged),
  vnd = residuals(garchfit_vnd_ghyp)/sigma(garchfit_vnd_ghyp),
  gex = residuals(garchfit_gex_sged)/sigma(garchfit_gex_sged),
  msn = residuals(garchfit_msn_ged)/sigma(garchfit_msn_ged)
)

# --- Bước 2: Kiểm định Ljung-Box ---
LJtest_residual <- sapply(standardize_residuals, function(res) {
  test <- Box.test(as.numeric(res), lag = 5, type = "Ljung-Box")
  c(TS = test$statistic, p.value = test$p.value)
})

# Chuyển sang ma trận 2 hàng, 8 cột
LJtest_residual <- matrix(LJtest_residual, nrow = 2)
dimnames(LJtest_residual) <- list(
  c("Ljung-Box TS", "Ljung-Box p-value"),
  names(standardize_residuals)
)

# --- Bước 3: Hiển thị kết quả ---
LJtest_residual
##                        mbb      vcb       hpg          nkg      ssi      vnd
## Ljung-Box TS      11591.86 11375.64 5.6356796 25.207347898 10503.22 9493.469
## Ljung-Box p-value     0.00     0.00 0.3432973  0.000127058     0.00    0.000
##                        gex      msn
## Ljung-Box TS      127.8506 103.0062
## Ljung-Box p-value   0.0000   0.0000
# --- Bước 1: chuẩn hoá (giữ nguyên cách bạn tạo list) ---
standardize_residuals <- list(
  mbb = residuals(garchfit_mbb_sged)/sigma(garchfit_mbb_sged),
  vcb = residuals(garchfit_vcb_sged)/sigma(garchfit_vcb_sged),
  hpg = residuals(garchfit_hpg_jsu)/sigma(garchfit_hpg_jsu),
  nkg = residuals(garchfit_nkg_ged)/sigma(garchfit_nkg_ged),
  ssi = residuals(garchfit_ssi_sged)/sigma(garchfit_ssi_sged),
  vnd = residuals(garchfit_vnd_ghyp)/sigma(garchfit_vnd_ghyp),
  gex = residuals(garchfit_gex_sged)/sigma(garchfit_gex_sged),
  msn = residuals(garchfit_msn_ged)/sigma(garchfit_msn_ged)
)

# --- Bước 2: Kiểm định Ljung-Box ---
# lưu ý: loại bỏ NA và ép sang numeric trước khi test
LJtest_residual <- sapply(standardize_residuals, function(res) {
  r <- na.omit(as.numeric(res))
  # nếu độ dài dữ liệu quá nhỏ so với lag, Box.test sẽ lỗi -> kiểm tra trước
  if(length(r) <= 5) {
    c(TS = NA_real_, p.value = NA_real_)
  } else {
    test <- Box.test(r, lag = 5, type = "Ljung-Box")
    c(TS = as.numeric(test$statistic), p.value = as.numeric(test$p.value))
  }
})

# sapply trả về ma trận 2 x 8 (hàng: TS, p.value). Đổi tên hàng cho rõ:
rownames(LJtest_residual) <- c("Ljung-Box TS", "Ljung-Box p-value")
LJtest_residual  # in kết quả
##                        mbb      vcb       hpg          nkg      ssi      vnd
## Ljung-Box TS      11591.86 11375.64 5.6356796 25.207347898 10503.22 9493.469
## Ljung-Box p-value     0.00     0.00 0.3432973  0.000127058     0.00    0.000
##                        gex      msn
## Ljung-Box TS      127.8506 103.0062
## Ljung-Box p-value   0.0000   0.0000
# --- Bước 3: Chuyển sang uniform (u = Φ(z)) ---
# dùng do.call + cbind trên pnorm áp lên từng phần tử của list
u_data <- do.call(cbind, lapply(standardize_residuals, function(res) {
  r <- na.omit(as.numeric(res))
  pnorm(r)
}))

colnames(u_data) <- names(standardize_residuals)
# Nếu bạn cần u_data có cùng số hàng cho tất cả cột, đảm bảo tất cả residuals có cùng length / cùng index.
# In nhanh kích thước và 1 vài quan sát:
dim(u_data)
## [1] 2436    8
head(u_data)
##             mbb        vcb           hpg          nkg       ssi       vnd
## [1,] 0.32300025 0.06251269 1.211520e-170 1.457417e-76 0.5539691 0.1397537
## [2,] 0.24201791 0.07540661  4.837826e-01 4.876845e-01 0.5833287 0.1661169
## [3,] 0.16580276 0.08498553  5.004269e-01 5.000000e-01 0.6377377 0.1693145
## [4,] 0.11340082 0.08926891  4.932515e-01 5.070333e-01 0.7086173 0.1828328
## [5,] 0.09213999 0.09092893  4.945753e-01 5.058828e-01 0.7650929 0.1972723
## [6,] 0.08370333 0.09336336  4.952157e-01 4.709782e-01 0.7569257 0.1944945
##               gex          msn
## [1,] 1.878942e-40 3.581605e-37
## [2,] 4.250838e-49 3.895541e-38
## [3,] 4.043640e-46 3.895541e-38
## [4,] 9.098227e-01 4.888986e-01
## [5,] 2.850555e-01 4.876556e-01
## [6,] 5.590434e-01 5.142189e-01
library(FinTS)
archtest_results <- lapply(standardize_residuals, function(res) {
  x <- na.omit(as.numeric(res))

  test <- FinTS::ArchTest(x, lags = 5)   # đúng tên hàm!

  c(Statistic = as.numeric(test$statistic),
    p.value  = as.numeric(test$p.value))
})

archtest_results <- do.call(cbind, archtest_results)
colnames(archtest_results) <- names(standardize_residuals)
rownames(archtest_results) <- c("ARCH Statistic", "ARCH p-value")

archtest_results
##                          mbb           vcb          hpg          nkg      ssi
## ARCH Statistic  1.131310e+03  8.594589e+02 19.867232659 4.581465e+01 1872.383
## ARCH p-value   2.215818e-242 1.579570e-183  0.001323485 9.906395e-09    0.000
##                          vnd       gex        msn
## ARCH Statistic  6.608342e+02 2.5592881 9.83051773
## ARCH p-value   1.440778e-140 0.7675409 0.08018238
#kiểm định Anderson–Darling
library(goftest)
u_list <- as.data.frame(u_data)

AD_results <- lapply(u_list, function(u) {
  x <- na.omit(as.numeric(u))              # loại NA
  test <- ad.test(x, null = "punif")       # kiểm định U~Uniform(0,1)
  c(statistic = unname(test$statistic),
    p.value   = unname(test$p.value))
})

# Chuyển sang bảng
AD_results <- do.call(cbind, AD_results)
colnames(AD_results) <- colnames(u_list)
rownames(AD_results) <- c("AD Statistic", "AD p-value")

AD_results
##                       mbb          vcb          hpg          nkg          ssi
## AD Statistic 1.125666e+03 5.297628e+02 1.297745e+02 1.001611e+02 1.311700e+03
## AD p-value   2.463054e-07 2.463054e-07 2.463054e-07 2.463054e-07 2.463054e-07
##                       vnd          gex          msn
## AD Statistic 4.489238e+02 6.107440e+01 5.585325e+01
## AD p-value   2.463054e-07 2.463054e-07 2.463054e-07
# Kiểm định CvM test
CvM_results <- lapply(u_list, function(u) {
  x <- na.omit(as.numeric(u))
  test <- cvm.test(x, null = "punif")
  c(statistic = unname(test$statistic),
    p.value   = unname(test$p.value))
})

# chuyển sang bảng kết quả
CvM_results <- do.call(cbind, CvM_results)
colnames(CvM_results) <- colnames(u_list)
rownames(CvM_results) <- c("CvM Statistic", "CvM p-value")

CvM_results
##                    mbb      vcb      hpg      nkg      ssi      vnd     gex
## CvM Statistic 175.1404 80.87733 23.70781 18.68105 280.8333 88.18952 11.2491
## CvM p-value     0.0000  0.00000  0.00000  0.00000   0.0000  0.00000  0.0000
##                  msn
## CvM Statistic 10.214
## CvM p-value    0.000
#kiểm định Kolmogorov–Smirnov (KS-test)
KS_results <- lapply(u_list, function(u) {
  x <- na.omit(as.numeric(u))
  x <- jitter(x, factor = 1e-06)   # xử lý ties
  
  test <- ks.test(x, "punif")
  
  c(statistic = unname(test$statistic),
    p.value   = unname(test$p.value))
})

KS_results <- do.call(cbind, KS_results)
colnames(KS_results) <- colnames(u_list)
rownames(KS_results) <- c("KS Statistic", "KS p-value")

KS_results
##                    mbb           vcb          hpg          nkg       ssi
## KS Statistic 0.5094198  3.386949e-01 1.534378e-01 1.319259e-01 0.6157944
## KS p-value   0.0000000 3.793952e-243 3.065449e-50 2.987321e-37 0.0000000
##                        vnd          gex          msn
## KS Statistic  3.873463e-01 1.066327e-01 9.409779e-02
## KS p-value   6.917808e-318 1.747046e-24 3.682735e-19
tests <- lapply(names(u_list), function(nm) {
  u <- na.omit(as.numeric(u_list[[nm]]))
  r <- na.omit(as.numeric(standardize_residuals[[nm]]))
  
  LB  <- Box.test(r, lag = 5, type = "Ljung-Box")
  ARCH <- ArchTest(r, lags = 5)
  AD   <- ad.test(u, "punif")
  CvM  <- cvm.test(u, "punif")
  KS   <- ks.test(jitter(u, 1e-6), "punif")
  
  c(
    LB_stat   = LB$statistic,    LB_p   = LB$p.value,
    ARCH_stat = ARCH$statistic,  ARCH_p = ARCH$p.value,
    AD_stat   = AD$statistic,    AD_p   = AD$p.value,
    CvM_stat  = CvM$statistic,   CvM_p  = CvM$p.value,
    KS_stat   = KS$statistic,    KS_p   = KS$p.value
  )
})

Test_Summary <- do.call(cbind, tests)
colnames(Test_Summary) <- names(u_list)
Test_Summary
##                                 mbb           vcb          hpg          nkg
## LB_stat.X-squared      1.159186e+04  1.137564e+04 5.635680e+00 2.520735e+01
## LB_p                   0.000000e+00  0.000000e+00 3.432973e-01 1.270580e-04
## ARCH_stat.Chi-squared  1.131310e+03  8.594589e+02 1.986723e+01 4.581465e+01
## ARCH_p.Chi-squared    2.215818e-242 1.579570e-183 1.323485e-03 9.906395e-09
## AD_stat.An             1.125666e+03  5.297628e+02 1.297745e+02 1.001611e+02
## AD_p                   2.463054e-07  2.463054e-07 2.463054e-07 2.463054e-07
## CvM_stat.omega2        1.751404e+02  8.087733e+01 2.370781e+01 1.868105e+01
## CvM_p                  0.000000e+00  0.000000e+00 0.000000e+00 0.000000e+00
## KS_stat.D              5.094198e-01  3.386949e-01 1.534378e-01 1.319259e-01
## KS_p                   0.000000e+00 3.793953e-243 3.065449e-50 2.987321e-37
##                                ssi           vnd          gex          msn
## LB_stat.X-squared     1.050322e+04  9.493469e+03 1.278506e+02 1.030062e+02
## LB_p                  0.000000e+00  0.000000e+00 0.000000e+00 0.000000e+00
## ARCH_stat.Chi-squared 1.872383e+03  6.608342e+02 2.559288e+00 9.830518e+00
## ARCH_p.Chi-squared    0.000000e+00 1.440778e-140 7.675409e-01 8.018238e-02
## AD_stat.An            1.311700e+03  4.489238e+02 6.107440e+01 5.585325e+01
## AD_p                  2.463054e-07  2.463054e-07 2.463054e-07 2.463054e-07
## CvM_stat.omega2       2.808333e+02  8.818952e+01 1.124910e+01 1.021400e+01
## CvM_p                 0.000000e+00  0.000000e+00 0.000000e+00 0.000000e+00
## KS_stat.D             6.157944e-01  3.873463e-01 1.066327e-01 9.409779e-02
## KS_p                  0.000000e+00 6.917808e-318 1.747046e-24 3.682735e-19
# Find the correlation by Spearman's rho
rho <- cor(u_data, method = "spearman")
rho
##           mbb        vcb        hpg        nkg       ssi        vnd        gex
## mbb 1.0000000 0.66524911 0.21057951 0.16522551 0.4937130 0.36780851 0.16327409
## vcb 0.6652491 1.00000000 0.14020424 0.10708417 0.2589813 0.13405839 0.09540924
## hpg 0.2105795 0.14020424 1.00000000 0.58612524 0.3300228 0.07166515 0.34403073
## nkg 0.1652255 0.10708417 0.58612524 1.00000000 0.2976696 0.08266511 0.29596937
## ssi 0.4937130 0.25898127 0.33002284 0.29766960 1.0000000 0.29077095 0.27693708
## vnd 0.3678085 0.13405839 0.07166515 0.08266511 0.2907710 1.00000000 0.14208878
## gex 0.1632741 0.09540924 0.34403073 0.29596937 0.2769371 0.14208878 1.00000000
## msn 0.1294712 0.08849349 0.32358950 0.21832354 0.2184492 0.08666873 0.24512175
##            msn
## mbb 0.12947119
## vcb 0.08849349
## hpg 0.32358950
## nkg 0.21832354
## ssi 0.21844924
## vnd 0.08666873
## gex 0.24512175
## msn 1.00000000
# Find the correlation between by Kendall tau
kendall<-cor(u_data, method = "kendall")
kendall
##            mbb        vcb        hpg        nkg       ssi        vnd        gex
## mbb 1.00000000 0.47592478 0.13662550 0.10613404 0.3658753 0.24069687 0.10462569
## vcb 0.47592478 1.00000000 0.09697184 0.07214583 0.1756925 0.09005776 0.06389173
## hpg 0.13662550 0.09697184 1.00000000 0.42228158 0.2197422 0.04999882 0.23947293
## nkg 0.10613404 0.07214583 0.42228158 1.00000000 0.1974170 0.05886036 0.20603441
## ssi 0.36587532 0.17569247 0.21974220 0.19741700 1.0000000 0.18773564 0.18651238
## vnd 0.24069687 0.09005776 0.04999882 0.05886036 0.1877356 1.00000000 0.09890992
## gex 0.10462569 0.06389173 0.23947293 0.20603441 0.1865124 0.09890992 1.00000000
## msn 0.08657983 0.06019395 0.22404019 0.14996518 0.1456850 0.05963896 0.16832222
##            msn
## mbb 0.08657983
## vcb 0.06019395
## hpg 0.22404019
## nkg 0.14996518
## ssi 0.14568504
## vnd 0.05963896
## gex 0.16832222
## msn 1.00000000
dim(u_data)   # số dòng, số cột
## [1] 2436    8
colnames(u_data)
## [1] "mbb" "vcb" "hpg" "nkg" "ssi" "vnd" "gex" "msn"
library(copula)

# u_data: ma trận residuals đã chuẩn hóa (standardized residuals)
# Chuyển sang pseudo-observations [0,1]
U <- pobs(u_data)

# Fit copula 8 chiều
dim_copula <- ncol(U)
joe_cop <- joeCopula(dim = dim_copula)
normal_cop <- normalCopula(dim = dim_copula, dispstr = "un")
t_cop <- tCopula(dim = dim_copula, dispstr = "un")

# Fit bằng Maximum Likelihood
fit_joe <- fitCopula(joe_cop, U, method = "ml")
fit_normal <- fitCopula(normal_cop, U, method = "ml")
fit_t <- fitCopula(t_cop, U, method = "ml")

# Xem kết quả
summary(fit_joe)
## Call: fitCopula(joe_cop, U, method = "ml")
## Fit based on "maximum likelihood" and 2436 8-dimensional observations.
## Joe copula, dim. d = 8 
##       Estimate Std. Error
## alpha    1.241      0.009
## The maximized loglikelihood is 801.8 
## Optimization converged
## Number of loglikelihood evaluations:
## function gradient 
##        8        8
summary(fit_normal)
## Call: fitCopula(normal_cop, U, method = "ml")
## Fit based on "maximum likelihood" and 2436 8-dimensional observations.
## Normal copula, dim. d = 8 
##        Estimate Std. Error
## rho.1   0.58683      0.011
## rho.2   0.23310      0.019
## rho.3   0.17340      0.019
## rho.4   0.48537      0.014
## rho.5   0.32297      0.017
## rho.6   0.17154      0.019
## rho.7   0.14782      0.020
## rho.8   0.16718      0.019
## rho.9   0.11804      0.020
## rho.10  0.25741      0.018
## rho.11  0.10926      0.020
## rho.12  0.11998      0.020
## rho.13  0.11850      0.020
## rho.14  0.62735      0.010
## rho.15  0.31707      0.017
## rho.16  0.09897      0.020
## rho.17  0.38227      0.016
## rho.18  0.35116      0.017
## rho.19  0.27884      0.018
## rho.20  0.10861      0.020
## rho.21  0.32166      0.017
## rho.22  0.24156      0.018
## rho.23  0.24895      0.018
## rho.24  0.26234      0.018
## rho.25  0.21581      0.019
## rho.26  0.16817      0.019
## rho.27  0.10616      0.020
## rho.28  0.26553      0.018
## The maximized loglikelihood is 2210 
## Optimization converged
## Number of loglikelihood evaluations:
## function gradient 
##      198       35
summary(fit_t)
## Call: fitCopula(t_cop, U, method = "ml")
## Fit based on "maximum likelihood" and 2436 8-dimensional observations.
## t-copula, dim. d = 8 
##        Estimate Std. Error
## rho.1    0.6073      0.012
## rho.2    0.2253      0.019
## rho.3    0.1696      0.020
## rho.4    0.4944      0.015
## rho.5    0.3178      0.018
## rho.6    0.1671      0.020
## rho.7    0.1407      0.020
## rho.8    0.1633      0.020
## rho.9    0.1163      0.020
## rho.10   0.2680      0.018
## rho.11   0.1100      0.020
## rho.12   0.1140      0.020
## rho.13   0.1114      0.020
## rho.14   0.6308      0.011
## rho.15   0.3108      0.018
## rho.16   0.1027      0.020
## rho.17   0.3824      0.017
## rho.18   0.3527      0.017
## rho.19   0.2744      0.018
## rho.20   0.1149      0.020
## rho.21   0.3297      0.018
## rho.22   0.2431      0.019
## rho.23   0.2551      0.019
## rho.24   0.2590      0.019
## rho.25   0.2099      0.019
## rho.26   0.1687      0.020
## rho.27   0.1056      0.021
## rho.28   0.2666      0.019
## df      23.1569      2.525
## The maximized loglikelihood is 2266 
## Optimization converged
## Number of loglikelihood evaluations:
## function gradient 
##      200       43
library(copula)

# Pseudo-observations
U <- pobs(u_data)

# Copula list
copulas <- list(
  Joe = joeCopula(dim = 8),
  Gaussian = normalCopula(dim = 8, dispstr = "un"),
  t = tCopula(dim = 8, dispstr = "un")
)

# Fit và lấy kết quả
fits <- lapply(copulas, function(c) fitCopula(c, data = U, method = "ml"))

# Tóm tắt log-likelihood, AIC, BIC
results <- data.frame(
  Copula = names(fits),
  LogLik = sapply(fits, logLik),
  AIC = sapply(fits, AIC),
  BIC = sapply(fits, BIC)
)

# Tham số
params <- lapply(fits, coef)

results
Copula LogLik AIC BIC
Joe Joe 801.7599 -1601.520 -1595.722
Gaussian Gaussian 2209.5055 -4363.011 -4200.664
t t 2265.5058 -4473.012 -4304.866
params
## $Joe
##    alpha 
## 1.241458 
## 
## $Gaussian
##      rho.1      rho.2      rho.3      rho.4      rho.5      rho.6      rho.7 
## 0.58682981 0.23310004 0.17340318 0.48536912 0.32297366 0.17154481 0.14782303 
##      rho.8      rho.9     rho.10     rho.11     rho.12     rho.13     rho.14 
## 0.16717522 0.11803901 0.25741093 0.10925605 0.11997824 0.11850120 0.62734962 
##     rho.15     rho.16     rho.17     rho.18     rho.19     rho.20     rho.21 
## 0.31706873 0.09897162 0.38227134 0.35116298 0.27884206 0.10860950 0.32166070 
##     rho.22     rho.23     rho.24     rho.25     rho.26     rho.27     rho.28 
## 0.24155838 0.24894766 0.26234497 0.21581222 0.16817217 0.10615546 0.26552979 
## 
## $t
##      rho.1      rho.2      rho.3      rho.4      rho.5      rho.6      rho.7 
##  0.6072848  0.2252730  0.1695576  0.4943796  0.3177688  0.1670895  0.1406589 
##      rho.8      rho.9     rho.10     rho.11     rho.12     rho.13     rho.14 
##  0.1632934  0.1163060  0.2680463  0.1099936  0.1140016  0.1114461  0.6308023 
##     rho.15     rho.16     rho.17     rho.18     rho.19     rho.20     rho.21 
##  0.3107731  0.1027268  0.3823995  0.3527425  0.2743807  0.1149470  0.3297296 
##     rho.22     rho.23     rho.24     rho.25     rho.26     rho.27     rho.28 
##  0.2430706  0.2550990  0.2590383  0.2098643  0.1686945  0.1056371  0.2666302 
##         df 
## 23.1568845
library(copula)

# Pseudo-observations
U <- pobs(u_data)
U_adj <- jitter(U, factor = 1e-6)
U_adj[U_adj==0] <- 1e-6
U_adj[U_adj==1] <- 1-1e-6

n <- ncol(U_adj)
n_rho <- n*(n-1)/2

# Khởi tạo copula với tham số hợp lý
copulas <- list(
  Joe = joeCopula(dim=n, param=1.0),
  Gaussian = normalCopula(param=rep(0.2, n_rho), dim=n, dispstr="un"),
  t = tCopula(param=rep(0.2, n_rho), dim=n, dispstr="un")
)
## parameter at boundary ==> returning indepCopula()
# Fit copula robust
fits <- lapply(copulas, function(c) {
  tryCatch(
    fitCopula(c, data=U_adj, method="ml"),
    error = function(e) {message("Fit failed: ", e$message); NULL}
  )
})
## Fit failed: any(isFree(copula)) is not TRUE
# Tóm tắt
results <- data.frame(
  Copula = names(fits),
  LogLik = sapply(fits, function(f) if(!is.null(f)) logLik(f) else NA),
  AIC = sapply(fits, function(f) if(!is.null(f)) AIC(f) else NA),
  BIC = sapply(fits, function(f) if(!is.null(f)) BIC(f) else NA)
)

params <- lapply(fits, function(f) if(!is.null(f)) coef(f) else NA)

results
Copula LogLik AIC BIC
Joe Joe NA NA NA
Gaussian Gaussian 2209.505 -4363.011 -4200.664
t t 2265.506 -4473.012 -4304.866
params
## $Joe
## [1] NA
## 
## $Gaussian
##      rho.1      rho.2      rho.3      rho.4      rho.5      rho.6      rho.7 
## 0.58683091 0.23309968 0.17340377 0.48536931 0.32297498 0.17154482 0.14782301 
##      rho.8      rho.9     rho.10     rho.11     rho.12     rho.13     rho.14 
## 0.16717526 0.11803884 0.25741088 0.10925508 0.11997656 0.11850150 0.62734911 
##     rho.15     rho.16     rho.17     rho.18     rho.19     rho.20     rho.21 
## 0.31706985 0.09897124 0.38227064 0.35116388 0.27884392 0.10860968 0.32166140 
##     rho.22     rho.23     rho.24     rho.25     rho.26     rho.27     rho.28 
## 0.24155971 0.24894919 0.26234366 0.21581341 0.16817242 0.10615512 0.26552885 
## 
## $t
##      rho.1      rho.2      rho.3      rho.4      rho.5      rho.6      rho.7 
##  0.6072895  0.2252675  0.1695562  0.4943815  0.3177754  0.1670902  0.1406559 
##      rho.8      rho.9     rho.10     rho.11     rho.12     rho.13     rho.14 
##  0.1632954  0.1163129  0.2680534  0.1099975  0.1140025  0.1114471  0.6308033 
##     rho.15     rho.16     rho.17     rho.18     rho.19     rho.20     rho.21 
##  0.3107680  0.1027279  0.3824006  0.3527419  0.2743763  0.1149518  0.3297342 
##     rho.22     rho.23     rho.24     rho.25     rho.26     rho.27     rho.28 
##  0.2430705  0.2551085  0.2590397  0.2098642  0.1686923  0.1056369  0.2666309 
##         df 
## 23.1560997
library(copula)

# --- 1. Pseudo-observations ---
U <- pobs(u_data)

# --- 2. Jitter để tránh ties/extreme 0/1 ---
U_adj <- jitter(U, factor = 1e-6)
U_adj[U_adj==0] <- 1e-6
U_adj[U_adj==1] <- 1-1e-6

n <- ncol(U_adj)
n_rho <- n*(n-1)/2

# --- 3. Khởi tạo copula với tham số hợp lý ---
copulas <- list(
  Gaussian = normalCopula(param = rep(0.2, n_rho), dim = n, dispstr="un"),
  t = tCopula(param = rep(0.2, n_rho), dim = n, dispstr="un")
)

# --- 4. Fit copula bằng ML ---
fits <- lapply(copulas, function(c) {
  tryCatch(
    fitCopula(c, data = U_adj, method="ml"),
    error = function(e) {message("Fit failed: ", e$message); NULL}
  )
})

# --- 5. Simulate 1000 mẫu uniform [0,1] từ copula đã fit ---
n_sim <- 1000
sim_U <- lapply(fits, function(f) {
  if(!is.null(f)) rCopula(n_sim, f@copula) else NULL
})

# --- 6. Chuyển pseudo-observations sang residual chuẩn (N(0,1)) ---
sim_resid <- lapply(sim_U, qnorm)

# --- 7. Tính tail dependence t-copula ---
# Chỉ áp dụng cho t-copula
fit_t <- fits$t
rho_vec <- coef(fit_t)[1:n_rho]
df <- coef(fit_t)["df"]

# Tạo ma trận correlation từ rho_vec
rho_mat <- matrix(0, n, n)
rho_mat[lower.tri(rho_mat)] <- rho_vec
rho_mat <- rho_mat + t(rho_mat)
diag(rho_mat) <- 1

# Hàm tính upper tail dependence t-copula
tail_t <- function(rho, nu) {
  2 * pt(-sqrt((nu+1)*(1-rho)/(1+rho)), df = nu+1)
}

lambda_upper <- matrix(0, n, n)
lambda_lower <- matrix(0, n, n)
for(i in 1:n){
  for(j in 1:n){
    if(i != j){
      lambda_upper[i,j] <- tail_t(rho_mat[i,j], df)
      lambda_lower[i,j] <- lambda_upper[i,j]  # symmetric
    }
  }
}

# --- 8. Kết quả ---
list(
  fits = fits,
  simulated_resid = sim_resid,
  tail_upper = lambda_upper,
  tail_lower = lambda_lower
)
## $fits
## $fits$Gaussian
## Call: fitCopula(c, data = U_adj, method = "ml")
## Fit based on "maximum likelihood" and 2436 8-dimensional observations.
## Copula: normalCopula 
##   rho.1   rho.2   rho.3   rho.4   rho.5   rho.6   rho.7   rho.8   rho.9  rho.10 
## 0.58683 0.23310 0.17340 0.48537 0.32297 0.17154 0.14782 0.16717 0.11804 0.25741 
##  rho.11  rho.12  rho.13  rho.14  rho.15  rho.16  rho.17  rho.18  rho.19  rho.20 
## 0.10926 0.11998 0.11850 0.62735 0.31707 0.09897 0.38227 0.35116 0.27884 0.10861 
##  rho.21  rho.22  rho.23  rho.24  rho.25  rho.26  rho.27  rho.28 
## 0.32166 0.24156 0.24895 0.26234 0.21581 0.16817 0.10616 0.26553 
## The maximized loglikelihood is 2210 
## Optimization converged
## 
## $fits$t
## Call: fitCopula(c, data = U_adj, method = "ml")
## Fit based on "maximum likelihood" and 2436 8-dimensional observations.
## Copula: tCopula 
##   rho.1   rho.2   rho.3   rho.4   rho.5   rho.6   rho.7   rho.8   rho.9  rho.10 
##  0.6073  0.2253  0.1696  0.4944  0.3178  0.1671  0.1407  0.1633  0.1163  0.2681 
##  rho.11  rho.12  rho.13  rho.14  rho.15  rho.16  rho.17  rho.18  rho.19  rho.20 
##  0.1100  0.1140  0.1114  0.6308  0.3108  0.1027  0.3824  0.3527  0.2744  0.1150 
##  rho.21  rho.22  rho.23  rho.24  rho.25  rho.26  rho.27  rho.28      df 
##  0.3297  0.2431  0.2551  0.2590  0.2099  0.1687  0.1056  0.2666 23.1567 
## The maximized loglikelihood is 2266 
## Optimization converged
## 
## 
## $simulated_resid
## $simulated_resid$Gaussian
##                 [,1]          [,2]          [,3]          [,4]         [,5]
##    [1,] -0.463988393  1.0718640568  0.2322687843 -0.7316814926 -1.256967224
##    [2,]  0.920777352  0.7050183758  0.1412293946  0.2445019831 -0.293949034
##    [3,]  2.185482490  0.4621701042  0.2335328711  0.0388917741  0.576285273
##    [4,]  0.324370585 -0.0714029651 -0.6487040564 -1.4627033376 -0.174397708
##    [5,] -0.596355556  0.6698180531 -0.7845457021 -1.3096767068  0.378063866
##    [6,]  0.923306774  0.4631703725  0.4130364707  0.4492503527 -0.573902262
##    [7,] -0.467478866 -0.5495478860 -0.7821025712 -0.3444024608  0.614280968
##    [8,]  0.209823649 -0.1461033504 -0.6568722896 -0.5741061321  0.713540231
##    [9,] -1.036416843  0.2959728978 -1.4720786893 -1.7289518842 -0.049091259
##   [10,]  0.430417360 -0.0915648394 -0.3470983240 -2.4704659994 -0.187853158
##   [11,] -0.564345064 -0.8698748161 -0.4087836964  0.4471832870 -1.479403129
##   [12,] -0.824834163 -0.2190552504 -0.6903582566 -1.1906834200 -0.380315523
##   [13,] -0.715969745  1.3796202503 -1.6623409014 -1.4464718677 -0.540062958
##   [14,]  0.085573223 -0.5714451424  0.1542841892  0.9066620508  1.572874887
##   [15,]  1.174986534  0.2661085800 -0.9166150172 -0.4184835318  0.874309894
##   [16,]  0.361784375  0.8654818340  1.6932597574  0.2246780874  0.803504632
##   [17,]  0.706435300  1.1360137151  0.9741003359  0.7472392452  2.109695601
##   [18,] -1.666411304 -0.5961821370  0.0039779244  0.1747937005 -0.526769910
##   [19,]  1.375409117  0.2022381292 -0.3996847832  0.4183277104  1.507739956
##   [20,]  0.295122605  1.0817279724 -0.3818715502  0.4674342693  0.847646967
##   [21,] -0.218729016 -0.2978725251  0.1744306735  0.7569671076 -0.120331256
##   [22,] -1.225740095  0.4857526727  0.0891095426 -0.9415327183 -0.156585153
##   [23,]  0.662805280 -0.2680887772  0.6148303308 -0.1326872308 -0.963262678
##   [24,]  1.161242944  1.5311877878  0.2003073777 -0.6573256167 -0.074980770
##   [25,]  0.233758205 -1.1040810297  1.7438988836  0.7355977969  0.789341994
##   [26,]  3.407571489  2.1958397463 -0.8694528202 -1.0748735033  1.285619926
##   [27,]  0.055475993 -0.3665412870 -1.6210232465 -0.7738887598 -0.651744325
##   [28,] -0.064838211 -0.0334008163  2.1743520156  0.8616153231  0.907661109
##   [29,]  2.316110632  0.7291160121  1.1330744471  1.7270139840  1.643600596
##   [30,] -1.028393871  0.6136703262 -0.1417537018  0.8620410890  0.500034845
##   [31,]  0.916259245  0.2128769303  0.0242894866 -0.5447651903  1.267600509
##   [32,] -1.349098576  0.0598479330 -0.3958921250  0.5529534343 -0.233524532
##   [33,] -0.192885028 -0.0290087198  0.0117384115  0.4715026225  0.849326030
##   [34,]  0.254821590  0.2416649830  2.2276695805  1.2771421055  0.095763930
##   [35,] -0.392182957  0.5991266420  0.6258935928  0.0712786573 -0.880268951
##   [36,] -0.239826449  0.1709438619 -0.4674060154 -1.2440376901  0.860093742
##   [37,]  0.498579370  0.1075260198  1.0150922535 -0.0548650537 -0.378604025
##   [38,]  0.711671194  1.6655511529 -1.2308816550  0.3297428114  1.640308147
##   [39,]  0.824182755 -0.9296474126 -0.1763904879  0.8333625515 -0.907995953
##   [40,]  0.443811298  0.3490678172  0.9953316458  0.5143437326 -0.132938345
##   [41,] -0.703328186 -0.4331436497 -0.9474028939 -0.5031813073 -2.440753408
##   [42,] -0.046642939  0.2878569441 -0.4422454517 -0.4892738092 -0.502164398
##   [43,] -0.652797375 -1.3138838337  0.2789681930  0.5351605071 -0.603753443
##   [44,] -0.667872197 -1.3450622565 -1.4616545938 -1.1571458184  0.384626159
##   [45,] -1.840223321 -0.0081905261 -0.8292057561 -1.2221203955 -0.508314643
##   [46,] -1.593093316 -1.0026420820  0.4494368763  0.1978926242 -1.641215606
##   [47,] -1.681730460 -1.7569706255 -0.4896712529 -1.1164080572 -1.595096724
##   [48,] -0.908685358 -0.5755088447 -0.4490207978  0.9672160065  0.234324801
##   [49,] -1.473585545 -0.6038399377 -0.0845545629 -1.7370087088 -1.765561398
##   [50,]  0.234546608 -1.1118705925 -0.6702380578 -0.2761389608  1.605218560
##   [51,] -0.990561091 -0.5633592460 -2.5660616256 -0.9282712967 -1.213244913
##   [52,] -2.196181711 -1.1347207705 -1.0222293899 -1.7361687930 -0.992294826
##   [53,]  1.214559063  0.0869673895  1.5189994792  2.6772135864  1.263156861
##   [54,] -0.465971274  0.6172029741 -1.9472147479 -1.9252659393 -2.113161937
##   [55,] -2.580305758 -1.9131115483 -0.4753830007 -0.6648296974 -0.148285409
##   [56,]  2.600566693  1.8531565674 -0.8068886651 -1.3358371778  1.077070218
##   [57,]  1.299259140  1.1607901281  1.7432554533  1.3099940166  1.123372363
##   [58,]  1.343497644  1.1170174367  0.1082916273  1.0859525520 -0.372042518
##   [59,]  1.369120032 -0.0142433651  0.3999501669 -0.6876878329  1.119781672
##   [60,]  0.525102433 -0.3642367389  1.1652007092  2.0497467123  1.131116182
##   [61,] -0.131494384 -0.9133898010 -2.3655652286 -1.2995701202 -0.039284120
##   [62,]  0.997571249 -0.3749569173  1.1732254579  1.2134199742  1.697897090
##   [63,]  0.387976605 -0.6512460806  1.2494760352  2.4343149170  1.394364880
##   [64,]  0.042961414 -0.9295630130  2.2073030002  0.8560300527  1.487458819
##   [65,]  0.710846873  0.6795511710 -0.9473581600 -0.3703746056 -1.785824202
##   [66,]  0.103758006 -0.7917995004 -0.3713147902 -0.7687211658  0.031903668
##   [67,]  0.368078928 -1.2819701172 -0.3825301917 -0.9843653673 -0.064297415
##   [68,]  1.807138679  2.0116504360  1.3962866857  2.4344002770  1.803771701
##   [69,]  1.364931964  0.9315628144 -1.4141778222  0.2887751936  0.280099220
##   [70,]  0.452657201  1.0448321580  0.4276023918 -0.4567641393 -0.583831145
##   [71,] -1.639937850 -1.3119468577 -0.1601714327  0.9284923243  0.681060889
##   [72,] -0.906819675  0.1169985808  0.7745782323  0.4827434094 -0.671511501
##   [73,]  0.570529852  0.1497139918  0.8363685713  1.7685510522  0.819001390
##   [74,]  0.761404515 -0.2399693685  0.0991073315  0.0334829246  0.701195171
##   [75,] -0.389474165 -2.0460088586 -0.9796633715 -1.7318424384  0.243806568
##   [76,]  0.295320892 -0.6519477185 -0.2611145638 -0.4851661263 -0.140919041
##   [77,]  0.458355445  1.3250272432 -0.0954184595 -1.2148425636  0.449294323
##   [78,]  1.564064029  2.7495976674  1.1739133589  0.5071843044  0.457256496
##   [79,]  1.652906315  1.4072321808 -0.3991718959 -0.0930281180 -0.253425255
##   [80,] -0.508100059  1.2077552664  0.3091851714  0.4096482067 -1.877854041
##   [81,]  0.241330037  1.1496273153  0.9737339892 -0.5247017336  0.307645095
##   [82,]  0.114593808  0.4159626653 -1.4396674635 -0.9915802825 -1.800092016
##   [83,] -0.236448476  0.1784523811 -1.5232408329 -1.3150680837 -0.718521060
##   [84,]  0.257497169  0.9251701609  0.3272078727  0.3499600819 -1.905476758
##   [85,]  0.410485742 -0.2633278062  1.1958196142  0.3297423377  1.348753349
##   [86,]  0.745001305  0.8923076497 -0.5671873634 -1.2324419581 -0.340161724
##   [87,]  0.238078401  0.0251254019  0.3118918520  0.8042807560 -0.178415842
##   [88,] -0.859465252 -0.4256904279 -0.6870850989 -0.2144792718 -1.120364404
##   [89,] -2.220284882 -0.2413922785  0.1639546020 -0.3536837711 -0.912294751
##   [90,] -1.176407325  0.1552879118 -1.1342997866 -1.1959728914 -2.295671357
##   [91,] -0.549401432  0.5541220558  1.5291088156  0.0814195340 -0.385575187
##   [92,] -0.412717100 -0.2524667806  0.6915566870 -0.1054371628 -0.946846181
##   [93,] -1.463148725 -1.2698671075  0.2812940576 -0.0644351280 -1.371862957
##   [94,] -0.404799655 -1.0271666841  0.8782166936  1.3973977028  1.078239767
##   [95,]  1.112007529  0.7525235790  0.6607989848  0.9960088571  1.058899149
##   [96,]  1.546308898  0.5107006614  0.0709199720  0.9733933841  0.769559129
##   [97,]  0.546444834 -0.5609167495 -1.1549780303  0.0337025398  0.200132528
##   [98,] -0.345864706  0.3443237103 -1.5168412383 -0.9803918430 -1.330975680
##   [99,] -0.433118973  0.6797768873 -0.5364662936 -0.4099916665  0.357440048
##  [100,]  0.011847212  0.6361392237 -1.9360239006 -1.7110087503 -0.579077331
##  [101,] -0.091383486 -1.4815612271  0.1196536350 -1.5274814161  1.150360046
##  [102,] -0.193338103 -0.1580384139  0.0338757624  0.3728880992 -0.749463335
##  [103,] -1.688199603 -2.3800493661 -0.8969172081 -0.3210552469 -1.665137714
##  [104,]  0.535986100 -0.2088863080  0.2969607002  0.7183892175  0.277886512
##  [105,] -0.431869048 -0.4772449589 -1.5138600166  0.3013939092 -0.590941759
##  [106,] -0.155508074 -0.4953257479 -1.2549373534 -1.7520168099 -0.981971985
##  [107,] -0.574581998 -0.2354651933  0.6456223467  0.9850156822 -0.013338603
##  [108,] -0.836895248 -0.3188881456  0.2907505975  0.3024087793  0.145698278
##  [109,] -0.271667892  0.0425573097  0.5102093931  0.3310597735  1.725737180
##  [110,] -2.500018209 -1.3600126555 -0.4504538289 -0.8111969298 -0.754266266
##  [111,]  0.193382775  2.7747834158  0.5181011555  0.8544433775 -0.689872881
##  [112,] -0.150666029  0.3992722701 -0.5369889445 -0.9814145365 -1.788921490
##  [113,]  0.613318784  1.1277776753  1.0546540331  1.2110230282  1.020964676
##  [114,] -0.561550246  0.7689576034 -0.0126849781  0.8561282316 -0.390153253
##  [115,] -0.814820047  0.9451577865  1.1406420696  0.1591765695 -1.392688396
##  [116,] -0.748922379 -0.1063743152 -0.3025123715 -0.0314054645 -0.096682547
##  [117,]  0.495478971  0.7044734711  1.5958303371  1.0082188615 -0.062009084
##  [118,] -0.407646454  0.0515520896 -0.3470163022 -0.5863851653  0.366696127
##  [119,] -0.640649127 -2.3499318690 -1.7034709357 -1.9892273184 -1.734233613
##  [120,]  0.867301672  0.6615564680  0.6567683131  0.7494619215  0.308975172
##  [121,] -0.043859615 -0.2638009642 -2.1002170157 -0.5662374740 -1.351943694
##  [122,]  0.743942712  0.3338720770 -1.3671878838 -0.9583641305  0.708228581
##  [123,]  0.304952537 -0.9587866385  0.8823758747  0.3275759104  0.407464676
##  [124,] -0.057321280  0.4768365854  0.4067866510 -0.0151368075 -0.057558113
##  [125,] -0.239121066  0.8762950139 -1.1257479568 -0.3868529018  0.615253966
##  [126,] -0.076866560 -0.5537303439 -1.6639071426 -0.3955204707 -0.510981693
##  [127,]  1.449941629  1.1351094285 -0.6944928400  0.4854475640 -0.205720274
##  [128,] -0.040944439  0.2828651920  0.6267111579  0.5458833095 -0.171807952
##  [129,]  1.609813638  1.0373082892  0.2651436282  0.4729683585  0.814685190
##  [130,] -1.251781898 -0.1312392165  0.2247769633  0.5986611982 -1.520140847
##  [131,]  2.067351351  1.3505426359  1.5360036593 -0.1736702441  2.072785440
##  [132,]  2.417786104  1.0532227492 -2.2877424412 -2.5718111378  0.027745859
##  [133,]  1.216358366  1.6043644570 -0.0468104683  0.5701283615  1.071403149
##  [134,] -0.263588762  0.1530136810  1.8889150945  0.7064478937  1.395559511
##  [135,]  0.793531679  1.2165917438  0.8217800804 -0.1237861631  1.398782063
##  [136,] -0.224335876 -0.0124567363 -0.5259835944  0.1873241180  1.316358415
##  [137,]  0.578866837 -0.2220704346  0.0164070977  0.6495485523  0.106225153
##  [138,]  0.662731454  0.2934542858 -0.9529138933 -0.1406121322  0.836818452
##  [139,] -0.639014217  0.5084998051 -0.1191420434 -0.3846595562 -1.376663781
##  [140,] -0.656812472  0.3530447268  0.3585308689  0.9963785776  0.080844946
##  [141,]  0.008608846 -0.5473863598 -1.5619996004 -1.6867542490  0.155843626
##  [142,]  1.120018105  1.5835687247 -0.5462269989 -0.6073927736  0.838717687
##  [143,] -0.874496174 -1.7104843213 -0.6019060906  0.5128549291 -1.545044653
##  [144,]  0.893679350  2.0441471559  0.1172988883  0.2482900977 -0.891347206
##  [145,] -0.691036198 -1.3372258209 -0.3397913423 -0.0316477669  1.618411264
##  [146,]  0.868257504  2.3759473980  0.6052164378  0.6213574153  1.804363347
##  [147,]  1.036642221  0.8280758374 -0.3688523599 -0.0105830974  1.408884214
##  [148,]  0.236409682  0.0871209446 -0.0285438762  0.2193206445 -1.635713841
##  [149,]  0.779134606  0.0736711650  0.5624377819  0.9737888903  0.850339198
##  [150,]  0.553873324  0.2387508326  0.3188514931 -0.5759689989  1.168362624
##  [151,] -0.022228247 -0.7998717101  1.8988817436  2.2379539595 -0.033664086
##  [152,] -1.147703744 -0.6521555035 -0.9178521818 -1.6209390317 -0.497505235
##  [153,] -0.174961353 -2.5381787091 -1.1281237739 -2.0158713794  0.426419552
##  [154,] -1.330382020 -0.1422811029  0.0377477376  0.5462834611 -0.978458794
##  [155,] -0.504981947 -0.5910651604 -0.8195059016 -1.4443552284 -0.894873057
##  [156,]  1.403112662 -0.2028036293 -0.5650002903 -0.4931372188  1.136309601
##  [157,]  0.392763069  0.2698361917 -0.4688097093 -0.3946704103  1.192536706
##  [158,]  1.383989499  0.6401384692  0.1575730594 -0.3565830135  0.769891387
##  [159,] -2.413601355 -1.0205565107 -0.1629780381  0.2033028813 -0.528810183
##  [160,]  0.680040947  0.5481165275  1.8830345487  1.3869179166  0.170609956
##  [161,]  1.306798691  1.3127433122 -1.7957277640 -1.5299156397  0.770433195
##  [162,]  0.712879888  0.5230632607  0.7122194982  0.1074685383 -0.136049594
##  [163,]  3.414786755  1.0648589082  0.0338745892  0.4935694100 -0.188267193
##  [164,]  1.887718149  0.5055786468 -0.4249513081 -0.2620051488 -0.537747411
##  [165,] -0.595887199  0.6420175916  0.0170028264  0.1335578488  0.039584873
##  [166,] -1.022439662 -0.3148901071 -0.0968314096  0.0672518226 -1.631833267
##  [167,]  0.987046521  1.8634574556 -0.4694229617 -1.1504948723  0.277955115
##  [168,]  1.122644203  1.0603686854 -0.4196635067 -0.1912353164  0.174631576
##  [169,]  0.399916452  0.8148597263 -0.5068715321 -0.4092439933  0.953439797
##  [170,] -1.767423448  0.3990552348 -2.1998464874 -0.7130606321 -1.331224286
##  [171,]  1.046115912  0.1329742272  0.1194597252  0.6109140495  1.712802790
##  [172,] -0.901426750 -1.9037516057 -0.0852457539 -0.4362332095 -0.598984919
##  [173,] -0.112180219 -0.7044733861  1.1475487319  1.3569672388  0.144316746
##  [174,]  2.027824078  1.1408251871  1.2250495174  1.5505464705  3.262787679
##  [175,] -0.383720970 -1.1284354939 -0.1498841519  0.8165116983  1.536305232
##  [176,] -1.492020195 -0.8845898546 -1.6317205725 -1.2791322181 -2.392637510
##  [177,]  0.521741874 -0.1556647292  0.0912659319 -0.9846112782 -0.403912544
##  [178,]  0.236571066  0.7968893630  1.5474821567  0.9705039247  0.270674132
##  [179,]  1.409508536  0.2180692231  2.2853031977  1.7058825531 -0.357487320
##  [180,]  0.083019263  0.2223413617 -0.7519457324 -0.0600352107 -0.378616063
##  [181,]  0.006994002 -1.9039780375 -0.6518115859 -0.7861491633  0.096936814
##  [182,]  0.379157545 -0.3267643744  1.9677453874  0.6655731574 -0.053725477
##  [183,]  0.152848294  0.0359438467  1.5582482350  1.2206405620  0.903717040
##  [184,]  1.644778677  1.3255758222 -0.5208097332 -0.4560609251  0.862367064
##  [185,] -1.925298629 -1.5504053255  0.6017169069  0.6328224029  0.360473083
##  [186,]  0.297815072  1.5024719189  0.8029595336  0.4669733596  1.162736884
##  [187,] -0.239387659  0.1084825473  1.1828671066  0.5524290714  2.077902157
##  [188,] -3.246103051 -1.3691735228 -0.0282637098 -0.2886972600 -1.802370802
##  [189,]  0.308979013  1.4709260082  0.5389997043  1.5689828092 -0.018635767
##  [190,]  0.002453429 -0.9759455152  0.2875405025 -0.5065893741  0.355333801
##  [191,] -0.586569623 -0.0794595645 -0.3675205223  0.2699089839 -0.305561740
##  [192,] -0.043504581 -1.0456333982  1.2212255143  1.2361277285  0.202470527
##  [193,]  2.149857888  0.4094139773  0.3789051981  1.2131582972 -0.059558478
##  [194,] -0.479506826  0.1967421111  1.5787932546 -0.0180425272  0.307955760
##  [195,]  1.651894498  2.6122951916  0.6130252946  1.6460488924 -0.586415465
##  [196,]  0.598449553 -0.4188138427  1.3077767339  0.9377967493  0.688093167
##  [197,]  0.371164095 -0.5329847959  1.5305245668  0.6864060963  0.980217891
##  [198,]  1.327168266  0.9981079368 -0.0175613643  0.0906952758  2.232795261
##  [199,] -1.135297663 -0.6320010617 -1.2024982246 -0.6146490851 -0.732231947
##  [200,] -0.817307318 -1.4468893329  0.1163132285  0.1744175153 -1.037563791
##  [201,] -0.784272372  0.2315552030 -0.0837375335 -0.3318818777 -1.015581818
##  [202,] -0.341130608  0.3917501240 -1.5849309780 -0.8836320329  0.406335164
##  [203,] -1.001426408  0.5877661791  0.3677529160  0.1090357287 -1.695041181
##  [204,] -1.716061041 -0.7350411457  0.5639517440  0.3280943522  0.602692906
##  [205,] -0.321890092  0.1410175256  1.5253304775  0.7722290344  0.021137384
##  [206,] -0.927081822 -0.9244338540  0.6080589325 -0.2404535511 -1.494860076
##  [207,]  1.008872505  1.3326623288  1.3248994952  0.4037465374  0.646344830
##  [208,] -0.807289105  1.4156752220  0.3252989188  0.5618209184  0.833554843
##  [209,]  1.632710177  1.7901793225 -0.7463268438 -0.4725103769 -0.126762021
##  [210,] -0.815719480 -0.4473774893  0.8033207887 -0.6127126074 -2.448916420
##  [211,] -2.172982821 -1.5492203910 -0.7052727167 -0.5501386860 -1.423194358
##  [212,] -0.963392431 -1.2828421413 -0.0060235749 -0.2085303840  0.328532062
##  [213,] -0.937642446 -0.6464703100  0.6471134516 -0.4615179187 -1.437949985
##  [214,] -1.207576768  0.5932480663  1.3512378188  1.3778044433 -1.245424374
##  [215,] -0.111539306  0.0275055836  0.1675727017  0.8060018609 -0.619836191
##  [216,]  1.299941180  0.5365730733  0.3290238247 -0.9183267087  1.031054670
##  [217,]  1.545782624  1.3681375992  1.7034710933  1.1808818609  1.013177912
##  [218,] -0.420663538 -1.1999924900  0.0059683502  0.0021163706  0.873585041
##  [219,]  0.228805876 -0.2148551407  0.8733996522 -0.9465835339 -0.727240234
##  [220,]  0.859967891  0.2304666877  0.5540590768  0.3344309995  0.667804709
##  [221,]  1.594752415  1.2254592486  1.8234860158  2.1361289354  1.173116337
##  [222,]  0.430700741  1.5139686437 -0.5099852485 -0.1039027806  0.418960573
##  [223,] -0.168102806  0.1854006415  0.4523578761  0.3594795300 -0.342889094
##  [224,] -1.278037955 -0.6978443189 -0.1715493690  1.0469594786 -0.108745460
##  [225,] -1.686237662 -0.5306601066  0.3279198110  0.3560976246 -0.513699875
##  [226,]  0.621489465 -0.3691554109 -0.2724508250 -1.5119479616  1.192149054
##  [227,]  1.080843534  0.7533919468  2.1023271103  1.3797500477  1.368352025
##  [228,] -1.393196587 -0.7628130049 -1.8698510612 -1.2029778589 -1.332953807
##  [229,]  0.387942491 -0.1578701194  2.6680724061  0.7810355623  0.495002133
##  [230,] -0.830765476 -0.1689529130 -2.0654188907  0.0089630871 -2.094990654
##  [231,]  0.380960074 -0.4669321070 -0.8613616426  0.4765815984  0.532717304
##  [232,] -0.242664665 -0.4758721184 -0.5294543880 -0.7199819592  0.002123414
##  [233,]  0.349232559 -0.1870920002  0.4964821170  1.0063892323 -0.813085435
##  [234,]  0.751831674  0.8040258505 -0.3698086491  0.6194366979 -0.769904588
##  [235,] -1.522914962 -1.2313434515 -0.0300596627 -0.0635088120 -1.869690734
##  [236,] -0.230558629  0.9524055760 -0.2834223546 -0.6583331838  0.074158441
##  [237,]  1.586135515  0.9417270611  1.6358374554  1.8248348797  2.117221940
##  [238,] -0.555100444  0.0108062809 -1.3913390560 -0.4142030593 -1.223261906
##  [239,] -1.761870260 -1.7927571028 -0.5662942530 -0.5746071437 -1.002439969
##  [240,] -1.269692417  0.7379908947 -0.5208253454  1.3380917838 -0.052995711
##  [241,]  0.609023381  0.7950275454 -0.0450466664 -0.7050370624 -0.438761501
##  [242,] -0.182768784 -0.3784072791 -0.4785978407 -1.1613352558 -0.066588684
##  [243,]  0.227305895  1.9511582202 -0.5133493184  0.4085836871  0.688240692
##  [244,] -2.014477092 -1.1046880704  0.9827521328 -0.6925096165 -0.681535253
##  [245,] -0.021703005 -0.0086982630 -0.4910375005  0.8265888492 -0.399237588
##  [246,] -0.052509271 -2.0290610204  0.5685441064 -0.5675425114 -1.530896292
##  [247,] -1.579226865 -2.0290885537 -0.1904259521 -1.1331419253 -1.159950156
##  [248,]  1.051536639  1.2695448675  0.5877356808  1.3257244336 -0.006685797
##  [249,]  0.019067264  0.1062554788 -0.7216508348 -0.7215209157 -0.992122445
##  [250,]  0.583043101 -0.0520000121 -1.0457653920 -1.1711065310 -0.980757733
##  [251,] -1.379153903 -2.3356623850  0.0706212912 -1.0401481033 -0.102541186
##  [252,] -0.550554488 -2.0518143233 -0.6831122634 -0.2963759619 -1.471001048
##  [253,] -0.621534645 -1.3126786187 -0.1066722863  0.1529074640  0.220688897
##  [254,]  0.633675230  0.3263941580 -0.5957187557 -1.5057842543  0.354549856
##  [255,]  0.833157162 -0.0229868913 -0.2342149795 -0.9731254412  0.315974987
##  [256,] -0.265433691 -0.2844098205 -0.0582218255  0.4274376354 -1.165448063
##  [257,] -1.113841105 -1.3288672215  1.7392829593  1.3238282002 -2.012819039
##  [258,] -1.049528535 -1.4270966810 -0.2503864169  0.4946991118 -1.229931855
##  [259,] -1.480846473 -1.3720354142 -0.7323679810 -0.6364747259 -0.827385182
##  [260,]  0.098424343 -1.2457005405 -0.6020994868 -0.8306669381 -0.943400482
##  [261,] -0.938193534  0.1803378159 -0.0647928776  0.5421609671 -0.550656769
##  [262,] -1.385402362 -1.7488002692  0.0707892380 -0.7379251797 -1.743229539
##  [263,]  0.445560114  0.6557710220 -0.2570491415  0.4264078130 -0.570141770
##  [264,] -0.717142437  1.5900695341  0.5935258373  0.8844135451  0.272498728
##  [265,]  0.561191190  0.5003851393  0.4691795326  0.3380195804 -0.817455633
##  [266,] -2.681356203 -1.4712985487  0.3863188863 -0.0522500942 -1.651525985
##  [267,]  0.590304458  0.8352262005  0.3892684364  1.1125576817  0.536531889
##  [268,] -0.240939469 -1.2434039281  0.6466094805  0.0003396845  0.134775582
##  [269,] -0.265832783  1.0663276642 -0.4606940102 -0.9211371729 -1.569891427
##  [270,]  0.779572477  0.3932077578  0.3382451395  1.2859880252  1.628407324
##  [271,]  0.373834034  0.2488733022 -1.0499378152 -0.6717183033 -0.491763506
##  [272,]  0.255418641 -0.0303182120 -1.0201763304  0.1261759959  0.688356608
##  [273,]  0.403236982  0.8790327173 -0.1128349123 -1.0144203105  0.049600662
##  [274,] -0.171202789 -0.2300946478  1.2964985301  0.7487974746  0.944726082
##  [275,]  0.188329159 -0.6392863990 -1.0904336179 -1.5404838847  0.473673873
##  [276,]  0.767260814  0.9753285771 -1.1626345645 -0.7319318462 -0.966703619
##  [277,]  0.197561466 -0.2141012849 -1.5094084468 -0.0687333880 -0.641335915
##  [278,] -0.208179359 -0.5592055125 -0.6097810214 -1.4562146329  0.881152786
##  [279,]  0.557043726  0.7475951366 -0.4845837381  0.1528246694  1.259648579
##  [280,]  0.516031184  0.8416627338  2.7563008648  0.9145651170  0.850179466
##  [281,]  1.382775925 -0.2341122853  2.4764442340  1.8145810103  3.423319723
##  [282,]  0.716870621  0.8359525435 -0.0594584145 -0.0073072754 -0.203406363
##  [283,] -0.991904883 -0.6484170814  0.1394956023 -0.5484583780 -1.283682513
##  [284,] -0.408018933 -1.1190075687  0.8124624054  0.0257980211  1.338013706
##  [285,]  1.530405410  1.5877655841 -0.7014078288 -1.5441425625 -0.726848338
##  [286,] -0.479970621 -2.0585900737  1.6107957622  0.0370515988  0.762281609
##  [287,] -0.075881853 -0.4451661475 -0.3655021501 -1.2378845005 -0.674574323
##  [288,]  0.623032686  0.8094047053  0.6083862744  0.4542839391  1.319642338
##  [289,]  0.410295862  0.3969321148 -0.2171290859  0.3995666089  0.599825511
##  [290,]  0.880650485  0.0990545564  0.5091022424  1.1174848453 -0.405728333
##  [291,] -0.445121564  0.1686551244 -0.0343306987 -1.0836865468  0.153020052
##  [292,] -0.255259468 -0.9163100164 -2.7761500862 -1.0257095041  0.482964498
##  [293,]  1.984268668  0.4376434654 -1.4850246066 -0.9238847642  0.804902455
##  [294,]  2.304790700  1.3700955230  1.3567121884  0.6392519323  1.054001240
##  [295,]  1.110989752  1.3270822704 -0.7531065596 -0.0387899911  0.616121971
##  [296,] -0.721141999 -0.3371853549  0.0431545477 -0.4033725064  0.147450002
##  [297,]  1.061794836  0.4358804126 -0.2442340879 -0.2844146777  0.583393491
##  [298,] -0.344007846 -0.4077074083 -1.3523194816 -0.4217464669 -1.089531501
##  [299,]  0.269135991  0.0139169284 -1.0031786862 -1.5239777796  0.413390656
##  [300,] -0.160594004  0.4110315059 -0.6532244273  0.7392374635 -0.061730960
##  [301,] -1.583289970 -0.9787594469  1.1788678477  1.4114077028 -1.022486220
##  [302,] -0.063305435  0.6396105715  0.8706408653  1.2840658090  0.927707666
##  [303,]  1.064489357 -0.0014599631  0.9101698546  0.9348562630  2.433946075
##  [304,] -0.669726383  0.2576764913 -0.2684557092  0.9435710753 -0.496322798
##  [305,] -1.037362608 -0.8254083951 -1.9692688623 -1.2915849515 -2.195223602
##  [306,] -0.529724899 -0.1795803119  0.1404200602  0.3679264755 -0.324160491
##  [307,]  0.869490254  0.5928569179 -0.0977221323  1.2332165103  0.635057357
##  [308,]  0.022975681 -0.7137255660 -0.9002062381  0.4928885811  0.202977940
##  [309,] -0.628596245 -0.6010695567  0.3882520030 -1.6585628758  0.493335289
##  [310,] -0.345721982  0.6611065842  0.2171797260  1.1294082633 -0.439184016
##  [311,]  0.633968412  1.1911135276  1.4530703650  1.5923393148  1.162400509
##  [312,]  1.509908017  0.9268151377  0.2896943886  0.7411091253  0.706343526
##  [313,] -0.291686899  0.8296064143  1.0960752192  0.3311299225  0.367518395
##  [314,] -0.499193875 -0.1302717864  0.0954451938  0.3475105875 -0.568947569
##  [315,]  1.783936239  2.0373551457  0.8616003013  1.0316265400  0.369572522
##  [316,] -0.318717820 -0.1869080214  1.6491006019  1.1113177081  0.998484425
##  [317,]  0.482730698 -0.4918129039 -1.8489842326 -0.5149312052 -0.520866945
##  [318,]  0.480552268  0.4964290068  0.4706239780  0.6826898282  0.830977825
##  [319,]  1.688789758  2.2388059294  1.1318520668  0.9775425796  1.735002093
##  [320,]  0.925573516  1.9655947475  0.6378233808  0.6773659831 -0.061355378
##  [321,] -0.260103681 -0.9924248661 -0.3339252059  1.2284795493 -0.922145431
##  [322,] -1.205747088 -0.4561650664 -1.3579722946 -0.2196117361 -1.528919939
##  [323,]  0.757453256 -0.5329522576  0.3872057541  0.9109419512  0.579681265
##  [324,] -0.641464018  1.3135296532 -0.1056548685  0.7200101080 -0.575423190
##  [325,] -1.090948959 -0.7262433890  2.4419144019  1.9818479194  0.586810916
##  [326,]  0.028155457  0.7058336343 -1.0150761936 -0.4109903652 -2.132405214
##  [327,] -0.959305873 -0.9291006487  0.9526208845 -0.1380257684 -0.550375154
##  [328,] -0.653267093 -0.7016097068  1.1231306092  1.7254790034  0.670442991
##  [329,]  0.443264847 -0.2771007726 -0.6038241878 -0.9453797790 -0.929495089
##  [330,]  1.217453005  0.0138709560 -0.0586995715  0.9510628683  0.430113959
##  [331,]  0.068080934  1.7947864746 -0.0476388387  1.3085130883 -0.644956112
##  [332,] -2.264942904 -0.4870158390 -1.7168797031 -2.3636710389  0.265388897
##  [333,] -1.298585643 -0.8666755664 -0.3571998778 -1.9020036746 -1.872186394
##  [334,] -1.016791681 -0.8863375107  0.3334557185  0.7152591441 -0.160408334
##  [335,]  0.435608252 -0.8619913774  0.5690482012  1.5437458733 -0.261453778
##  [336,] -0.033974819 -0.1060401884  0.6548761325 -0.9155414529 -1.354165719
##  [337,] -0.244864076  0.2701506056 -1.0956763959 -0.7423383238 -1.436744173
##  [338,]  0.806685535  0.6020886313  0.7576686241  0.7880453581  1.139703084
##  [339,]  0.971166302  0.7075021990  0.7230668553  0.3670646029  0.349726100
##  [340,] -0.256511441 -1.3543243087 -0.0512113343 -0.9373163027 -1.432237652
##  [341,] -0.417089378  1.0899684713  0.8264988360  0.1750581694  0.296342077
##  [342,]  0.378390715  0.5453924609  0.7059551017  1.2078444557  1.277178480
##  [343,]  1.164318615  1.1178687361 -0.7333175217 -0.1418087576 -1.456666478
##  [344,] -0.004573503  0.4932242124 -1.2658044465 -1.2840704243 -0.111836586
##  [345,]  0.713583619  0.7061107058 -0.2447159766 -0.0938184863  0.566397571
##  [346,]  0.606923738  0.4026004330 -1.0661938340 -0.5722609376  0.430850311
##  [347,] -1.432914062 -1.4044463959  0.0621158215  0.8397949266 -0.807667202
##  [348,]  0.407930425  0.0947848089  2.2525503911  0.5171063710  0.520665328
##  [349,] -0.814594971 -1.0730695146  0.9203787813  0.0619675189  0.011711172
##  [350,] -0.994587715  0.1868166864  0.4112871771 -1.4590532198 -0.840478773
##  [351,]  0.695797991  0.5504742510  0.2207879129 -1.4846758952 -0.184300251
##  [352,]  0.507295290  0.1638645235  0.9807169390  0.5283360661  0.607215329
##  [353,]  0.857737001  0.0003029028  0.7454601989 -0.2942785666  1.214297757
##  [354,]  0.986464934 -0.0861325733  0.5237107107  1.2226161741  1.524742828
##  [355,]  0.767966065  1.4121882971  0.5976443544  0.6401226603  2.085539583
##  [356,] -1.002419458  0.0237732550 -1.4483452453 -0.5587307030 -0.758986991
##  [357,]  0.696898031  0.2643741757  0.4007440365 -1.0748408856 -0.674194046
##  [358,]  0.375378186  0.1045510695  2.1295259191  0.2222690944  0.727724000
##  [359,]  1.982109749 -0.2146254999  1.5664498307  1.3714645632  0.462235582
##  [360,]  3.257196367  1.6571727594  0.5409598717  0.0876746397  2.487249618
##  [361,]  0.278226402 -0.7306323496  1.6469063257  1.4337713744  0.312153272
##  [362,]  0.351854831 -1.8979291423  1.4039089652  1.3631072962 -0.586483673
##  [363,] -0.176398619 -0.1218170562  1.3068263489  0.2358277312  0.011713027
##  [364,]  0.095285199  0.0954983090 -0.7097712550 -1.8754592381  0.552802712
##  [365,]  1.037595193  1.1077818003  0.3559033524 -0.1431241475 -1.024206125
##  [366,] -0.543295416 -1.3965025171 -0.5720278915 -1.8031054773 -0.148055671
##  [367,] -2.020485606 -0.0113690811  0.8949325714  0.6968559850 -0.291097191
##  [368,]  1.052996093  0.0268453870 -0.8664627234 -1.3671320810 -1.212582562
##  [369,]  1.175765540  1.5149902635 -0.9532260948 -1.9592576245 -0.204567293
##  [370,]  0.413385256 -0.2243764312 -0.4981461481 -0.8570750598 -0.188245900
##  [371,] -0.184002062 -0.1433883519 -0.9142264311 -0.5486412712 -0.827168175
##  [372,] -0.641736348  1.3075343392  0.9472106195 -0.0890578389 -0.686753429
##  [373,] -0.455043949 -0.7419137449 -0.4010545947 -1.1646686974 -0.305647232
##  [374,] -2.586834816 -0.5264327918 -1.3923641724 -0.5826874288 -0.147691068
##  [375,]  0.811635318 -0.2168062161  1.1471702531  1.6471041628  0.303393839
##  [376,]  0.455976655  0.4376101778 -1.1394604659 -2.3492378317 -2.554050436
##  [377,]  1.329256809  1.5775218255  0.1389100220  0.1238195215  0.143565366
##  [378,] -1.546049991 -0.0890789637 -0.2394452754  0.6322484594 -1.625986470
##  [379,] -0.840541559 -1.3991939173 -0.0380052497  0.2636570437  1.828651281
##  [380,]  0.889249733 -0.6390838648 -1.5469094022 -0.7192966454 -0.202075085
##  [381,]  0.830877804 -0.2605852365  0.1591136561  0.3869196212  0.270329098
##  [382,]  0.331233543  0.8773862365 -0.4186394264 -0.9813592457 -0.487657568
##  [383,]  2.336408167  1.5595616709  1.1774853252  0.6245641136  1.803626594
##  [384,]  0.808361859 -1.0275113414 -0.5013402161 -1.1585387756 -0.493055886
##  [385,]  0.370778830  1.2099603373 -0.7871062270 -0.3294401375 -0.306293291
##  [386,]  0.711338636  1.7883403388  2.5977922421  1.6778629629  1.518786824
##  [387,]  0.426177915 -1.4266600442  0.7488666143  0.0782473767  1.316633648
##  [388,]  1.627257223  0.7083452919 -1.4076791038  0.0248569680  0.475626051
##  [389,]  1.173565886  0.6387453939  0.6129658323  1.4919134222  0.582967506
##  [390,]  0.630205033 -0.5526838933  1.2626825533  0.2281609071  0.158540484
##  [391,] -2.589432175 -1.1299986940 -0.0204124607 -1.2901524411  0.134076043
##  [392,] -0.988284611  1.2821823837 -0.8369722427 -1.3401789872 -2.047471792
##  [393,]  1.997641501  1.5995634649 -1.2393378402 -0.1726393580  0.592368671
##  [394,]  0.587134784  0.1588251249 -0.2103277710 -0.3912901165  1.609984070
##  [395,]  0.848700857 -0.4568155496 -0.8145766471  0.7587316117  0.932796568
##  [396,] -1.101003303 -1.4972194927 -0.8369449441 -1.5150170763  0.528638999
##  [397,] -0.859507658 -1.1921446168 -0.8737221157 -0.8788162081 -0.752929029
##  [398,]  0.400383608  0.6599094068  0.5009212110  0.3856801276 -0.142283762
##  [399,] -2.016634370 -1.3004063720 -0.8453051666 -0.2992207837  0.172648678
##  [400,]  0.039868976  0.3165202553  0.5897505422  0.4439205350  1.004080119
##  [401,] -1.087290414 -1.5172621452 -1.1675685915 -0.1813640903 -1.340213024
##  [402,]  0.926695761  1.8303579870  0.5814146787  0.4926390819  0.537968381
##  [403,] -0.544942914 -0.7301438878 -0.4255785531 -0.3836338281  1.479717017
##  [404,] -1.282957386 -0.5535250095  0.1305577498  0.1914224176  0.611010474
##  [405,] -0.170201233 -0.4369416277  0.8206284984 -0.2711570532  1.677884077
##  [406,]  1.087115604  1.1410632493  1.4811081736  0.4110812139  2.069880740
##  [407,]  0.959269689  0.9681420255  0.5309622950  0.7491070306  1.576124598
##  [408,] -0.716082549 -0.2226469070  0.3699306587 -0.0685071046  0.801477117
##  [409,]  0.303636036 -0.5079309561 -0.5257595959 -0.4418903554 -0.843843471
##  [410,] -1.125014932 -0.7220562480 -0.4939798622 -0.6681613833 -1.595435552
##  [411,]  0.170569132  1.1961736388  0.9119574751  1.7170559679 -0.600753755
##  [412,] -1.028840370 -1.0055149334 -0.2826333885 -1.0426933521 -0.101431584
##  [413,] -1.283560352 -0.9519532534  0.8866571938  0.4172804408 -2.094507546
##  [414,] -0.761512472 -0.5649884073 -1.3552497819 -1.0183870580 -1.420698634
##  [415,]  0.004066334  1.3371705918  1.2688550271 -0.6925860770 -0.749833791
##  [416,] -0.641180632 -1.3071278662  0.1666269472  1.1551569247 -0.223713082
##  [417,] -0.459657034  0.2002958657  0.7141146366  0.1408447681  0.704241184
##  [418,]  0.735191665 -1.5639454157 -0.1646925930 -0.7780528728  0.546388109
##  [419,] -0.480679603 -0.8893799081 -0.1863686816 -0.8735531857  0.059845771
##  [420,]  1.211426358  0.5477486133 -0.0039994662 -1.0893909286  0.388898414
##  [421,] -0.558969826  0.5475523090 -1.2999143581 -1.8137304597  0.460399710
##  [422,]  0.295271707  0.8255961944 -0.9853840322 -0.9671872492  0.507218434
##  [423,] -1.003925964 -0.7330983865 -0.3909657675  0.0447701484  0.996084881
##  [424,]  0.668764533  2.0820669300  0.7405470397 -0.7460199810  0.681819259
##  [425,] -0.753915714  1.1066803063 -1.0363729003 -2.2145057690  0.276928886
##  [426,]  0.695904119 -0.0295933256  1.4798766663  2.0334793398 -0.515490512
##  [427,]  0.505728372  1.0130686666 -1.0936238973 -0.6926761475  0.417355740
##  [428,] -0.922841501  1.6727338098 -0.6611183958  0.0434572742 -1.482856774
##  [429,] -1.144578530 -1.1581908519 -0.9563965612  0.9134492974 -0.499587841
##  [430,] -2.327737159 -0.7874611253  0.1975611813 -0.6687368812 -1.350351619
##  [431,] -1.573714384 -1.7172160040  0.0528752347 -1.2508665878 -0.727141347
##  [432,] -1.250487962 -0.2308105928 -0.2540725750 -0.1750090931 -0.704000545
##  [433,] -0.939342757 -0.1188034349  0.1254711511  0.1156056982  1.354743911
##  [434,]  2.445998633 -0.1431324469  1.4939233603  0.3225869031  0.433958031
##  [435,]  0.126966487 -0.4788299303  0.2313681844  0.1739597735 -0.098988704
##  [436,] -0.329803593  1.1436686885  0.8820977792 -0.7584598259 -0.901741032
##  [437,] -0.116698700  1.5005919211 -1.8273544209 -1.3915994909 -0.596171264
##  [438,]  1.710719576  2.1311082354 -0.3758762076  1.4010837625 -0.157390315
##  [439,] -0.863434991 -1.4313195666 -1.3498473078  0.2718845475  0.452102751
##  [440,]  0.858722070 -0.0741980558  1.1293141882  0.2854714572 -0.425011003
##  [441,] -1.359806016 -0.1660584586  0.8132817601  0.8943064300 -0.337491791
##  [442,] -0.016648688  0.0175487682 -0.7111236264 -1.9153052675 -0.500708979
##  [443,] -0.917859305  0.9912741683 -0.3239998696 -0.4648146229 -1.360205097
##  [444,] -0.883712553  0.2885399482 -1.1261287278 -0.5383544028 -0.218914515
##  [445,] -0.761116253 -0.2989405832  0.7058728418  0.9468869755  1.756808678
##  [446,] -0.388458616  0.0053321210 -0.9839344514 -0.6897153920  0.239220645
##  [447,]  0.513625636  0.3287259465  0.0125026162 -0.2489788069 -0.713200462
##  [448,]  0.544840140  1.0642663648 -1.5478437438 -1.2321386070 -0.819073667
##  [449,]  0.865298802  0.9976941923 -0.2958001435 -0.6481493983 -0.816649853
##  [450,]  0.506856599 -0.1980002201 -1.6059453367  0.2500304290 -0.397358031
##  [451,]  0.855659365 -0.4382015698 -0.7937746454 -0.8552987311 -0.305552629
##  [452,]  0.548070030 -1.4089572999 -0.9594265888 -2.0052342714  0.575724169
##  [453,] -0.162045540 -1.1652076435 -1.4788384257 -1.1289865962 -0.291958351
##  [454,]  1.574121903  0.8573073071  0.4533962997 -1.3944840308  2.181840155
##  [455,] -0.486795316  0.8968723180 -1.7972336997 -0.5692493090 -0.955217261
##  [456,] -1.671653582 -2.0088368642  0.4850221696  0.4619256398 -0.374742313
##  [457,]  1.087547066  0.8081366043  0.5813268696  0.4149877768 -0.437859473
##  [458,] -0.411011081 -0.0891014890  1.6383807143  0.8216434366 -1.230271676
##  [459,] -1.023802991 -0.6356444931 -1.7421940194 -0.5580166933 -0.776353387
##  [460,]  0.336427989  0.0576385170  1.2730035421  0.7285173332  1.573730476
##  [461,] -0.403739397 -1.0118678376 -0.0403934740 -0.5036394973 -0.082937523
##  [462,]  0.175359581  0.4085364697 -0.2408563836 -0.0896819099  0.860808931
##  [463,]  0.496855128 -0.2776029189  0.4230157270  1.6546251075  1.423023323
##  [464,]  0.961617965  0.7304369012  0.7926050164  0.2328535587 -0.567360430
##  [465,]  0.841509985  1.4240921563  0.6188093298  1.2617410052 -0.716194332
##  [466,] -0.804981537 -1.2214056386 -1.5520380241 -0.5503240115  0.525466422
##  [467,]  0.568045784  1.9023524386 -0.0808520483 -0.2319203754  1.351832334
##  [468,] -0.888661020  0.8679191521  0.1353952075 -0.4293776429 -1.076088304
##  [469,]  0.972698801  1.9772949375  1.1051127675 -1.3214219982 -0.127617524
##  [470,]  1.423810658  1.4599647371  0.4518665675 -0.4997803601 -0.078103159
##  [471,] -0.509028873 -0.0304548035  0.0055489990  0.3115433015 -0.089284793
##  [472,] -1.226979550 -0.2226775166 -0.9113124814 -1.6533319270 -0.883032587
##  [473,]  0.895946561 -0.3362682771  0.7218766747 -0.4670849649  0.717769503
##  [474,]  1.784065660  1.4446760042  0.5332650121  0.9215498041  1.676725560
##  [475,] -0.061632731 -0.1366275872 -0.4819580564  0.0774643278 -2.445292858
##  [476,]  0.433489126 -0.0528082254 -1.0742267904 -1.4284040081 -1.333649008
##  [477,]  1.637264532 -0.3270595439  0.2352437978  1.3891083841  0.479898821
##  [478,]  0.862907512  0.4133701946 -0.8530807007 -0.9016990737  1.314060254
##  [479,] -0.349565961  0.0466140185 -0.9549486360 -0.7239352420 -1.883643368
##  [480,]  1.348436644  1.1516746771  1.2756506085  1.8634888563 -0.027844143
##  [481,]  0.017826995  1.5211696870 -0.6305268198  0.3229438176 -0.256571903
##  [482,] -0.666083816  0.5352195945 -1.9845492943 -1.2351495811 -1.284755833
##  [483,]  0.465197069  0.0666901413  0.6617564393  0.8014740885  0.228113434
##  [484,]  0.486863368  0.0448052487 -0.6603660542 -2.3615513977  0.214837848
##  [485,]  0.089974794 -2.3489363262 -1.3931191468 -1.1395926672  0.573202943
##  [486,] -0.210119913 -0.4890217359 -1.4524117793 -2.4024277508  1.266635409
##  [487,] -1.213111229 -0.1377042758  1.8377940708  2.1213729453  1.319813108
##  [488,]  0.454312772  1.3643197532  0.1050578814  0.4401431557 -0.018858595
##  [489,]  0.694496917  0.2407824472 -0.7524796962  0.0360120134  1.177724780
##  [490,] -0.604980078 -0.6186170800 -0.0139154029  1.5825369820 -0.713327157
##  [491,]  1.871249311  0.2217299673 -0.9613675803 -1.4239182926 -0.185452216
##  [492,] -0.841547821  0.2098080591 -0.5208965919 -1.5583177265 -1.767332655
##  [493,]  0.753475601  0.2577193578 -0.5498497965 -0.7197197436  0.230267925
##  [494,]  0.341676045  0.7270187474 -0.4380490326  0.7080845301  0.616574538
##  [495,]  1.137506068  0.2788188495 -0.0136139062  0.3478962961  0.447325644
##  [496,]  1.374670196 -0.0616864398  1.8253318322 -0.0026533413  0.543298893
##  [497,] -0.019530848  0.1658923012 -1.3073784500 -0.3050939075 -1.410286021
##  [498,]  0.565942101  0.2281282105 -0.1984599496 -0.6044498330 -0.687827514
##  [499,] -0.377091925 -1.3982754046 -0.4941684558 -0.4223459668  1.750773509
##  [500,]  0.100998110 -1.0203109660 -0.0431759537 -0.1823646879 -0.066159785
##  [501,] -1.775392597 -1.4254941533 -0.3232514414 -1.2277012530 -0.205693152
##  [502,] -0.685170272 -0.1015340761  0.7874134822  0.3851298259 -1.914526958
##  [503,] -1.542331657 -1.1898232133  1.1598104643  1.5279664204  0.715122109
##  [504,]  1.960194374  1.4840960008 -0.5206622838  0.2616979468 -0.304031158
##  [505,]  0.497141579  0.4418719461 -0.4679818105 -0.7270754648  0.493100819
##  [506,]  1.017721281  0.5122532901 -0.5824214007  0.2078145283 -0.303577348
##  [507,]  0.637376138  0.7850640731 -0.1348828406  0.5905695192  0.702652527
##  [508,] -1.708799410  0.6782281337 -0.2551619559  0.5760558322 -0.333590059
##  [509,] -0.997059936  1.4563799788 -0.3337191820 -0.0578104238 -2.506786049
##  [510,]  0.920311325  0.8834623241  0.2701294284 -1.1798622369  0.345904048
##  [511,]  0.586149877 -0.0219030778  1.3832183999  2.0533391255  0.473996631
##  [512,]  0.556143342  0.4860194583 -0.2668512702  0.4890729239  0.987070244
##  [513,] -1.139133167 -1.5364356780  0.7337018708  0.0711575371 -1.123200466
##  [514,]  0.581849944 -0.9923272866  0.3704966713  1.3830439244 -0.560649379
##  [515,]  0.534040880  1.3375220850  0.2281219970  0.2182839685  0.487037567
##  [516,]  0.675020701  1.5680919294  0.2152749461 -0.8322750479 -0.732208227
##  [517,]  0.302619724 -1.1630667337  0.7311289645 -0.2456818254  0.586330439
##  [518,]  0.652647470  1.5504026587 -0.0135406321  0.8434028772  1.459029995
##  [519,]  1.358811189  1.6947566921  1.3817510605  1.8317270504  1.856415860
##  [520,] -1.545196969  0.1269542813 -0.4908815880 -0.3724954400  0.840559302
##  [521,]  1.386544850  1.4127142734  1.5214626932  1.0371083342 -0.638605093
##  [522,] -0.232902663 -0.9534999677 -0.1134070510 -0.5914444971 -0.330757560
##  [523,] -0.287119993  1.6000140737 -2.9040510978 -1.8971505811 -0.405418734
##  [524,]  3.225224609  2.1293621864  0.4954988298  0.6029103195  1.496011493
##  [525,] -0.870437726  0.3365495907 -0.4235161614 -1.0736675174  0.450013482
##  [526,] -0.321118820 -1.1713438664  0.2066661401 -0.1458971563 -0.566712728
##  [527,]  1.003990819  1.6173321170  0.7372294288  0.3788339800  0.351859906
##  [528,]  1.843445391  1.7113678018  0.1456256764 -0.0736053739  0.963577087
##  [529,]  0.153703769 -0.3051231289  0.8784935452  0.2745010440  0.853830360
##  [530,]  1.419316990  1.3533155089  0.2888333092 -0.5171600425  0.577316854
##  [531,]  0.528214183  0.6305353265 -0.3665324228 -1.2038232216 -0.041254724
##  [532,]  0.609184671  0.0344765210 -0.9570499551 -1.8157518974 -0.756509582
##  [533,]  1.098427921  0.8689701655  0.1710746714  0.3295674309  1.178091058
##  [534,] -0.536190724 -0.6786236682  0.2159089050  0.3303563212 -1.582669513
##  [535,]  0.443273871 -0.3905454527 -0.5855308201 -1.2434945597 -0.995855969
##  [536,] -1.690409210 -1.0064409469 -1.7924435128 -1.9742082876 -0.838326835
##  [537,] -0.276337299  0.0482704789  0.0719654868 -0.0421898459  0.918409017
##  [538,]  0.972903498  0.9493613575  0.2838118152 -0.1092947497  0.232619098
##  [539,]  1.354609372  0.6702746576  0.9030001672  0.7379825513  0.277879970
##  [540,]  2.206152332  0.6350296845  2.1180607033  1.2010153601  0.725139262
##  [541,] -1.541554225 -0.0107995388 -0.5476548411 -0.5268912828 -1.120418804
##  [542,]  0.356298238  1.2910580479  0.8723502989  1.9425764140  0.858537362
##  [543,]  1.102163208 -0.2515372149  0.9697816094 -0.0644626177  0.981705000
##  [544,]  0.907922154  0.5328185766  0.5975119682 -0.0032253315  0.716278702
##  [545,]  0.006570081  0.4493865175 -0.7181395569  0.4422653807 -0.538110186
##  [546,]  2.001132226  1.8686465080  1.8031646944  0.1978252785  0.720551672
##  [547,] -1.221976199 -2.9154732755 -1.1310087948 -0.4243584820  0.888879529
##  [548,]  0.763813228  1.3026235439  0.5361246515  1.1382875377 -1.258253420
##  [549,]  1.602982776  1.8544750938 -1.2432718530 -0.7287586570 -0.434315029
##  [550,] -0.718651875  0.2856138133  1.5748075821  0.8263824906  0.198225055
##  [551,] -0.690095868 -1.9999766349 -0.2880692097  0.1392539427  0.277305109
##  [552,]  0.407347634  0.2760806170  0.1714402869 -1.1363150864 -0.373489678
##  [553,] -0.225799423  0.6306308246  0.6925321389 -0.3625203674  0.583558991
##  [554,] -0.386259034 -0.2523624885 -1.1269876527  0.2685274005 -0.318134118
##  [555,]  0.420352772 -0.3862827524 -0.0597419362 -0.3914879687  0.828577309
##  [556,] -0.693507788  0.0736191984  1.1757287471 -0.0221554893 -0.795543552
##  [557,] -0.035694429 -0.5517775603  0.6871104533  0.6487385444 -0.102542513
##  [558,] -0.567554864  0.7457032722  0.1993002470 -0.3042767774 -0.955705707
##  [559,] -0.329097922  0.4817925982 -0.2643014050  0.4806561674 -0.845478152
##  [560,] -0.314589815 -0.3225736030 -0.1671370716 -0.2853055680  0.007985367
##  [561,]  0.487330939  0.1416880177 -0.1485773213 -1.0967979666  0.304835891
##  [562,] -1.906647800 -3.0686696009 -1.9125166043 -1.5721508217 -0.938348368
##  [563,] -0.673597478 -0.9705941220  0.7391283542  0.0312811965  0.942226158
##  [564,]  1.630796891  1.6770234015  2.0719494911  0.8573866398 -1.441174299
##  [565,]  0.945081187  0.0777369905 -0.3869101566  0.5112240409 -0.403967922
##  [566,]  0.503990842  0.9397267790  1.5447333061  0.9235648941  1.239344207
##  [567,]  0.124601043 -0.2557215027  0.9070674180  0.3425074916 -0.720373272
##  [568,] -0.680490536 -0.0459469952  0.7643438222 -0.5950918952 -0.464484385
##  [569,]  0.696376905  1.0803645142 -0.3615913119 -0.9073795543  0.524349603
##  [570,]  0.347043035  1.4928416996  0.3691908327  0.6179176500 -1.759074085
##  [571,]  0.488605812  1.7485934207 -1.4055502239  0.7289929993 -0.526816419
##  [572,] -1.968260680 -0.6608658048 -2.0476943153 -0.4806560807 -2.928549883
##  [573,]  0.208139551  0.4544391516 -0.3385771791  0.5110944094 -0.824352944
##  [574,] -0.576729318 -0.3908907821 -1.4167801730 -0.7911242331 -1.850229403
##  [575,]  1.251644849  0.3054896577 -1.0683376550 -1.1019270525  1.195840021
##  [576,] -0.518431678 -1.8101036694 -0.2319512068  1.7469784292 -0.134221196
##  [577,] -2.260770162 -1.6522025777 -1.5931530076 -0.2983338569 -1.797979424
##  [578,] -0.999449464  0.0993364229  0.4253196627  0.5937801998 -0.650322979
##  [579,] -0.679312884 -1.6446502250 -0.3257864604 -0.9552317331 -1.136155413
##  [580,] -0.815380855 -0.9544533664 -0.7406147770 -0.1817963512  0.180695033
##  [581,]  0.729190656 -0.7089437082 -1.6629015029  0.0870758529  0.658783973
##  [582,]  0.224540298 -0.4760450280 -0.8904216949 -0.2678951698 -1.288953110
##  [583,] -0.288562858  0.3901730187 -0.4092297943  0.6135171523  0.576815119
##  [584,] -0.369989125  0.4571825709  2.4536583690  1.5027129355 -0.733695024
##  [585,] -2.349525555 -0.5889831347 -0.5140043791  0.6996598205 -0.284070682
##  [586,] -0.916907181 -1.5321411499 -0.7397955554 -0.6684251107 -1.062923047
##  [587,]  1.078708547  1.0472209459 -0.6366438922 -1.7057733866  0.966856204
##  [588,] -0.738882710  1.2241010445 -1.3086794309  0.6901286192 -0.391887091
##  [589,] -0.608287276  1.3056612311 -0.7057773248  0.2149926623 -0.477233058
##  [590,] -2.326117556 -1.5141519303 -1.8146065414 -0.6359707733 -0.556182139
##  [591,] -1.231462178 -1.8465615652 -0.8162355723  0.1029471006 -1.836668194
##  [592,] -1.430185301 -2.1117899463 -1.3126865517 -0.5316115215 -1.302862068
##  [593,] -0.370427476 -0.1077479794 -1.3351710914  0.0906162762  1.345821188
##  [594,]  0.132607187  0.0128080684  0.0887645080  0.0368639872  3.569834030
##  [595,]  0.191983486  0.8634587839 -2.1894708663 -1.2717122462 -2.214897703
##  [596,] -0.308718398 -0.0963526861  0.5927026272  0.6417353303  1.031535660
##  [597,]  0.491515543  0.4460283647 -1.1675297754 -0.4941581039 -0.438458698
##  [598,] -0.231925606  0.4302670759  0.5846257192 -0.5402580886  0.597064867
##  [599,]  0.382416435 -0.0219843069 -0.6086252115 -0.7645355817  0.150150015
##  [600,] -0.345855873 -0.4484636665 -1.6747817574 -1.2951394263 -1.293425675
##  [601,] -1.322876615 -1.0127888741 -2.0627930977 -1.4942251586  0.878400446
##  [602,]  1.130880278  0.9691125388 -0.2892090499 -0.3558506415  1.327508751
##  [603,]  0.331105822  0.2490665370 -0.1395381212 -0.7838108330  0.272440185
##  [604,]  0.485127582  0.3462204718  0.1432923487  0.0552195371  0.334035972
##  [605,]  0.223947668 -1.7027026686 -0.4323639522  0.5800857256 -0.709465700
##  [606,]  0.864496860  0.9796039083  0.4047578947 -0.2051739759 -0.665351022
##  [607,] -1.818608815 -1.4823186440 -1.8640330914  0.3528185782 -0.462241994
##  [608,] -0.291202821  1.1975959033  0.1741696244 -0.9809068009 -0.076848774
##  [609,]  0.745078120 -0.6953514876 -0.1456115371 -1.4468992646  0.576649996
##  [610,]  2.326556379 -0.1662254320  0.6859449369  1.8914761789  1.127355020
##  [611,]  1.153624281  1.1195151036 -0.1263214915  0.9448258454  0.217966112
##  [612,] -1.434568732 -1.2172260515 -0.8314336339 -0.4933289772 -2.566170058
##  [613,] -0.432676798 -0.8922013143 -2.4176642598 -1.8737266784  0.126240230
##  [614,]  0.928878939  0.7196562832  0.5569878565  0.3972844533  0.049231738
##  [615,]  0.032951377  1.0962519246 -1.4329648190 -1.0188194240 -0.237953987
##  [616,]  1.456798035  1.3337512823 -0.4954874602 -1.2113985070  0.695114726
##  [617,]  0.514524633 -0.4848816343  0.1061452931  0.1180770018 -1.304870903
##  [618,]  1.239041175 -1.3568368713  1.5486294745  1.7523965127  0.412131783
##  [619,] -0.578017858  0.4778153287 -0.5002590528  0.3567921489  0.045073313
##  [620,] -0.132944612  0.1341195149 -0.5112554319 -1.6712794357 -0.648883252
##  [621,]  0.838751586  0.1437005601  1.7227811915  1.2581249365 -0.363522648
##  [622,]  0.376336969 -0.9206017917  0.2511642781 -0.7515204293 -0.465463735
##  [623,] -0.129251290 -0.3078027744  0.8683879908  0.1771315013 -0.399457077
##  [624,] -1.234092484 -1.4096523455  0.0178168604  0.5260609424 -0.647487749
##  [625,]  0.919730220  0.9802868548  1.2506887310  1.4198984259  0.171371976
##  [626,] -0.955759820 -0.2989562083  0.5863273332  0.4825168133 -0.712150606
##  [627,] -1.693188554 -0.1706364640 -3.3095408346 -2.5827971812 -2.214489013
##  [628,]  0.564689269  0.5622764194  0.6400568717  1.5864607212  1.040312897
##  [629,] -0.674112060 -0.8989525363  0.3804501804  1.3675440302 -0.530628323
##  [630,] -0.721203942 -0.7507945680 -0.3194772563 -0.4988974463  0.772537593
##  [631,] -0.522078533 -0.4044945545  0.7797919140  0.6468306240  0.204854421
##  [632,]  1.952392994  2.0444248686  0.8353893073  0.1983582316  2.327755286
##  [633,] -0.986529187 -1.4546569098  0.4898802657  0.2273049078 -0.985274863
##  [634,] -0.606519752  0.2642182310  0.2445417472 -1.0305269968 -1.742967595
##  [635,]  0.103138898  0.1295410060  0.7115615486  0.2627709089  0.395656425
##  [636,] -1.174540816 -0.5874807568  1.1429369876  0.5295889048  1.584796928
##  [637,]  0.808726049  0.8123531748  0.8602106120  1.8430528351  0.399645687
##  [638,]  1.130529102  0.7467046759  0.0308596452  0.2534794237  0.821895314
##  [639,]  0.167597990  0.5158613805 -0.8184248420 -0.6924174371  0.111919657
##  [640,]  1.113462186  1.9596924621 -0.1315499438  1.4876976499 -0.502908695
##  [641,] -0.293945430  1.2027923190  1.1419606502  1.0470999304  0.118800896
##  [642,] -1.469049089 -1.5760821335 -2.3933457428 -1.2133160553 -0.956378926
##  [643,] -0.446165084  0.2482963210 -1.3667171331 -0.5978369926 -0.365898338
##  [644,]  0.898591301  1.1472983963 -0.0981831378 -0.9776875728 -0.937264979
##  [645,] -0.645524097 -2.0078027359  0.9686143566  1.3295637625  0.468833436
##  [646,] -0.439639677 -0.1162044070 -1.4015391330 -1.5284962890 -0.654550558
##  [647,] -1.746300059 -1.2490621121 -1.1317055212  0.5949608332 -2.242773586
##  [648,]  0.853670062 -0.4783423975  1.8278032040  0.4038241635  2.010641904
##  [649,] -1.226370461 -1.5266015391  0.3894385885 -0.5205388890 -1.091539477
##  [650,]  1.554270635  0.1137022132 -0.5034194552  0.1103367950 -1.485545856
##  [651,] -0.152900737 -0.0737142773 -0.6738659173 -0.9992982318  2.167222350
##  [652,] -0.966064352 -0.1187754634 -0.5791480426 -0.6545203023 -1.497227609
##  [653,] -0.922725914 -1.4793835257 -0.2349635377  0.1406484306 -0.700697800
##  [654,]  0.604828075 -0.1884402161  0.8177049514  0.4658956906 -0.249538753
##  [655,] -0.727534001 -0.0768877536 -1.2365537688 -1.5080802653  0.040662053
##  [656,]  0.381777758 -0.7262748731 -0.5054725953  0.9253289116  0.698011424
##  [657,]  0.059656885  0.3339309967 -0.0671973496  0.8562612556  1.398595616
##  [658,] -1.918386751 -0.1805906415  0.1680832391  0.1846629675 -1.178212764
##  [659,] -0.440460950 -0.6651783023  1.2949750331  0.7029508696 -1.595167778
##  [660,] -0.351802886  0.9347653955 -0.5748182386 -0.0849490247 -1.001392704
##  [661,] -1.172812433 -1.0852921051 -1.3868687463 -0.7380127316 -0.926954123
##  [662,] -0.499073918  0.7123004771 -1.3766492009 -0.1311100498 -1.595168246
##  [663,]  0.622228603  1.1432108897 -1.2550954158  0.0890078394 -0.351097682
##  [664,] -0.005311950 -0.0113615909  0.2290195395 -0.4271228251 -0.513784520
##  [665,] -1.120231004 -0.4736188619 -0.0317187184 -0.6416557785 -0.439180428
##  [666,] -0.733398157 -1.9352878538 -0.1866559509 -1.3500827720  1.092317994
##  [667,] -0.166567590 -0.6236785876 -0.6705323871 -0.4550502124 -0.841992038
##  [668,]  0.666085768  1.4647758197  2.1346976352  2.6269700919  0.693162630
##  [669,] -0.532215563  0.0965802090  0.8993522409  0.0437338903  0.805606194
##  [670,]  0.711620777  0.0899281694 -0.0002721411  0.3606606816  0.581042347
##  [671,] -1.440880460 -0.8026949663  0.0996527735  1.3754160818 -0.300476928
##  [672,] -0.685680646 -0.7614487163 -0.5185118051 -1.1381448706 -1.782301974
##  [673,]  0.158413666 -1.9384279435  0.2255133518  0.5200709890 -1.631003934
##  [674,]  1.056913355  0.2729549363  0.7884497847  0.5657929221  0.805933548
##  [675,]  0.613402823  1.8945782275 -0.9619821274 -0.0939199357 -0.628165919
##  [676,] -0.953682272 -1.0705190008  0.8463345366  1.2748577060  0.866612090
##  [677,] -0.703841970 -2.0195657858 -0.2403316395 -1.8581560405 -1.771903241
##  [678,]  0.213499198  1.7610369367 -0.1281567307 -0.9191399632  0.335777977
##  [679,] -0.917779278  1.0223511650 -0.5862835300 -0.8607462903 -1.032596640
##  [680,]  0.371874244  0.6980644811 -0.1918360247 -0.0806801044 -0.073352445
##  [681,] -0.083494251 -0.7663639148 -0.0686509247 -1.3021837498 -0.559267955
##  [682,]  0.362345369  0.1333236011 -0.0142399120 -0.5558304318 -0.717247213
##  [683,] -0.593928952 -0.8575833239  0.2667773620  0.8913985604 -0.458856408
##  [684,] -1.147048121 -0.9348293629  0.1680627480 -0.2913258870 -0.935508933
##  [685,] -0.623057058 -0.6487780448 -0.6243936061 -1.0245619939 -1.849627231
##  [686,]  0.266964712  1.5806939167  1.2001901328  1.2715946753 -1.312579719
##  [687,]  0.935405294 -1.2648286942  1.9605716228  1.2674960316  1.706754830
##  [688,]  1.419517339  0.5626597090 -0.9414042273 -2.2400032600  0.381119299
##  [689,] -0.288301339  1.2817714057 -0.3201413738 -1.5552222493  0.103352634
##  [690,] -2.960379351 -0.5702372372 -1.2596005223 -2.5057418441 -1.995841045
##  [691,] -2.174025975 -1.4976643775  1.3390685401  0.6295244544 -0.841941786
##  [692,]  0.764214533  1.4951345438 -0.6378798495 -0.2484991666  0.363840440
##  [693,]  1.316846823  0.4261535056 -0.9250611429  0.6522164503  0.478807431
##  [694,] -0.095921373  0.2836806730 -0.3825540907 -1.0582331957 -0.346951903
##  [695,] -0.062555747  1.4849821111 -0.9942784834 -0.3670106456  1.589488040
##  [696,] -1.075104273 -1.5966113476 -0.8835950194 -1.2389070762 -0.904968686
##  [697,] -2.372147582 -1.3533501977  0.7288383583 -0.0305866225 -1.362436172
##  [698,]  0.838737191  1.4509392787  0.3069906700  0.8967728724  0.214403972
##  [699,] -0.001462922 -0.6899822040 -0.4883247667 -0.4299526536  1.833183154
##  [700,]  1.113177428 -0.7406984924  0.3747201619  1.1156251207 -0.581199124
##  [701,]  0.827367972  1.1161436297  1.0731684158  0.3866267739  0.475012842
##  [702,]  0.260313627  0.2914979107 -0.5260747554 -0.2104940884 -1.966891125
##  [703,] -0.928417360 -1.0321419879  0.1804610612  1.9843851338 -0.941496873
##  [704,]  0.932390807 -0.2000951051  1.4029018030  0.9200874287  0.250630909
##  [705,]  1.266742198  0.2211692579  1.7940773311  0.6129999962  0.697101098
##  [706,]  0.364240922 -0.0515662333 -0.1448692306 -0.2919973961  0.567597555
##  [707,]  0.403542811  1.5278489897  0.8574194893  0.0870081559 -2.005603468
##  [708,] -1.638132125 -0.8763660892 -1.4523123775 -1.3870460439 -1.242006375
##  [709,] -0.031688094  0.0831010835  1.5826945099  2.2426104355  0.465692241
##  [710,]  0.755897977  0.5606536945  1.0091300030  0.9107653627  1.189645771
##  [711,] -0.333006824 -0.6363853871  0.5323824695  1.1793272105  1.197596048
##  [712,]  0.170674465 -0.2633723698  0.9362665668  1.6826868786  0.091721866
##  [713,]  1.528347760  1.5847080485  0.1830188509  1.7525021110  2.320820001
##  [714,] -0.234843677 -0.0971339186 -0.7737781063 -1.1656640702 -0.403716356
##  [715,] -0.710530829  1.6332728371  1.0166214729  1.1632133948 -0.575851286
##  [716,]  0.267553023  0.9449947563  1.5372077960  2.8139695624  0.814125150
##  [717,] -0.497381630 -1.3407603202 -0.2151119826 -1.4840920563  0.020418557
##  [718,]  1.579112378 -0.9519005558 -0.8208999351  0.0176246969  1.165095668
##  [719,]  0.369101312 -0.2820897926  1.8691762632  0.1513479869 -0.009029534
##  [720,]  2.182730138  2.0440537448 -0.7677242595  0.1774452712 -0.221116765
##  [721,] -1.257399524 -0.3971416678 -0.3106705497 -0.5049441557  0.916239758
##  [722,] -0.286561574 -0.8724730598  0.5917163908  0.6436726303 -0.338530543
##  [723,] -0.903941917 -0.7491468984 -1.3190663244 -0.2767343421 -1.270783145
##  [724,]  1.287984081  1.1033211503  0.6346676488  1.4317627989  0.403443469
##  [725,] -1.991939306 -2.2492478701  0.3470672441  0.7875921491 -0.400607972
##  [726,]  1.397083825  0.6487659430 -0.3226098263  0.9373506018 -0.124133922
##  [727,]  0.961503434  2.1791054423  0.7343425260  0.7081230801  0.880702783
##  [728,] -0.279298171  0.3946854978 -0.0148204201 -0.4426144197 -1.222500616
##  [729,] -0.164288057 -0.3040137906 -0.3229328899 -0.5774333395  0.809107297
##  [730,] -1.133174452 -0.6350896429 -1.1029203694 -1.6526809811 -1.840580654
##  [731,] -2.415736573 -2.5369202442 -0.6513818354 -0.7266384932  0.026475786
##  [732,] -1.654402656  0.0273771508 -1.8654458364 -1.8778112544 -1.337020182
##  [733,]  1.859441489  1.4542384643  0.4026671836  0.8638999056  1.045764142
##  [734,] -1.237072557  1.3547947832  2.0125292416  0.5442787578 -0.890558043
##  [735,] -1.607968488 -0.5963491336 -0.3219794019  0.0644353296 -0.304024964
##  [736,] -1.518363423 -1.7813957435  0.6305346507 -0.9772126686 -2.567427850
##  [737,] -0.745864643 -0.5721172093 -0.5128305235  1.1549526587  1.653892778
##  [738,] -0.802611025 -1.1301527271 -1.1278080607 -0.5922743052 -0.245089944
##  [739,]  0.196289885 -0.7249449523  0.0805842133 -0.2953577030 -0.486196436
##  [740,]  0.609631463 -0.5476075218 -0.7075072019 -2.2871727719 -0.402785089
##  [741,]  0.551574592  0.6835640559 -1.6693758698 -0.9424354725  0.463852744
##  [742,]  1.468335441  1.1355719664  0.0650172921 -0.3165317790  1.912167019
##  [743,]  2.458170500  1.7422655405  1.0208424062 -0.5720073393  2.364621154
##  [744,]  0.523317283  0.5759616947  0.9569678990  1.7916611378  2.389403537
##  [745,]  0.393398486 -0.2805490703 -0.8242268742 -0.2491971968  0.515951652
##  [746,]  0.672608676  1.6594901291 -1.0205756087  0.5653849511  1.791927309
##  [747,] -0.588960191 -0.7902410515 -1.1412153051 -0.7344247434 -1.385397082
##  [748,] -0.607793472  0.0429111352  0.5382638671  0.7134020183  0.606015308
##  [749,]  0.789545191  1.5726055378  0.5234377708 -1.1584343327  0.874101598
##  [750,]  0.595496977 -0.0713411097  0.0169805888  0.5133876476  0.435882254
##  [751,] -2.018170792 -1.2577491465 -1.3164593414 -0.0426483826 -0.064437326
##  [752,]  0.130550936 -0.1794636587  0.3876812676  0.5558588576  0.413910475
##  [753,] -0.125264243 -0.0625383134  0.9304778418  0.3743485561 -0.674420591
##  [754,]  0.703369130 -0.3178893946  0.9643472326  0.7373199424  2.510352023
##  [755,]  0.925916660  2.4644522531 -1.4623452493 -1.0928629899  1.656483563
##  [756,]  0.944469475 -0.0280849538  0.1522412519  0.5279370872  0.987991343
##  [757,]  0.262668115 -0.4557418557  0.1302798255  1.3499098235  1.488609005
##  [758,] -0.664896117  0.4335702024 -0.9511887665 -0.0135823403 -0.432173964
##  [759,]  1.655907542  0.6004446007 -0.7281148257  0.1127955393  1.613542309
##  [760,]  1.353100464  1.4880555327 -0.3639830494 -0.2896584735  0.875556933
##  [761,] -0.291238787  1.7733158782  1.2419791977  0.4985456599  0.772188876
##  [762,] -0.501651597 -1.2551633231  1.1949005159  1.5793736635 -0.938873358
##  [763,] -0.344795066 -1.4892624782  1.6461243758  0.2454085664  0.171798299
##  [764,]  1.094455154 -0.0348338404 -0.6839278252 -0.9416220155  0.558757517
##  [765,] -0.301350229 -0.6292309937 -0.4885420615 -0.2677018662 -0.182209887
##  [766,]  0.282499471 -0.9705866198 -0.5856343284  0.0085349125  1.128475550
##  [767,] -1.510585497 -2.4598048587 -1.1458250605  0.3727768766 -0.541488117
##  [768,]  1.064384044 -1.2953593514  0.4682335897 -0.1569364117  0.271566659
##  [769,]  1.966255943  2.1451468442  1.0738461296 -0.5640756762  0.811637658
##  [770,] -2.310705716 -0.4117123336 -0.4398996672 -0.0438083228 -2.471124508
##  [771,] -1.223660240  0.2531860173 -0.3192983728  0.8118190491 -1.237042225
##  [772,] -0.374335256 -1.0152567383  1.7583303485  1.8292797400  0.216136606
##  [773,]  2.475027481  0.2401982016  0.6253403928 -1.5713842456  0.147586637
##  [774,]  0.438237265 -0.3624739758  0.0330021396 -0.6926141187  0.787377998
##  [775,]  0.206385736  0.1556230752 -1.5374714503 -0.6240549361  0.076296318
##  [776,] -1.192652469 -1.3537958267 -0.3978513028  0.0171127157 -1.641026999
##  [777,]  0.173636228  1.1504473245  0.4781880504 -0.1833352078  1.003161366
##  [778,]  1.067702361  1.2181063791  1.7708908952  1.8199903888  1.016972689
##  [779,] -1.005758821 -0.1569452298  1.2005331288  1.0901550615  0.451583878
##  [780,]  0.584352735  0.3000849932  0.1648099059 -0.6391617189  0.795238713
##  [781,]  0.165171988  0.4708610664  0.5346856956  0.4689607530  0.776639637
##  [782,] -0.720454633 -0.3504750062 -0.9901008730 -0.3353839013 -1.769398296
##  [783,]  0.626298341  0.5936293771  1.7386488252  1.1660680341  1.302219676
##  [784,] -0.768946314  0.4375901898  1.1420658077 -0.8210180716 -1.077122372
##  [785,] -1.045741283 -0.5392218888  1.0984994369  1.7081398278 -0.605270725
##  [786,]  0.427227739 -0.2642069815 -0.2988022829  0.5045516119 -0.280057039
##  [787,]  0.134720657  0.1832379957  0.5173209803 -1.8404721695  0.196189056
##  [788,]  1.513537572  1.2031540972  0.8158652648 -1.1679930109  0.394443776
##  [789,] -1.151137225 -0.3493966021  0.9503326334 -0.0125310413 -0.145794177
##  [790,] -0.450667114 -1.2171048107 -0.1335950319  0.6810532995 -1.987990453
##  [791,]  0.678538302  1.1972815627  0.0868545058  0.0334108702  0.368027015
##  [792,]  0.618591039  0.3375712631 -0.8337912896 -0.3826819348  0.098700323
##  [793,]  0.550247882 -1.7232013748  2.0566107362  1.6811376963  1.092640041
##  [794,] -0.224061275 -0.6630611282  0.5693035854 -0.5292108344 -1.241355097
##  [795,] -0.509516604 -0.5373706867 -1.8960639084 -0.1879680631 -0.585536125
##  [796,] -2.292127347 -1.5606511378 -1.0466309085 -1.8708646284 -1.120393692
##  [797,] -0.793981126 -0.8733667474  0.0324544365 -0.6031027734 -0.463015365
##  [798,]  0.032265033 -1.5504353371 -2.0903948180 -2.3494364547  0.230786550
##  [799,] -0.415910957  0.6921173443  0.3689732851 -0.0824961328  0.580793700
##  [800,]  1.304455755  0.8974138803 -0.8760676326  0.2149438776  0.760754264
##  [801,] -0.481524595 -1.6807306655  0.3001965326 -0.1566040640  0.501179255
##  [802,]  0.521352700 -0.7754807308 -2.2401442338  0.5651823605 -0.926202401
##  [803,] -0.439395333 -1.6700325878 -1.3380251444 -0.5454442669 -1.186740149
##  [804,]  1.840074250  0.9532559522  0.3405430530  0.1634057302  1.240345489
##  [805,] -0.238451055 -0.1312335710 -0.1827441572 -0.7979135552 -0.654499294
##  [806,]  0.463543129 -0.8732786207  0.6001579995  2.0839675175 -0.156136147
##  [807,] -0.536111609 -0.4794254460 -1.1421561398  0.7208763975 -0.510217829
##  [808,] -1.256272296 -1.1302936011 -0.8437891065 -0.7402108801 -0.348968539
##  [809,]  2.169676843  0.2729816776  0.7928323819  0.4516007761  2.255881484
##  [810,]  0.776973536  0.3881103026 -0.9960779922 -1.3355412411  0.020886724
##  [811,] -1.593343896 -0.4574240948  0.1605015252 -0.0956555472 -1.721298904
##  [812,]  0.337282261 -0.5627774799 -0.6136552457 -0.3042399311  0.098822539
##  [813,]  1.760204110  1.0671349035  0.3529797657 -0.3358401548  1.552871084
##  [814,]  0.329546399 -0.1634792648 -0.1722223632 -0.2939156036  0.384673306
##  [815,]  0.642223461 -0.1369610719 -0.1869002205 -0.6768184119 -0.277792502
##  [816,]  0.792531900  2.2037659788  1.1052341515  0.1109991387  2.338168676
##  [817,] -1.179966742  0.2201770762 -1.5462169426 -1.4606859142 -0.690054218
##  [818,] -0.330986817 -0.3097782920 -0.1241377812  0.9374398146  0.960181185
##  [819,] -0.550476837  0.5703564039 -0.8683401537 -1.9486930490 -0.029521711
##  [820,]  0.262954101  1.3858660456  1.7224137896  0.8514997717  0.315138094
##  [821,] -1.691699162 -1.3935187029 -0.1008742108 -0.4821584097 -1.214978578
##  [822,]  1.029127485  1.3339155661  1.6951069472  1.1897398081  0.646262754
##  [823,] -1.026801500  0.7104309869 -0.8437564928  0.1761428479  0.089491568
##  [824,] -1.396000656 -1.8428320120 -2.1266037072 -3.4310037470 -0.654317993
##  [825,]  1.068484500  0.5423090044 -0.1447470039  0.2923840060  0.444167777
##  [826,] -1.599350799 -0.3996485185 -0.0966449594  0.0195674179 -1.769343530
##  [827,] -0.348700678 -0.9847268690  0.5719310523  0.5772279513 -0.307625872
##  [828,] -0.167756365 -0.4469971891  0.8228678182  0.7575782275  0.308596811
##  [829,] -1.646641942 -0.7747405670 -0.6630072323 -0.3164783060 -1.008706768
##  [830,]  1.847210018  1.7798927070  0.4943230782  0.7904400415  0.303293343
##  [831,] -0.710010342 -1.5864033019 -1.3444733685 -2.2081152638 -0.615382395
##  [832,] -1.024876704 -0.0335977993  0.6131295912  0.0697538438 -0.671143950
##  [833,] -0.707569894 -0.6298611143 -1.3214841405 -0.1385086232  0.707437539
##  [834,] -0.089137863  1.0906562368  0.4250651930  1.1319161434  0.488044324
##  [835,] -1.091235033 -1.4731442347  1.8777959868  0.9205494252 -0.476875842
##  [836,]  0.254072048 -0.2725205207  0.5713361811 -0.1430596669  0.138051500
##  [837,] -0.391410170  0.5958983560 -0.4405096820 -1.2273063473 -0.766266966
##  [838,]  0.451478419  0.2115379337  2.3581270033  0.7578783390 -1.269658857
##  [839,] -1.713961593  0.2212065621  0.3650078447  0.1602917103  1.581239956
##  [840,]  1.431027072  0.9666662558 -0.5779553610  0.1153600877  0.156789150
##  [841,]  1.207114206  0.2460890848  2.9512643616  2.7397673308  1.453535555
##  [842,] -1.182731725  0.2777507305  0.7525057592  1.6542270356 -0.766958845
##  [843,]  0.927077490  0.6651161768  0.8761663998  0.1112473385  1.831416593
##  [844,] -0.167082448 -0.3462112888  0.0981646530 -0.0708679009 -0.956079963
##  [845,]  0.986402838 -0.1842328214 -0.0191236237 -1.3101641732  0.633854965
##  [846,] -0.223121806 -1.0170893573  1.2466207595 -0.2301880579 -1.406836280
##  [847,]  0.515498404  0.9579425324 -0.8682233357 -0.3961107500  1.268663545
##  [848,]  1.446278869  1.1329823430  1.0095269915 -0.7266507737  0.304946684
##  [849,]  1.023115928 -0.3190256410  1.4005626592 -0.0931120178  1.417920467
##  [850,] -1.663514280 -1.5878449232 -2.1890033407 -0.1350117003 -1.076919549
##  [851,] -0.353032806  0.6778223628 -2.0616920538 -1.7292772338 -0.618136829
##  [852,] -0.759813044  0.6033290854 -0.2164212521  0.1274417587 -1.169195090
##  [853,]  0.616182760 -0.2129924509 -0.7516144317  0.2346747634  1.002366043
##  [854,]  0.858918710  1.3893273049  0.8524588313 -0.0978071584  1.523545890
##  [855,]  0.091664705 -1.6100379225  1.4195726801  0.9501497663  1.449866378
##  [856,] -0.618895175 -0.2903130083 -0.4297428046 -1.5917122062 -0.859039046
##  [857,]  1.254237944  0.4081846551  0.0720237419  1.0694394776  1.634479084
##  [858,]  0.328340222 -0.1524681856 -0.0142720583  0.4467730893  0.414047451
##  [859,] -1.503152031 -1.4642877866  0.8100598975  1.5152980757 -0.520444064
##  [860,] -0.421555035 -1.3470567296  0.4378817932  0.3095945992 -0.754545767
##  [861,]  0.275512737  0.0868203549  0.7774080724  0.1860761368  0.476704844
##  [862,]  0.117864320  0.5424399627 -1.0038240296 -0.5933298914  1.255640893
##  [863,] -1.021827119 -0.9031783736 -0.7996076944 -0.2814190962 -1.475973831
##  [864,] -0.970359751  0.1094192631 -1.1444754083 -0.7647882225 -1.629982185
##  [865,] -0.605999773 -0.3878633305  0.4271113961  0.1248287072  0.421307292
##  [866,]  0.598218729 -0.0114580927  1.2241620540  0.9459091377  0.408875107
##  [867,] -0.698181707  0.5641918236 -0.6218818194  0.0526939869 -1.448166549
##  [868,]  0.228398136  0.4167393273 -0.2498542356  0.4459821867  0.381050301
##  [869,] -0.011576338 -1.2598851403  0.3929787314  1.1518409847 -1.119425123
##  [870,]  0.817509636 -0.0524333138  1.0669694762 -0.3163459606 -1.820668300
##  [871,] -0.545214682  0.4255999324  1.2290630168 -0.0266590073 -0.571081998
##  [872,]  1.514728734 -0.3889574784  0.2472517892  0.4078517887  0.718249607
##  [873,] -0.757455545 -1.5744071853  1.2319111629  2.1937981500  0.244153294
##  [874,]  0.156436809  0.0403510053  0.8534241313  0.0922366696  1.153816265
##  [875,] -1.357272812 -1.1677970725 -0.9751706026 -1.1137701954 -1.050829122
##  [876,]  0.662912663 -0.2215738205 -0.1407124725  0.6592305870  0.323206411
##  [877,] -0.302979446  1.0990609683 -0.0371716989  0.1602754913 -0.691421079
##  [878,] -0.370529034  0.5739611457 -2.0281269548 -3.4504408394 -1.187809037
##  [879,] -0.231147735  0.5325008034  2.1261317813  1.1845225311 -1.375301768
##  [880,]  0.636888442  1.7793768308  0.1920230929  0.8469592502  0.936726866
##  [881,] -0.445306265 -0.0321367671 -0.0221975367  2.3715003189  0.085675218
##  [882,]  0.177432863  0.3745117743  2.1997779090  0.7019334395  0.361966900
##  [883,] -1.200813719  0.2828193136  0.6936378756 -0.1963295960  0.591492362
##  [884,]  1.613495187 -0.5355061942  2.0650474345  1.4607494798  1.673428299
##  [885,] -1.556297245 -0.2844441237 -1.1661324300 -1.2975113591  0.049324848
##  [886,]  1.015423469  0.1254946175 -1.6477415780 -1.8705384477  0.472975527
##  [887,]  0.941868260  1.4015756491  1.0488275713 -0.2836367093  0.281663092
##  [888,] -2.182780507 -0.2565556568  0.2180240597 -0.5360035501 -1.758502282
##  [889,] -0.391883454  2.1840816572 -0.3249360920 -0.0374677697  0.294055411
##  [890,]  0.224999126 -1.2306429358  1.1347919298  1.3701847496 -0.211509457
##  [891,] -0.002000042  0.1580195016 -1.0718916282 -1.3394149845 -0.294064506
##  [892,]  0.541212802  1.2361119311  0.4395573424  0.1009488589  0.548082955
##  [893,] -0.086872629  0.8679772992  1.1277206952  0.6962513621  1.187340605
##  [894,]  0.177470369 -0.0288712730  1.2924889626  0.6861810724  0.917489839
##  [895,]  0.954531988  0.4690485698  0.6015985571 -0.3052714750  0.636612645
##  [896,]  0.406223690 -0.1592574186 -1.3382712634 -1.6333482596 -2.446023421
##  [897,]  2.718575331  3.0435132704  0.3278206824  1.7930907980  1.989965634
##  [898,]  0.139511340 -1.7448805851  1.2961110674  0.6847476349  1.475378177
##  [899,] -0.424817954 -0.5239679792  0.0720243255  0.7865562511 -1.519259884
##  [900,]  0.044317383 -0.9946921931  0.3973343447  0.4745984170  0.233027643
##  [901,] -2.263183639 -1.5100703604 -0.7055548093 -0.7091880282 -0.988727515
##  [902,] -1.261843128  0.1106411020  1.0302723706  0.2279784924  0.807418587
##  [903,] -0.190950498  1.0117060910  0.0797448243 -0.3413393430 -0.258988760
##  [904,] -0.861771346 -1.4220916365 -1.4410124254 -1.8445127785  0.172223000
##  [905,]  0.171795891 -0.4592770387 -1.8078034795 -1.5085500726 -0.814582878
##  [906,] -2.326629710 -2.4423354353  0.0938909509 -0.4951521611 -1.940530977
##  [907,] -1.849173461 -1.6905746504  0.4617650280  0.9815318452 -1.513968588
##  [908,]  1.157171909 -0.0111526196  0.7902245831  0.0761411162  0.523665104
##  [909,]  0.438648903  0.9178525872  1.0231933027  0.5437075893  1.377928763
##  [910,] -0.241826360 -0.3307564325  0.6506993911  0.6748937939  0.519089432
##  [911,] -0.221553253 -0.8972031411 -0.6860835251 -0.4134866037 -0.221378613
##  [912,] -1.539728684 -1.1802180610  0.5565001093  0.9869018015  0.048189816
##  [913,]  1.603483202  1.4941852575 -0.5026016799 -0.6886139654  1.564800418
##  [914,] -2.501160865 -0.8509149363  0.3099393996 -0.9655717138 -1.460363883
##  [915,]  0.274670373  0.5039694674  0.1930054702 -1.1342839791 -0.399922487
##  [916,]  0.452389361 -0.6566824493 -0.5660116114 -0.6560789271 -0.943626410
##  [917,]  1.440076911  0.1510156271  0.1922893004  1.1780124897  2.232476793
##  [918,]  1.324789968  0.4917699846  0.2838501129  0.7783439197  0.734424793
##  [919,]  0.818606660  0.4773388748  1.2527884301  0.8154723651  0.813708228
##  [920,]  1.146302770  0.4409479684 -0.4304115339 -0.9095359809 -0.647570198
##  [921,] -1.206589248  0.0807298634 -1.0149410054 -1.9041778370 -1.443946736
##  [922,]  1.383017741 -0.8478862950 -0.4790416391 -1.6186122736  0.454552281
##  [923,] -0.072302996 -0.7946526337 -0.1467250992  0.1106521635  0.350960140
##  [924,]  0.351310837 -0.0216424908 -1.0817947863 -1.9278270236 -1.441194352
##  [925,]  0.898877997  0.0813745050  0.9065131892  1.5854661176  0.456374584
##  [926,] -0.557691880 -0.3313975737  0.1420285006  1.0179792092  0.280440787
##  [927,]  0.972563045 -1.0046987774 -0.5132251987  0.7545455812 -0.507146828
##  [928,] -0.731676929 -0.8518706565  0.3586586629  1.5604484051 -0.491913428
##  [929,] -1.160553550 -0.5427477660  0.9460245423 -0.6510647417 -2.875073483
##  [930,] -0.731238534 -0.4850334483  0.2625070568 -0.6357734682 -0.127687055
##  [931,]  1.098917722  0.2860031009  0.2107636815  2.1389259652  0.081059653
##  [932,]  1.714704768  2.1584219390  0.9006997142 -0.1592022642  1.136308198
##  [933,] -1.699659104 -1.8479981182  0.5637577276  1.1458459720 -0.815100013
##  [934,]  0.118888681 -1.0997832461 -0.3010475841 -1.2068228408 -0.730935719
##  [935,] -1.068467716  0.1878543972  0.7975415723  1.0256548186 -0.256910968
##  [936,] -1.257716818  0.6283386053 -0.6973045046 -1.4960728428 -0.328609299
##  [937,] -0.386377000  0.8941395515  0.3890735925 -0.0228783859 -0.988077807
##  [938,]  0.049069493  0.1325123576  1.2407398238  0.6422360248 -0.502455208
##  [939,]  0.856766090 -0.6431107005  1.0360509165 -1.3291037536 -0.881635790
##  [940,]  0.051060607  0.0232937065  0.8617212499  1.1534216087 -0.529524685
##  [941,] -0.901019996  0.3723827379 -1.9209499075 -1.6049384799 -2.475209407
##  [942,]  0.268058726  1.3647545126 -1.0772246877 -1.9318904782 -1.635676470
##  [943,]  1.309626186  1.6263355905  0.2347137647 -0.8177656283  1.139353041
##  [944,] -1.738259145 -2.0953754393  0.9181652737 -0.0885471769 -1.456058463
##  [945,]  0.155152683  0.0588623509 -1.0532395886 -1.3990227412  0.412653737
##  [946,] -1.472524376 -0.7239837382  0.6336242538 -0.6074516962  0.259975287
##  [947,]  0.291795103 -0.1914038919  0.6201697087  1.2899742503  1.504758403
##  [948,] -1.968088482 -2.2099501934 -2.0160940165 -3.1803882643 -2.718742714
##  [949,]  0.568818458  0.3103110963 -0.7117571976 -0.9489970902  0.277775806
##  [950,]  0.199310591  1.2427403010 -0.1117838868 -0.6557730008 -0.245256582
##  [951,]  0.801288150  0.3802892834  0.6254980048 -0.5642346176  0.355351852
##  [952,] -2.047029671 -0.9412770673 -1.2115073825 -1.9503784446 -1.491352338
##  [953,] -0.305510781 -1.6379794907  2.0748960521  0.3934765967  0.185562233
##  [954,]  1.414255898  0.1486920539 -0.7162317176  0.5251357395  1.376577911
##  [955,]  0.347387653  1.3371326549 -0.5554073936 -0.0996678580  0.267750420
##  [956,]  0.819283993  0.0586993728  0.3353972784 -0.0328516920  0.229732789
##  [957,]  1.184945369  1.2803287694  0.8178779762 -1.0648619645  0.132668547
##  [958,]  0.515707545  0.6350382778 -0.7651214780 -1.9086438445  1.661990367
##  [959,]  1.220846720 -0.2741692047  0.6445868586  0.9540181042 -0.685876087
##  [960,] -2.463451376 -1.4210341993 -2.9328050040 -1.1499093475 -3.123165093
##  [961,]  1.881174092  0.1461804192 -0.0746116481 -0.8344279059  1.569312479
##  [962,]  0.225174313 -1.2721568149  0.1879126570  0.0691013388 -1.251047153
##  [963,] -0.005582825  0.1510298921  0.8245069566 -0.2760558000  0.061260537
##  [964,]  0.649824210  1.9962005682 -0.5216097974 -0.9965189118  0.484657657
##  [965,]  0.941694585  2.1174965338 -0.1154570599 -1.3080039052  0.610156846
##  [966,]  0.140901209 -0.6196009628  0.3971318304  0.9020135281 -0.279901117
##  [967,] -0.688405191 -0.9439749131  0.2726586808 -0.7770508869 -0.845483998
##  [968,] -0.113270849  0.2871386528 -0.4035267349 -0.9634627376 -1.732213851
##  [969,]  0.891752003  1.2163921829  1.4651206058  0.0944119213  0.272574659
##  [970,]  0.352120955  0.2737044518 -1.7315316649 -0.9560451143 -0.718324344
##  [971,]  1.310371650  1.0411983349 -0.9420639412  0.3853161863 -0.908871583
##  [972,]  1.398032983  0.8802374293  0.8602524364  1.2705360103  0.579117602
##  [973,] -0.551670169  0.1148482060  0.3771701999  0.7708390346 -0.453349116
##  [974,]  0.041423150  0.8814216942  2.3604467810  1.2655647473 -0.776857869
##  [975,]  1.562259698  1.7649538717  0.8387574526  0.4622904636  0.588589271
##  [976,]  0.678569373  1.2656271256  1.4315374677  0.4389017186  0.690081872
##  [977,]  0.458536561 -0.7312801992  0.8144022432  0.7108105699 -2.128211044
##  [978,]  1.287685971  0.0304901995 -0.1796429216  0.2451387803 -0.689577738
##  [979,]  0.448619953 -0.8566493292 -0.1615713771  0.7127830623  1.264778385
##  [980,]  0.950611137  1.4975147091 -0.5493377637 -0.0829246998  1.073206836
##  [981,] -0.806032784 -0.8846339669  0.9512032445  0.0790383315  0.763421602
##  [982,] -0.498547259 -2.3195784514  0.8239614169  1.5633929092  0.593065000
##  [983,]  0.039762145  1.1501276926  0.0012272842 -1.2714289068 -1.132960377
##  [984,] -0.711364161 -1.2808348228  0.0300171712  0.0026035854  0.133376055
##  [985,] -1.486331889 -0.7895805214  0.7770800209  0.6621610745 -0.774430419
##  [986,] -0.220271579 -0.4767943525  1.9184964296  1.0717962190 -0.931795919
##  [987,] -0.462512485 -0.9341958674 -0.3655827847 -0.2660334239  1.636511057
##  [988,]  1.354615799  0.9835063681  0.5331037143  0.1443240758  0.441765587
##  [989,]  2.184344957  2.9370565460  0.9328486232  0.4634089632  1.337827952
##  [990,]  0.672858726  2.2390070811  0.3985973993  0.4900234667  0.970834561
##  [991,] -0.390621589 -0.3798058464  0.1584788528 -0.2324947100 -0.695715165
##  [992,]  0.113125988  0.0930667611  0.0401827294  0.5084822918 -1.283883689
##  [993,] -1.746480793 -0.6373430623 -0.4574674452 -1.5046396307 -1.009402097
##  [994,] -0.772603223 -0.2346818787 -0.8279868962 -0.8676772817 -0.950770817
##  [995,] -0.834796769 -0.9973293270 -0.0494195615 -1.7231790929 -0.011210675
##  [996,]  0.590942850  0.6278578524  0.5520711742  0.3077242568  2.117403830
##  [997,] -0.672079598 -0.9853216115  0.7337429361 -1.6744467174  0.901179239
##  [998,] -1.904820737  1.2924392356 -2.2021081788 -0.8656621877 -2.001970116
##  [999,]  0.773054971  3.0629259739  0.2042062635 -0.8379246166 -0.040652266
## [1000,]  1.223925800  0.6627819176 -0.0877304747  1.0759240209 -0.721271968
##                  [,6]         [,7]         [,8]
##    [1,]  1.0194478234 -1.520966936  0.726416791
##    [2,] -0.3609091094 -0.732683628 -1.303155699
##    [3,]  0.6231430169  1.568895282  1.295715271
##    [4,] -0.9564763111  1.063505749 -0.540374014
##    [5,] -0.7467448256 -0.360073158  0.070264082
##    [6,]  2.0322973337 -0.532728070  0.548504385
##    [7,]  0.8084309221  0.468578180 -1.753040137
##    [8,]  0.2805287558  1.595191608  0.694058612
##    [9,]  1.0312202894 -0.976353377 -0.772963006
##   [10,]  0.7210764480  0.455039190 -0.905156222
##   [11,]  0.2963688061  0.672929550 -1.714953798
##   [12,]  1.3325848908 -1.173800284 -1.660740457
##   [13,]  0.3575649718  0.152290875 -0.264906775
##   [14,] -0.1740540470  0.666031559  1.173267549
##   [15,]  1.8003044960 -2.300231481 -0.885254630
##   [16,] -1.4041509789  1.952337114  2.123963435
##   [17,] -0.6317797112  0.684660764  0.877182519
##   [18,] -1.5833967702  1.168073542 -0.724305524
##   [19,]  1.1748652619  0.842869528 -0.061721381
##   [20,] -0.1985713628  0.971039502 -0.143072065
##   [21,] -1.4933336160 -0.919478960 -2.242756697
##   [22,] -0.6765888207  0.733860059  0.904336088
##   [23,] -0.4050826953 -0.817137488 -0.366733603
##   [24,] -1.1570890095 -0.602372204 -1.021918845
##   [25,]  1.2587072558  0.343760389  1.127316261
##   [26,]  0.8011285751 -0.369206399  0.932110063
##   [27,] -0.5755238676 -1.026575360  0.045721611
##   [28,]  2.0230951949  1.003547230  0.260102705
##   [29,]  1.0190183299 -0.063677941 -1.033804637
##   [30,] -0.7210093579  1.506613289  0.466998698
##   [31,] -0.0404603668 -0.494410404  0.238648071
##   [32,] -0.9433184529  0.832935685 -0.098904335
##   [33,]  0.2922326584 -0.634696704  0.034157419
##   [34,] -1.9620388808  1.578896160  0.364083073
##   [35,] -0.7430522342  0.577174656  0.570282989
##   [36,] -1.8698498516 -0.443086636 -0.029765783
##   [37,]  0.8334301694 -0.425233623  1.211395555
##   [38,]  1.7629526218  0.564908386  1.864787559
##   [39,] -1.4365566796 -0.800094462  0.451080090
##   [40,]  1.1621543278  1.504719716  0.647036526
##   [41,] -0.0327037310 -0.438875755  0.754846306
##   [42,] -0.9303608301  1.491796444 -0.787264687
##   [43,] -1.0591016732 -0.295389100 -1.822575474
##   [44,]  1.1092667541  0.485539334 -0.755420956
##   [45,] -1.4029529958 -1.582701585 -1.059542772
##   [46,]  0.2045927421  0.148074114 -0.699415850
##   [47,] -0.4792776683  0.358674872  0.106745104
##   [48,] -0.1814421407  0.944646163 -0.630760565
##   [49,]  0.3779189359 -2.118053695 -1.016174387
##   [50,]  0.1095148066  0.477867682 -0.594878887
##   [51,]  0.3604737820 -1.281545473 -1.889002222
##   [52,]  0.1231009334  0.295725830 -1.474702079
##   [53,] -0.3261851411  0.574876670 -0.723095518
##   [54,] -0.7586257912 -2.073254096  0.140534716
##   [55,] -0.8331173113  1.119199775 -0.563688786
##   [56,] -0.0416165826  0.002973665  0.725022660
##   [57,]  0.4918242400  2.727182971  0.673230464
##   [58,] -2.6847780586  0.273291097 -0.408424655
##   [59,]  2.4301951137 -0.133958085 -0.067921762
##   [60,] -1.6403478288  1.917685448 -0.760726554
##   [61,] -0.6386692922 -0.599888603 -0.874465991
##   [62,]  2.5234416156 -1.053415678  0.471646779
##   [63,] -1.5371024410  1.818790503 -0.796822124
##   [64,]  0.7567697833  1.320524764  1.511715379
##   [65,]  1.5751957880  0.716518408 -0.627219861
##   [66,]  1.4379208249 -1.183725460 -1.829986441
##   [67,]  0.8889969378 -0.862745067 -0.325420309
##   [68,] -0.4079031760  2.001200230  1.162629152
##   [69,] -1.3852388899 -0.339719957 -0.836497324
##   [70,] -2.3792602664 -0.747581182 -0.241198266
##   [71,]  0.1448611443  0.907580080  0.572993534
##   [72,] -0.4778190261 -1.244609143  0.639980204
##   [73,]  0.4594849414  1.044955296 -0.513835787
##   [74,] -0.8464962839 -0.937388009  1.028968394
##   [75,] -1.3928861508 -2.041940257 -1.493052162
##   [76,]  0.0238515164  0.763558884  0.460356741
##   [77,] -0.7553495249  0.422314806  0.592630772
##   [78,]  0.5423776632  2.749596797  1.634495518
##   [79,]  1.3747961315 -1.494975941  0.110313608
##   [80,] -1.1798964362  0.094763317 -0.534000961
##   [81,]  1.0199767055  0.961884939  1.318387055
##   [82,] -1.0484077703 -0.840162097 -2.177997529
##   [83,]  1.2525636903 -0.151891734  0.187376680
##   [84,] -0.4127890206 -0.110190983  0.593458681
##   [85,]  0.5376870864 -0.452335169 -0.854838428
##   [86,]  1.8803351668 -0.042086683 -0.399713373
##   [87,] -0.4684664560  0.445330005  1.462825147
##   [88,] -1.3226011954 -1.108207372 -0.805912825
##   [89,] -0.1736774172  0.301338269 -0.253537676
##   [90,] -1.0798527395 -1.386496247 -1.572144550
##   [91,] -1.1891327177  0.078184420  0.388543611
##   [92,]  0.1666693051  0.783205619 -0.018260554
##   [93,]  0.7618242585 -2.217207650  0.094948039
##   [94,]  0.9599961074  0.704772601  0.496790707
##   [95,]  0.8164718993  1.234881856  1.056418395
##   [96,]  1.4511793628  0.713015136  0.766194913
##   [97,]  0.2203612296 -0.328336049 -0.610166826
##   [98,] -0.9701252592  0.523153028 -0.555046079
##   [99,] -1.1202053795 -1.397196159 -2.624187190
##  [100,]  1.3458397870 -0.121099772 -0.257430489
##  [101,] -1.1588815786  0.183538889 -0.016694188
##  [102,]  0.1067484240  0.805552551 -0.138321497
##  [103,] -0.8962610438 -1.799453488 -0.873798175
##  [104,] -2.1709563147  0.134662691  1.527860669
##  [105,]  0.7142142334 -2.159517076 -1.040910769
##  [106,]  0.3196253152 -0.033021847 -2.064381357
##  [107,] -0.5014969054  0.028989613 -1.005121390
##  [108,] -1.3171101414  0.611783071 -1.152888678
##  [109,] -0.4536727117 -0.171984451 -0.212159931
##  [110,] -0.5419236434  0.138648496 -1.192595012
##  [111,]  0.3095149261  0.629258499  0.617364221
##  [112,]  0.8325282446  0.548858241  0.594720933
##  [113,] -1.5122332247  0.161565787  1.106509686
##  [114,] -1.2095569614  1.380695750 -0.602405729
##  [115,] -0.1390240944  1.423509529 -0.265871934
##  [116,] -0.5732404237 -0.227611406  1.590928883
##  [117,] -0.2383334880  1.062666501 -0.612289981
##  [118,]  0.7086387724 -0.339688988  3.087839315
##  [119,]  0.5632526237 -1.344960914  0.513851763
##  [120,]  0.3525935777  0.215082495  0.522919482
##  [121,]  0.9157050718 -1.587891760  0.279745966
##  [122,] -0.1421112700 -0.817469358  0.408084009
##  [123,]  1.4252675669 -0.825160621  1.794140344
##  [124,] -0.8475073913 -0.105852477 -1.456713260
##  [125,] -0.0241429309 -1.422204949 -1.221600824
##  [126,]  0.3367072869 -0.526402073 -2.255010339
##  [127,]  0.3939508826 -0.793733084  0.489124807
##  [128,]  0.5491538130  1.018141881 -0.437442361
##  [129,]  0.2488835292  0.305418159  0.319874094
##  [130,] -1.7532172184  1.586075902  0.412834278
##  [131,]  0.7124976984  1.070176444  0.525997377
##  [132,]  0.6709881007 -0.700903873  0.123641414
##  [133,]  0.1901263382 -0.690786623 -0.678861683
##  [134,] -0.3215172020  0.378984110 -0.950756145
##  [135,] -1.2223636204 -0.707184261  0.774724612
##  [136,] -0.7122239399  0.143797740  0.107673186
##  [137,]  0.0033538205  2.023510431 -0.145117843
##  [138,] -1.6196998687  0.476316961  0.165346920
##  [139,] -1.1240244308  0.175497874 -0.268739088
##  [140,]  1.2645930985 -0.229586180  0.347218834
##  [141,]  1.6249586654  0.202825153  0.129644768
##  [142,] -0.7251628325  0.864184192  0.460606420
##  [143,]  0.6892189425 -2.186945673 -1.249407025
##  [144,] -0.1625114391  0.880421128  0.472097588
##  [145,] -1.2934456014  0.629993483 -0.717889343
##  [146,]  1.0035502689 -0.166758337  1.306163244
##  [147,]  1.6927738787  0.233182974 -0.778066010
##  [148,]  1.1832268021 -0.650066149 -1.641020783
##  [149,]  1.4364858743  0.464441049 -0.763777094
##  [150,] -0.2456873620  0.690829501  0.410469145
##  [151,] -0.1253161677 -0.185821061  0.584106716
##  [152,]  1.0384073840 -0.276192162  1.050942407
##  [153,] -0.2375399208  0.131228297  1.481325372
##  [154,] -0.4704014427  0.672273588  0.469356728
##  [155,] -0.7595101463 -1.057886254 -2.460296116
##  [156,]  0.2828244539 -0.826065646  0.057109716
##  [157,] -0.9798496150  0.483594277  0.408248864
##  [158,]  0.0338862181  1.774013308  0.048125746
##  [159,] -0.3514633428 -1.481586572  1.167713224
##  [160,]  0.5425811715  0.861926515  1.520005048
##  [161,]  0.9932862633 -0.002000487 -0.364044675
##  [162,]  0.1183375700 -0.715920559 -0.156015242
##  [163,]  3.4245842982 -1.360766662 -0.488678115
##  [164,] -0.8275628286 -0.977178343  0.631954276
##  [165,]  0.5932889196  0.325961123  0.968799718
##  [166,] -0.6713747994 -0.016827940 -0.927396748
##  [167,] -0.0607303319 -0.661365493  0.063532655
##  [168,]  2.2719460678 -0.081832085 -0.246483116
##  [169,]  1.1585836139  0.515117545 -1.577431752
##  [170,]  0.9414413341 -2.093936352 -0.158362174
##  [171,]  1.1690375057  0.225329483 -0.032780422
##  [172,]  0.2706515125  1.441848757  0.543622929
##  [173,]  1.1712754777 -0.516078472  1.116392153
##  [174,]  1.8631907319  0.781200654  0.789136581
##  [175,]  1.2504536488  0.839906056  0.858143981
##  [176,]  1.2409332176 -0.934868027 -0.422337268
##  [177,]  1.2955749944 -0.508086075 -0.138750563
##  [178,] -1.2984701903 -0.451529705  0.298133614
##  [179,]  1.6441827701  0.713625434  2.345474538
##  [180,]  0.6758850160  1.015638711  0.574781440
##  [181,]  0.4536487240  0.256266163 -0.356062782
##  [182,]  1.9206580068 -0.237831015  0.158817020
##  [183,]  0.0090729547  1.939156021  1.239885324
##  [184,]  0.6667543534  0.470763728  0.516097732
##  [185,]  0.0512400604 -0.932955405 -0.885509843
##  [186,] -0.5971924844  0.755660833  0.219736211
##  [187,]  1.4301700490  0.509835365  0.101817419
##  [188,] -2.6335416126  0.799015343 -1.502353926
##  [189,] -0.1751481863 -0.143811620 -0.546641368
##  [190,]  0.6465240059  1.987777231  0.873891406
##  [191,] -0.6301064567  0.173780696  0.265585024
##  [192,] -1.1503416866 -0.664282303  0.064718823
##  [193,] -0.2096300830 -0.385220903 -1.157560651
##  [194,] -0.0001313392  0.443263612 -0.468588061
##  [195,]  0.6366096978 -0.299310116  0.168833554
##  [196,]  0.7074618257  0.595674175  0.755904324
##  [197,] -0.5259956815  1.600688612  0.502293124
##  [198,]  1.0731588839  2.114808163  0.985417231
##  [199,] -0.3996650409  0.560137378 -0.442974957
##  [200,]  0.7522506630  0.679799685  1.496353977
##  [201,]  1.0915237520 -0.922777769  0.347598054
##  [202,] -0.3978439274 -0.705427113 -0.324417334
##  [203,]  0.0448176334 -0.626357949  0.440766079
##  [204,] -0.2677221898  1.194118170  1.032084123
##  [205,]  1.2713231293  0.001246833  0.093274353
##  [206,] -0.1149627538  1.070299406  1.617237506
##  [207,] -0.8045363499  0.001101599 -0.036238187
##  [208,] -0.7367624953  0.320064105  0.581757455
##  [209,]  0.0987933246 -0.933814844 -0.403257311
##  [210,] -1.4443535943 -1.810652220 -0.558206414
##  [211,]  0.3876399690 -0.379376126  0.501388292
##  [212,]  0.4941223312 -0.268084723  0.919235782
##  [213,]  0.6919158637 -0.577518874 -0.107056240
##  [214,] -0.4487503286  0.067187107 -0.334374490
##  [215,] -0.5390574721 -0.345161366 -0.999865395
##  [216,]  0.9906960370  0.398011437 -0.312602024
##  [217,] -0.7038614979  0.424088717  1.952167775
##  [218,]  1.7754721573 -0.035295811  0.081347062
##  [219,]  0.9463547834 -0.119880438  0.356665254
##  [220,]  0.6539648450 -0.346517611  0.023625348
##  [221,] -0.6459394551  1.497539041  1.144289098
##  [222,]  0.1431367943  0.592516971 -0.952100887
##  [223,]  0.4928539787 -1.767131817  2.609701730
##  [224,] -0.4515285716  1.001229753  0.491697648
##  [225,] -1.3198229011  0.514938538  0.732533374
##  [226,]  0.4564853098  0.062320225  1.516118436
##  [227,]  1.0596188006  1.561460426  1.666614628
##  [228,] -1.4631489495 -1.145627702 -0.523905870
##  [229,]  2.8559624531  0.792597619  0.892688667
##  [230,]  0.2146101849 -0.203607209 -1.003740535
##  [231,] -0.2568265720  0.539211616  1.391570562
##  [232,]  0.1538557757  1.053689881 -0.587078756
##  [233,]  1.1523884114  0.187577165 -0.635588744
##  [234,] -0.3455757717 -1.145502466 -0.653129172
##  [235,] -0.1032672930 -0.024399458  0.179505214
##  [236,] -0.3304189596  0.346846767  0.036208123
##  [237,]  1.1235964124  1.676676562  1.689266249
##  [238,]  0.6928120474 -0.081695767 -0.911006209
##  [239,]  0.1707909053 -0.930307263 -2.769306494
##  [240,] -2.6542567105  0.218989365  0.538310539
##  [241,]  0.4686611017  0.475846113 -1.535359168
##  [242,]  0.0615769636  0.110792008  0.581051793
##  [243,] -1.1479037376 -0.571122484  1.493298757
##  [244,] -0.4283478858  1.114972917  0.638465738
##  [245,] -0.2604685691 -0.388665332 -1.219573637
##  [246,] -0.1794398423  0.165371092 -0.717904884
##  [247,] -0.7951986313  0.021242167  0.921526917
##  [248,]  0.4675233920  1.092753409 -0.676548510
##  [249,] -0.0170374690 -1.987260079 -0.714458303
##  [250,]  0.9270856069 -2.168138516  0.401469112
##  [251,]  0.1274413040 -1.164099697 -0.090386266
##  [252,] -0.2025752703 -0.605309978 -0.283391361
##  [253,] -0.2831555762  1.520856190 -0.002410893
##  [254,]  0.3712814720 -0.512085562 -0.048159728
##  [255,]  1.1304924962 -0.691119464 -2.423751216
##  [256,]  0.8377934801 -0.776002719 -1.043516695
##  [257,] -1.1728227156 -0.085393121  0.937127260
##  [258,] -0.7416061475 -0.990154798  0.741989409
##  [259,] -0.1029209324  0.860366909  0.059257183
##  [260,] -2.9388297958 -0.331621613 -0.413118719
##  [261,] -0.0060644228 -0.410549313  0.669858328
##  [262,] -0.3596849157 -0.342358292 -0.474125166
##  [263,]  1.5758238684  0.002419761 -1.346563920
##  [264,] -0.7426850035  0.270305976  0.758918988
##  [265,] -1.6216968530  0.772375735  0.687868665
##  [266,] -2.9359939168  0.126979023  0.016413431
##  [267,]  0.5114036197  0.159712702  0.240705739
##  [268,] -0.5582449510  1.422995178  0.309787786
##  [269,] -1.7631295400 -1.672096316 -0.778366749
##  [270,] -0.0172749126  0.998100497  0.862577408
##  [271,]  1.7304064450 -1.093505504 -0.444370795
##  [272,]  0.2418578283  0.535604782 -0.650956075
##  [273,] -0.3465307123  0.770754228  0.397661485
##  [274,] -0.1936701077 -0.509661888  1.889677195
##  [275,] -0.6070439879 -0.867914862  0.447480663
##  [276,] -1.1697897249 -1.121278333 -0.604101772
##  [277,]  0.7659594024 -0.345309291 -0.808160636
##  [278,] -0.0619394415 -0.666131578  0.549728608
##  [279,] -1.7485101246  0.656382393 -0.394810882
##  [280,] -0.3314633683  1.138729926 -0.690743700
##  [281,] -0.7247671921 -0.316895470 -0.272051817
##  [282,]  0.7794359348  1.524359833  1.341909694
##  [283,]  0.3238376369 -0.439008605 -0.785208503
##  [284,]  0.2949312448  0.447475701  1.560220254
##  [285,] -1.3554333066 -0.315458832  0.845918600
##  [286,] -0.1867530282 -0.929939168  0.460061302
##  [287,]  1.4097094128 -0.236151102 -0.011018298
##  [288,] -0.0308123909 -0.339316526  0.734644008
##  [289,] -1.1001863132  0.400693690  0.409633417
##  [290,]  1.3380611745 -0.117387655  0.496952378
##  [291,] -0.4837206728  0.204874920 -0.867992669
##  [292,]  1.2575679924 -0.829820558  0.091874259
##  [293,]  0.4901660321 -0.670669792 -1.030463130
##  [294,] -0.4403079014 -0.658686833 -0.682313970
##  [295,]  0.8016678878  0.270208878 -1.345269130
##  [296,] -0.1146385149  0.258568412 -1.081588557
##  [297,] -1.1850571210 -0.398371241 -0.250397014
##  [298,]  0.7311546764 -0.932332549 -0.298311595
##  [299,] -0.8996213770 -0.715829058 -1.534168052
##  [300,] -0.2390562372 -1.224586160 -0.091095561
##  [301,] -0.2012385400  0.109180701  1.323645011
##  [302,]  0.8131311473 -0.615340757  0.115827106
##  [303,]  0.9362380310 -0.083939784  1.959167472
##  [304,] -0.5911051158  1.524410966 -0.647596010
##  [305,] -1.6974169464 -1.008080989 -0.808972972
##  [306,]  0.6291841174 -1.170475514  1.949988729
##  [307,]  1.1810457739 -0.237067648 -0.796690976
##  [308,]  0.7085875722  1.596262216  1.051633633
##  [309,]  0.7700956023 -0.327930609 -0.912811369
##  [310,]  0.3097990891 -0.545809943 -0.884786957
##  [311,]  1.8229395349  1.221344542  0.598997802
##  [312,]  0.4772523571 -0.041360740  0.402461118
##  [313,] -0.4726359171  0.659723853 -0.791734461
##  [314,]  0.2527512912 -0.800076800 -0.786351594
##  [315,]  0.2200430009  0.462726030  0.461628604
##  [316,]  1.8141660543  0.777738835 -1.185583687
##  [317,]  1.4886497593 -0.014596251 -0.867231594
##  [318,] -0.0508853107  0.543534465 -0.591137548
##  [319,]  0.6821740305  1.548937612  0.706496686
##  [320,] -1.3368789318 -1.215538707 -0.056453013
##  [321,]  0.4238856701 -0.382005509 -1.854096922
##  [322,] -0.1248717097  0.153565681  1.451869314
##  [323,]  1.4644048086 -0.594717752 -1.001900209
##  [324,] -1.5129736261 -0.558706473  0.219480170
##  [325,] -0.3505306235  1.439424631  0.932659242
##  [326,] -0.0813730569 -1.343700212 -1.672598937
##  [327,] -1.1969297800  0.257694483  1.314222284
##  [328,] -0.7650210950 -0.707123700  1.042597904
##  [329,]  0.0803392321  0.796486353  0.613098744
##  [330,]  0.8678555962  1.080663655  0.188650658
##  [331,] -1.5215180459  1.455598603 -0.285859074
##  [332,] -0.3774100176 -0.086420951 -0.153721185
##  [333,] -1.2674348549 -1.043544577 -0.757598713
##  [334,]  1.3263088468 -0.607098362  1.383787325
##  [335,]  0.5161360763 -0.624423394 -1.263634074
##  [336,] -0.8130962747  0.454625290  0.742463978
##  [337,]  1.5227761526 -2.245543212  0.248597944
##  [338,]  1.1899310533  0.790178091  2.117457969
##  [339,] -1.1043941661  0.319177067  1.168188640
##  [340,]  0.7391291896  0.592134547 -0.075022976
##  [341,] -0.7700652861  1.111454946  0.599791127
##  [342,] -0.6207932423  0.262808431  0.397838091
##  [343,] -0.0274481045 -1.336731940  1.126549166
##  [344,] -0.6860527682 -0.679892200 -0.350851048
##  [345,]  2.2894331224  0.525393435  0.279436026
##  [346,] -1.4786240938 -0.282185163  1.488209143
##  [347,] -1.3987883205  0.015089106  1.085474809
##  [348,] -0.3455044065  0.617221520 -0.114011749
##  [349,] -0.3359406377  0.823142063  0.017645254
##  [350,]  0.8909199038  1.092625114  0.259346568
##  [351,] -1.4703805703 -0.631520228 -0.149803092
##  [352,]  1.6796814627  0.495449217 -0.581631084
##  [353,] -2.2815649070 -1.291144850 -0.517030680
##  [354,]  1.7057581174  1.330226856 -0.134145259
##  [355,] -0.0247882925  0.500005180 -0.006954023
##  [356,] -1.3852300637 -1.700177855  0.568319370
##  [357,]  0.1893791983 -0.173129145 -1.028936610
##  [358,]  0.9500328094 -0.053181680  0.973251627
##  [359,]  1.7977672096  0.843223162 -0.736999103
##  [360,]  0.2700811974  0.545386132  1.500006843
##  [361,]  1.1038254856  0.246406678 -0.911355780
##  [362,]  1.4486248771  2.074011490  1.188252496
##  [363,]  1.5941116529  1.416399388  2.006764464
##  [364,]  0.7766796175 -0.463333923 -0.618333463
##  [365,]  0.6313673413  0.803906829 -0.038077397
##  [366,] -0.0413749394 -2.303694102 -1.323876283
##  [367,] -0.2409277226 -0.735617837 -0.564662989
##  [368,]  1.7067000615 -1.322805708 -0.428389678
##  [369,]  0.5576975694 -1.791298301 -0.948010635
##  [370,] -1.1949230005 -1.403958455 -2.078059644
##  [371,] -0.1383594691  2.136586948 -1.100826298
##  [372,] -1.0004704330 -0.855261071  0.560930082
##  [373,] -2.2059460900 -0.667806249 -0.786167982
##  [374,] -1.8541799713 -0.434270563 -0.819169998
##  [375,]  1.4560552270  2.000560043  0.476140563
##  [376,] -0.0301857566 -2.220483141  0.883432479
##  [377,] -1.8635216302  0.037812517  0.556437641
##  [378,]  0.3813312450 -0.535389472  0.628395010
##  [379,]  0.1018459193 -1.290040382  0.529263262
##  [380,]  1.1208711986 -1.198054551 -1.944999549
##  [381,]  0.2195886656 -0.001652999 -1.171161989
##  [382,] -0.1836594723 -1.111720884  2.255798817
##  [383,]  0.4203609131  0.379611013  0.778855643
##  [384,]  0.4676949483  0.081335011  0.195331635
##  [385,]  0.6940393424  1.415596046 -0.134461244
##  [386,]  1.2473459340  1.465262582  2.159720237
##  [387,]  0.8067061263  0.811741147 -0.430508367
##  [388,]  1.3526517022  0.072802398 -0.439927559
##  [389,]  0.1053618557  0.803912157  1.466805726
##  [390,]  0.5128873247  1.914631700  1.539774061
##  [391,] -0.3275348312 -1.635346501 -0.187206835
##  [392,] -0.2009436598  0.074385139  0.659528926
##  [393,]  2.0252707635 -0.181530856 -1.309068781
##  [394,] -0.3247551020  1.481926230  0.102452588
##  [395,]  2.0305760367 -0.525972734 -1.230588392
##  [396,] -0.1680030381 -0.605527333 -0.008756627
##  [397,]  2.1114163644 -0.163749875 -0.237634756
##  [398,]  0.6905367890  0.147292216 -0.478421738
##  [399,]  0.1561956134  1.232535726  0.091016087
##  [400,]  1.8394386510 -0.697156709 -0.868117418
##  [401,] -0.0671452149  0.194672347 -0.154006759
##  [402,]  1.3174044551  1.683015823  0.761762842
##  [403,]  1.1940217249  0.323050074  1.240890862
##  [404,] -3.4786372954 -1.603517518 -1.172768873
##  [405,]  1.8225097514  1.050217180  0.733346772
##  [406,]  1.1794276762  0.738226984 -0.953221998
##  [407,] -0.4121798404  0.819306407 -0.418924781
##  [408,]  0.3359020168 -1.021182786 -0.194237724
##  [409,] -1.1449173589  0.963179877  0.055346137
##  [410,] -1.3997246563 -1.334868767 -1.410878290
##  [411,]  0.3597795455 -0.661297955 -0.515205981
##  [412,] -1.1629016903 -1.029393386  0.027607597
##  [413,]  0.6741183283 -0.503864263  1.261022235
##  [414,] -0.8840769972 -1.531558657 -0.622440347
##  [415,]  1.2943552593  0.444795616  0.540425459
##  [416,]  0.2649781733  1.351577740 -0.342825092
##  [417,] -1.4777758590  0.924108422  0.483322274
##  [418,] -0.6163202402 -0.427482294  0.346368516
##  [419,]  0.7644220353 -1.418592954 -1.496742131
##  [420,] -0.4343127969  0.671663160 -0.291116175
##  [421,]  0.8939856652 -1.750499647  0.507155691
##  [422,] -1.1295505988 -0.574802997 -1.010732792
##  [423,] -0.7450467953 -0.093966545  1.366400458
##  [424,]  0.1795297046  0.200926919 -0.071033722
##  [425,]  1.0794559403 -0.645434096  0.305986109
##  [426,] -0.0036296724  1.564992932  0.032798553
##  [427,]  0.2422850475 -1.275636486 -0.103945918
##  [428,] -1.9084069460 -0.954531633 -1.377593798
##  [429,]  0.9161936096 -0.629874758 -1.166075067
##  [430,] -0.2981394226  0.890499844  0.437327285
##  [431,] -0.2278001175  1.512091589 -1.767596426
##  [432,] -0.0227999887 -1.006131065  0.111076706
##  [433,]  0.3835900888 -0.648446146  0.609163865
##  [434,]  0.2993109268  1.191745663 -0.015758195
##  [435,]  0.3588393052  0.334266282 -0.397766011
##  [436,] -1.0492042358  1.128717435 -0.415136192
##  [437,] -1.0399020260 -1.122942781 -0.983075884
##  [438,]  0.8399837010  0.175513327 -1.363877005
##  [439,] -1.4062937715 -0.465173002  1.540156500
##  [440,] -0.2267814480  2.201959469  1.323126835
##  [441,] -2.6162764488  0.774914178 -0.057900680
##  [442,] -0.1518892555  0.251053484  1.024627328
##  [443,]  0.7173300836 -1.353255724 -0.346253154
##  [444,] -3.0092426858 -1.955074126 -1.500159218
##  [445,] -0.5349530656 -0.069386102  0.496726170
##  [446,] -0.7098487227 -0.095621240 -0.335702023
##  [447,]  0.8098333315 -0.111216767 -0.630853683
##  [448,]  1.2204816133 -0.047569478  1.053854978
##  [449,]  1.3178464255 -0.663770947  0.708288140
##  [450,]  0.4369998881 -0.373733969 -0.203084535
##  [451,]  0.2456947675 -0.371743265 -0.002001495
##  [452,]  0.9754349443 -1.875513957 -1.323238335
##  [453,] -0.0927357816 -0.158146513 -0.736803321
##  [454,]  0.3189553227 -0.764498755  2.012758023
##  [455,] -0.3763576020  0.235871648  0.172244989
##  [456,]  0.0982563379  0.109332141  0.118366772
##  [457,]  0.9506166455  0.772008807  1.022771063
##  [458,] -1.7727532773  0.558886638  1.839921911
##  [459,] -1.3369246359 -0.394311497 -2.574880524
##  [460,]  1.8630753674 -0.052451301  0.508831326
##  [461,] -0.5184259477 -1.770136250 -1.687170422
##  [462,] -0.0399201725 -0.616101992  0.497008928
##  [463,]  0.6822220423  1.930582754  0.224769612
##  [464,]  1.1786586231  0.949812339  0.457555152
##  [465,]  0.2058558701  1.477648050  1.658201649
##  [466,]  0.3106413728 -1.974819477 -0.581562980
##  [467,] -1.7065529854 -2.800756329 -0.575853334
##  [468,] -0.8264026248 -1.962976726  0.291071687
##  [469,] -2.0826351275 -1.339036917 -0.414728978
##  [470,] -0.8162018838  0.472170481  1.551673267
##  [471,] -0.4908862604  0.584337981 -0.327745013
##  [472,] -0.3748063418 -0.204246772 -1.609154677
##  [473,]  0.6307519584  0.091683252 -1.282523689
##  [474,]  0.0845453471  1.920254631  0.494808436
##  [475,]  0.4867842100 -0.881618188  0.924671422
##  [476,]  0.1928132790 -0.554585648 -1.385003830
##  [477,]  1.0140676539  0.234233355  0.125583768
##  [478,] -0.4451569017  1.495410358  2.324277086
##  [479,] -0.6164784729  0.980897090  0.291017496
##  [480,] -0.1400193722 -0.548179336  0.140128105
##  [481,]  1.0897553403 -0.728504259 -1.421752235
##  [482,]  0.5359482602 -0.181957956 -1.020089547
##  [483,] -0.2685288621 -1.027099376  0.146943600
##  [484,]  1.0222760529  0.657793425  0.751171809
##  [485,] -1.4434608777 -0.229402833  0.775066392
##  [486,]  0.9442397617 -0.881281945  0.756498770
##  [487,]  0.7181927146  1.509445657  1.113855786
##  [488,]  0.1820687527  0.870051756  0.777454052
##  [489,]  0.2996723471  0.066816551  0.278302405
##  [490,]  0.7739629672  0.021671655 -0.719656708
##  [491,]  0.4742635235 -1.212453243  1.317210229
##  [492,] -1.5209182806 -1.289130570  1.172261983
##  [493,]  1.1752439367 -0.098690844 -0.400424487
##  [494,]  0.9237366240  1.550102162  2.626023416
##  [495,] -0.8590003774  0.626666006  0.403052011
##  [496,]  0.8997473563 -0.363436163  1.550700426
##  [497,] -1.2356149373  1.145999372 -1.106280525
##  [498,]  1.4648814836  0.774092324  0.579916911
##  [499,] -0.6267758214 -0.299728436  0.255422319
##  [500,]  0.5309124370 -1.371907725 -0.314672728
##  [501,] -1.5417772482  0.992169832 -0.733055494
##  [502,]  0.5597865586 -1.660146812 -0.829614802
##  [503,]  0.0732988198  0.598473588  1.695927754
##  [504,]  0.8662858098 -0.308882948  0.567883854
##  [505,]  0.2760196878 -0.260621083 -0.427757233
##  [506,] -2.4871525007 -1.890265959  0.722359209
##  [507,] -0.7193026770 -1.072007518 -1.591541045
##  [508,] -0.9054623190  0.907476495 -0.765668480
##  [509,]  0.3649059201 -0.901555998  1.084891305
##  [510,]  0.7480210616  0.242609105  0.287484295
##  [511,] -0.2406591908 -0.271714609 -0.236847759
##  [512,]  0.9634498695 -0.440381439  0.728468530
##  [513,] -1.9208353684  0.506094381  0.937064404
##  [514,] -0.9683429531  1.082074873  0.256600263
##  [515,] -1.5895578508  1.019664823  0.723911024
##  [516,] -0.1457682122  0.596015447  0.607606978
##  [517,]  0.5636239408  0.993800898  0.283659649
##  [518,] -0.1422348096  0.241652026 -1.706024588
##  [519,]  1.9765639869  0.608201526  0.477291220
##  [520,]  0.6598739484 -1.226909159 -0.069872596
##  [521,]  0.7630588807  0.211027016  1.148419672
##  [522,] -0.9875764883  0.597847086  1.621434670
##  [523,]  0.6426547907 -1.036777503 -0.090002582
##  [524,]  0.9982855053  0.527761410  0.824768852
##  [525,] -0.8760150105  0.232982021  0.724597395
##  [526,]  0.0694989933  1.054908779 -0.795374308
##  [527,]  1.3168388933  0.393949334  1.769077264
##  [528,] -1.5887691982 -0.029422813  0.377537891
##  [529,]  0.1946637286 -0.534885525  0.735970678
##  [530,]  0.0255609957 -0.123567265  1.496301508
##  [531,]  1.0324299470 -0.641909886  1.126956794
##  [532,]  1.0351365185 -0.271114296  0.651368207
##  [533,]  0.4741318352  1.873558394  0.836532987
##  [534,]  1.1257833000 -0.174312057  0.683715788
##  [535,] -0.7390430962  0.347212740  0.093222772
##  [536,] -1.4353358851 -2.461348682 -2.537419542
##  [537,] -0.6643875054 -0.877718121  0.551820693
##  [538,] -1.1961166518 -0.797990495  0.390577507
##  [539,]  0.7417496001  0.645641119  0.601692633
##  [540,]  1.9482946209  1.188147157  1.568023660
##  [541,] -0.3816313627  1.937022652 -0.915788834
##  [542,]  1.1804882516  1.688400331  0.045080109
##  [543,]  0.3438568179 -1.209170951 -0.612065241
##  [544,] -1.6884707232 -0.276768462  1.308073940
##  [545,]  0.2619659786 -1.718245845  0.571264681
##  [546,] -0.8398904005  0.825147990  0.378301690
##  [547,]  1.0774106753 -0.895315388  0.453994419
##  [548,] -0.6771129489 -0.268859793  1.085117178
##  [549,] -0.1547871737  0.476622445  1.463000647
##  [550,] -0.4762539715  0.212934556 -0.048679524
##  [551,]  0.0156869505  0.057466525 -1.675254699
##  [552,]  0.2525269892  0.890664290  1.018604217
##  [553,] -0.5436177424 -0.730775046 -0.003713984
##  [554,]  0.7063739217 -1.817569838  0.552099199
##  [555,]  0.0708205376  1.777531787  1.957526931
##  [556,] -0.0503131555  0.026553938  0.617028132
##  [557,]  0.3385652630  0.032712625  0.168080928
##  [558,] -0.3225313529  0.376846527  0.686921609
##  [559,] -1.6485316418  0.523046183  0.251570192
##  [560,] -1.1065251249 -1.446902154 -0.058204271
##  [561,] -0.7888932216 -0.323543196 -0.827000882
##  [562,] -0.2242928117 -2.718692219  0.106770409
##  [563,]  0.2653809870  0.941586003  0.598837073
##  [564,] -0.0842643908  1.003000652  2.290728624
##  [565,] -0.4698603947  0.631858075 -2.181897735
##  [566,] -0.2669111093 -0.685146222 -0.602789632
##  [567,] -0.0975223366  0.158994504  0.064149003
##  [568,]  1.8283787346  0.333385282 -1.271773566
##  [569,] -0.6621007431  0.952180198 -0.011235442
##  [570,] -1.9811421681 -1.435624231 -1.138662579
##  [571,]  0.8754939650 -0.716110626 -0.298102080
##  [572,] -0.4738861428  0.773714339 -1.652926237
##  [573,]  0.3553533290 -0.951827800 -0.614092681
##  [574,] -1.1114588005 -0.381883267  0.545276541
##  [575,]  1.3656130189  0.058345593  0.652533571
##  [576,] -1.5640701231 -2.067715365 -0.512808244
##  [577,] -0.9682163432 -0.864280699 -1.724256676
##  [578,] -1.5199328617 -0.241480198  0.766217416
##  [579,] -0.5487268383  0.206472267 -0.542660720
##  [580,]  1.0357364576  0.299175213  1.214823679
##  [581,]  1.4629281819 -0.736611439  0.582333926
##  [582,] -0.0487146820 -0.736774442 -0.377401756
##  [583,] -0.5467363153  0.225003616 -0.471981388
##  [584,] -2.2091240135  0.992217554  2.701065803
##  [585,] -0.6739824529 -0.225592752 -0.743830291
##  [586,] -0.0320223851 -0.837309432  0.525989732
##  [587,]  0.4514413024  1.304979453 -0.986688794
##  [588,] -0.0300337219 -1.421921460 -1.541616724
##  [589,] -1.6666480135 -0.278626463 -0.543565698
##  [590,] -1.2900466696 -0.758391117 -1.060749267
##  [591,]  0.4319864566 -0.329394898 -1.198117163
##  [592,]  1.9389505385 -1.548345472 -1.555270411
##  [593,] -1.4577831645 -1.042686347  0.910934148
##  [594,]  1.0709733731 -0.088439318  0.843063076
##  [595,] -1.2662974654 -1.202742192  0.054658695
##  [596,] -1.2579791301  1.085813386  2.231491304
##  [597,]  1.5025861062 -1.036017706 -0.188093014
##  [598,]  0.4287823395  0.395065462  0.913915414
##  [599,]  0.6130313134  0.704270645 -0.477477365
##  [600,] -2.1453468242 -0.036705369 -0.247385790
##  [601,]  0.3294138932  0.730909584 -0.771171864
##  [602,]  0.8130114122  0.622181915  1.298626688
##  [603,]  0.7660624168 -0.504793638 -0.385282652
##  [604,] -1.3910671477 -0.183007282 -0.027680362
##  [605,] -0.8983601107 -0.266297683  0.923437834
##  [606,] -0.0405602776  0.107229830 -0.323768650
##  [607,]  0.2316613542  1.338988761 -0.136921153
##  [608,]  0.7173066579  0.913741071 -1.672900784
##  [609,] -0.5776143584 -0.708391994  0.133767155
##  [610,]  0.6391410343 -0.359461782  0.511285080
##  [611,]  1.5155467776  0.518538552 -0.136016827
##  [612,] -0.1317378185 -1.465364970 -0.195662313
##  [613,]  0.3293080514 -1.987664175 -0.533427191
##  [614,] -0.0812087567  0.434448146 -0.495354076
##  [615,]  0.0445423726  0.417616067 -0.115641621
##  [616,]  0.2650812933  0.354502229 -0.294923498
##  [617,] -1.2737883728 -1.311043901 -0.241721866
##  [618,]  0.6053804512  1.249748038  1.018013084
##  [619,]  0.8637433714  0.570255723  0.825884429
##  [620,]  1.1906162384 -0.998743565  0.676853977
##  [621,] -0.1774126643 -0.405811928 -2.153114833
##  [622,] -1.0014484827  0.279215718 -0.644538157
##  [623,]  1.1101695366 -0.580739498 -0.825937237
##  [624,] -0.9002179368 -0.023855692 -1.573482473
##  [625,]  0.3134240287  1.253486028  1.711284585
##  [626,]  0.0690820842 -0.244363030 -0.201053571
##  [627,] -0.9773977653 -2.743955542 -0.856471736
##  [628,] -0.5691167092  2.334613886  0.134715301
##  [629,] -0.1580652742 -0.187754483 -0.071396643
##  [630,]  0.6943119614 -1.113176364  0.858270901
##  [631,] -0.5013045881 -0.054030989  0.612011824
##  [632,]  1.5183127964  1.008840087  0.799117682
##  [633,]  0.1174844617  0.329988359 -0.003778675
##  [634,]  1.2560844420  0.520645905 -0.194570379
##  [635,] -0.4051554373 -0.101302909  2.410361109
##  [636,] -1.1635243536  0.650996646  1.972419761
##  [637,]  1.0530786762 -0.287812961 -0.119680867
##  [638,] -0.4599177753 -0.046541264  1.875165507
##  [639,]  0.9307410746  1.016386299  0.717810383
##  [640,]  0.3866901487 -0.061783518 -1.252804430
##  [641,]  1.6296375584 -0.887820329 -0.991925021
##  [642,] -0.5537224524 -0.215989406 -0.705942962
##  [643,] -2.1759301150 -1.683583868 -1.222169633
##  [644,]  0.1208342580 -0.182949327  0.412293534
##  [645,]  1.5213961517 -0.069554428  1.917216557
##  [646,]  0.4047098624 -2.204996155 -0.697168169
##  [647,] -0.8186569519 -0.016445190  0.512402425
##  [648,]  1.7271659442  2.046046716 -0.170948795
##  [649,] -0.3983567175 -0.413592866 -0.594755107
##  [650,] -1.0490957676  0.378125853  0.050264737
##  [651,] -0.0818124825  0.121030126  0.578444629
##  [652,] -0.8889273800  0.086511522 -1.065446142
##  [653,] -1.5123766790 -1.563395374 -0.589871736
##  [654,] -0.5563159077 -2.217840332  0.909894758
##  [655,]  0.6048276133 -0.365036419  0.162872300
##  [656,] -0.3820814689 -0.932082212  0.595708013
##  [657,] -0.8043452134  0.461703192  0.947894234
##  [658,] -0.9764732448  0.068474885 -1.125769526
##  [659,]  0.0294447738  0.154963207  0.850572554
##  [660,] -2.0969009154  0.103626267 -0.291345040
##  [661,] -0.0179697530  0.672731780 -0.249955214
##  [662,] -0.3871741863 -0.229063440  0.798557947
##  [663,] -0.5530943973  0.717715429 -1.441485679
##  [664,] -0.3969721745  0.232951908  0.723169388
##  [665,] -0.3148828716  0.486813184 -1.532058107
##  [666,] -0.0653716211 -2.878726838 -0.312970971
##  [667,]  0.1632045972 -0.289978683 -0.573143684
##  [668,] -0.4361918238  1.317661381  0.792948075
##  [669,] -0.7838099709  0.714042311  1.005713230
##  [670,]  1.6202879608 -0.044365378  0.225393383
##  [671,]  0.2980292288  0.006011715 -0.849201917
##  [672,] -1.3794609812  0.719486987  1.281027109
##  [673,] -0.2084984127 -0.114979385  0.418953262
##  [674,] -0.6432043433  1.316107909  1.101726932
##  [675,]  0.4507666917 -0.612912167 -0.013222857
##  [676,]  0.2142591551  0.446564746  0.062672574
##  [677,] -0.2309672286 -0.940275032 -1.008302178
##  [678,] -1.2402658771 -0.684358195  0.865727946
##  [679,]  0.6578062724 -0.241817659 -1.125933848
##  [680,]  0.2700268330 -0.352206749  0.995928319
##  [681,]  1.2027657156 -0.830054505  0.667004067
##  [682,]  0.6526858040  0.190664212  1.707013202
##  [683,]  1.5616371952  0.820497442  0.872371129
##  [684,]  0.7445081064  0.036384922 -0.524325419
##  [685,] -1.1190073103 -0.867026761 -0.138109169
##  [686,] -0.7812229487  0.992285529  0.586248332
##  [687,]  0.9390886964  0.221536108 -1.278588869
##  [688,]  0.2939238386 -0.031583423 -0.502793751
##  [689,] -1.2032584356 -0.633727187 -0.337721009
##  [690,] -1.4199366626 -1.687327756 -0.420493263
##  [691,] -0.8303168202  0.548170474  2.825726407
##  [692,] -1.2574665722  0.089695231 -0.002737982
##  [693,] -1.6036976588  0.173304403  1.010862969
##  [694,]  0.4992798109 -0.071368708 -0.688329891
##  [695,]  0.4248960106 -0.619651823 -1.157002536
##  [696,]  0.2263595598  0.977727833  0.753554157
##  [697,] -0.6108165360  0.262521359  0.212151073
##  [698,]  0.8091972819 -0.998913875 -1.514090666
##  [699,] -2.2048877114 -0.168661602 -0.162137929
##  [700,]  0.7149772891 -0.539340403 -0.931510941
##  [701,]  0.9556600194  0.927917510  0.772254640
##  [702,]  0.9343047398  1.237285840  0.283825655
##  [703,] -0.6911245897 -0.027186946 -0.304460671
##  [704,]  0.7461021943  0.067162557 -0.251903277
##  [705,]  1.3534804972  0.866225572  0.443508450
##  [706,]  2.6847441159  0.754952698 -0.251776031
##  [707,] -1.6812283393 -0.351994650  1.605303082
##  [708,] -1.5141624953 -1.808162690 -1.245449347
##  [709,] -0.2829632272  0.943021434  1.179657995
##  [710,]  0.0713239498  0.900095556  1.553664487
##  [711,] -1.2870882503 -0.338482054  1.681315165
##  [712,] -0.9761655171  1.096328549  2.755635615
##  [713,] -0.2201178072 -0.028219491  0.692500500
##  [714,] -0.7776825361  0.130461630 -1.042687559
##  [715,] -0.5308777260 -0.838381235 -0.693285443
##  [716,] -0.9118593907  0.686587528  1.471245149
##  [717,] -0.8775428513  0.965837375  0.088753002
##  [718,] -0.5314932635  0.930994624 -0.870013887
##  [719,]  0.4834572207  1.337727072  0.972511128
##  [720,] -0.5946647181 -0.897432576  0.377230570
##  [721,] -2.5403470053 -1.222544434 -0.284631972
##  [722,]  2.2563424008 -0.543287448  0.037659608
##  [723,] -0.2487967172 -0.014661785 -0.561631012
##  [724,]  0.8044364271  0.884020933 -0.281072145
##  [725,] -0.7867380107 -0.705846051 -0.899417011
##  [726,] -0.9198937903 -1.289243502 -0.234490714
##  [727,] -0.5639463522  0.270836830  0.149392841
##  [728,]  1.5221959439  1.409499548  0.523945393
##  [729,] -1.4436383329 -0.601408031 -3.557210145
##  [730,]  0.1426168921 -1.783501553 -1.092415575
##  [731,] -0.4756336070 -1.949656754  0.649428938
##  [732,] -1.1030255338 -1.958508420 -1.197752241
##  [733,]  1.1100985942  0.753807519  0.925383336
##  [734,]  0.0633359473  0.685104589  1.701837342
##  [735,]  0.8866466048 -1.121141995 -0.706848918
##  [736,] -1.2975235191 -0.008872703 -0.559461598
##  [737,] -0.3435955460 -0.268381965  2.079385570
##  [738,] -0.0188264504 -0.740577510  0.090838546
##  [739,] -0.9980426098  0.168720697  1.085774743
##  [740,] -0.2274339367 -0.668401265  0.649187165
##  [741,]  0.5520921408  0.821280799 -0.455763852
##  [742,] -1.4040492721  0.573074114 -0.165577434
##  [743,]  1.6601270813  1.158850540  1.231624386
##  [744,]  0.8323897797  0.898477381 -1.291887486
##  [745,] -0.0221302671  0.812003745 -0.507117374
##  [746,]  0.3037735730  1.110145261 -0.554337936
##  [747,] -0.2789136628 -1.871937124  0.953515889
##  [748,] -0.1610720273  0.159363823 -0.584334317
##  [749,]  1.0553366804  0.950507290  0.602113247
##  [750,] -0.8670812261 -0.415283486 -0.004725589
##  [751,] -0.1423660396 -0.297283961 -1.904537948
##  [752,]  0.2985125728  0.820216906  1.079784484
##  [753,]  0.9741689360  0.476308672 -2.156946940
##  [754,] -0.2890663916 -0.067304596  0.476017356
##  [755,] -1.8424514169 -1.272877395  0.167061921
##  [756,]  1.3518787648  1.056256673  1.150026116
##  [757,]  1.0830552022  1.037812940  0.625935571
##  [758,]  0.5409845096 -2.256812283 -0.536394095
##  [759,]  0.1077064214 -0.684749484  0.604082519
##  [760,]  1.1328594454 -0.109625878  0.995268287
##  [761,] -1.4753130076  1.551462448  0.469023967
##  [762,]  0.1392395014  0.307697053 -0.824426981
##  [763,]  1.1261667772 -0.417045544 -0.160224054
##  [764,]  1.8896388110 -0.755663460 -0.293366519
##  [765,] -0.4275753772 -0.572888986 -0.228829945
##  [766,]  0.8519451082 -1.622974153  0.114512718
##  [767,] -0.4854590951 -0.986595047 -0.432432295
##  [768,] -0.5031485930 -0.196239447 -0.941208220
##  [769,]  0.7623743080 -1.232848668 -1.096953983
##  [770,] -1.1650894003 -1.604840892  0.299617284
##  [771,] -0.8559367056 -1.083707107 -0.450439822
##  [772,]  0.4997085090  1.784975961  0.742857417
##  [773,]  1.6420563320  1.072610344  0.129906708
##  [774,]  0.8222752996  1.432584584 -0.772480251
##  [775,] -1.0349537007 -0.849571542 -1.245889608
##  [776,]  0.0656840815  0.547479882  0.740023054
##  [777,]  1.2890892514  0.070497489  0.392577459
##  [778,] -0.5212999669  0.133168135  0.526751196
##  [779,]  0.6267458827  2.456764158  0.689915857
##  [780,]  1.3201417173  1.515782482  0.720956501
##  [781,]  0.9488515501  1.911794076  0.406407775
##  [782,] -0.1830947949 -2.500119153 -1.697684968
##  [783,] -0.9462447236 -0.782939485 -0.522270175
##  [784,]  1.4589257545  1.595591024  0.677179187
##  [785,] -3.2179119153  1.549007409 -0.441117464
##  [786,] -0.0926225662 -0.639546799 -0.104023515
##  [787,] -1.1379182690 -0.774206959 -0.217892335
##  [788,]  0.2655691850  0.141575391 -0.251703412
##  [789,] -1.0127931200  1.369769842 -1.864949717
##  [790,] -1.6407722296  0.362596667  1.205007767
##  [791,]  0.1688344855  0.959119151 -0.131500730
##  [792,] -0.4367126670 -0.668958088 -1.626798979
##  [793,]  1.1897253149  3.666272789  2.555395777
##  [794,] -1.9472185216  0.620008311 -1.651688353
##  [795,] -0.0545630761  0.958879097 -1.915353944
##  [796,] -0.1347915376 -0.621036671 -0.218051399
##  [797,]  0.6197976841 -1.957780047  1.647982093
##  [798,] -1.5504229312 -0.555918227 -0.496104985
##  [799,]  0.2536375193  0.890451660 -0.192135535
##  [800,]  0.6883863528 -1.508166902  1.071059936
##  [801,]  0.1719045927  0.265458327 -0.156556098
##  [802,]  1.8158154937 -1.384306898 -1.391792189
##  [803,]  1.3283163263 -1.588106354 -1.104293972
##  [804,] -1.1118621248  1.235336619  0.367208447
##  [805,] -0.4386188508  0.740154217  1.841455732
##  [806,]  1.4809599559  0.335527295  0.045876582
##  [807,] -1.4764487017 -1.102105755  1.271450727
##  [808,] -0.9027554697 -0.707013168  0.691541148
##  [809,] -0.8137437346  0.897217972 -0.215084558
##  [810,]  0.7148850013 -0.072072386 -0.839751345
##  [811,]  0.4353172504 -0.167913675 -1.187659435
##  [812,]  1.3228473818  0.445754640 -1.295652043
##  [813,]  1.8552991316  1.895500755 -0.522906544
##  [814,]  0.3752707241  0.252840853 -0.633114175
##  [815,]  0.2467139605 -1.478760475  0.239735882
##  [816,]  0.7146327405  1.022208466  0.500429293
##  [817,]  0.3282607891  0.544456572 -1.786098903
##  [818,]  0.6855405912  0.727339479 -0.354568715
##  [819,]  0.4104076436 -0.429945830  0.922045735
##  [820,] -1.2102731749  1.329418526  0.681526397
##  [821,] -1.0879600103 -1.043386286 -0.468463387
##  [822,] -0.6932388641  1.165371840  2.286801537
##  [823,] -0.3464767248  0.003872117 -2.048598318
##  [824,] -0.2746221069 -1.501785476 -1.100028808
##  [825,]  1.0951053504  1.458527988  0.417651565
##  [826,]  0.1410618902  2.246234947  0.201408375
##  [827,] -0.5226543404 -2.195401176 -0.551343638
##  [828,]  1.0772283559  0.979602086  1.458922906
##  [829,]  0.1187175848  0.505235653 -0.155713275
##  [830,]  1.2646077187  1.377913775  0.474139056
##  [831,] -1.0526728260 -1.290624789  0.023034865
##  [832,] -0.3709682287 -1.022060342  0.062386250
##  [833,]  1.2752340851 -0.996434909  0.516796726
##  [834,]  0.3842188813  1.377947319 -1.816210548
##  [835,] -1.3862424942  0.714772551  1.315626240
##  [836,]  0.8376747415 -2.798533579 -0.194815914
##  [837,] -1.0255126808 -3.500486381 -0.642577572
##  [838,]  0.8729997329  0.244897634  0.868669684
##  [839,]  0.8965594356  0.225676369  1.770231853
##  [840,]  0.2435224761 -0.876004765 -1.578901868
##  [841,]  1.1803035012  3.608914935  1.114534114
##  [842,] -0.2550051927 -0.516408835 -1.543846289
##  [843,]  0.1860076911 -0.761443724  1.417172592
##  [844,] -0.9114057856  0.374014043 -0.159660803
##  [845,] -0.6783910318  0.269930797  1.009992555
##  [846,] -1.4811615989  0.167173896  0.326048673
##  [847,] -0.5703634722 -0.402142389  0.893143732
##  [848,]  0.3956464450  0.878067417  0.194130052
##  [849,]  2.0204720259  0.043088348  0.967751622
##  [850,] -0.2201570867 -0.529348749 -0.753621540
##  [851,] -0.2073005359 -0.377156609 -0.126573826
##  [852,] -0.5217483062  0.131341433 -0.714586675
##  [853,]  1.7025970125  1.846534579  0.873887512
##  [854,]  1.2840729911  0.600608953 -1.223841316
##  [855,] -0.6441298182 -1.458487407  0.949024504
##  [856,]  0.0547635076  0.698868515  0.160496680
##  [857,]  1.1681333854 -0.745758421  2.883667011
##  [858,]  1.0368742267 -0.186709744  0.022174881
##  [859,] -0.8747699902 -0.545253825  1.117895162
##  [860,]  0.4548999509  0.337132523 -0.437387983
##  [861,] -1.5108855921 -0.892681926  0.269049966
##  [862,] -1.2851612164  1.046344292 -1.083046912
##  [863,] -1.4297679600  0.310697425  0.948214564
##  [864,] -2.6616890369 -0.864874476 -1.428361592
##  [865,] -0.8992554578 -0.002862553  0.106356268
##  [866,]  0.4603579724  0.841439789 -0.351798364
##  [867,]  1.4730501212 -0.028655746  1.340093354
##  [868,] -0.1746675012  0.365614472  0.530020828
##  [869,]  1.3189787196  3.666595281 -0.048206486
##  [870,]  0.5195750401  0.254395770  0.283220050
##  [871,] -0.6673026601 -1.286315182 -1.188771510
##  [872,]  0.8584316282  0.678644116  0.933228356
##  [873,]  0.6866376956  0.013894958  1.255752782
##  [874,] -0.7693551636  0.737451731  0.944921571
##  [875,] -0.4238630031 -0.900553366  0.019529006
##  [876,]  1.2274869618  0.878030348 -1.415477087
##  [877,]  0.7541622803  0.904934927  0.300474827
##  [878,] -1.6627424494 -1.611740231 -0.169535275
##  [879,] -0.1116503724 -0.647545948  0.747692218
##  [880,]  0.7960938748  0.459139492  2.262769841
##  [881,]  0.9807567473  0.494491994  0.186703870
##  [882,] -0.2826039585  0.926255673  1.270202854
##  [883,] -0.0086042365  0.431027021  0.603878970
##  [884,]  0.8875358371  2.008977320  1.143961767
##  [885,] -0.1823102624  0.023671089  0.060263394
##  [886,]  1.0804139919 -0.882889357 -1.481545843
##  [887,] -0.2310884905 -0.395139040  0.835798279
##  [888,] -1.8945294864 -1.710983269  0.414409102
##  [889,] -0.9930217502 -0.612692979  0.716232160
##  [890,]  0.9246140784 -0.424543041 -0.894803921
##  [891,]  0.4442591188  0.195464295 -0.978895790
##  [892,] -1.3628463266  1.161770072  0.047847292
##  [893,] -0.4081451017  0.191072641  0.884656983
##  [894,] -1.6423980193  1.384603559  1.946075885
##  [895,]  0.7073468923 -0.732757278 -0.250004227
##  [896,] -0.5101721454 -1.541200010 -1.073459377
##  [897,]  2.8544177704  0.256240919  1.088698805
##  [898,]  1.1125868162  0.830321473  0.385021549
##  [899,] -0.4337670765  0.337452030 -1.853838180
##  [900,]  0.3822763403  0.532924833  0.957291815
##  [901,] -1.2314187744 -0.343961861 -1.069481047
##  [902,]  0.8152469530 -0.089712679  1.068176081
##  [903,] -0.6598345169 -1.267903267 -1.739550506
##  [904,] -1.2378478746  0.024647861 -1.224624641
##  [905,] -0.0275826151 -0.360516930 -0.453244081
##  [906,] -0.7695320136  0.870768862  1.328070529
##  [907,] -0.6453537709 -0.200869210  0.256139183
##  [908,]  1.2678891971  1.252214168  0.532982996
##  [909,]  0.9810715982  1.211056126  0.058497050
##  [910,]  0.6974920762  1.106345434  0.708299699
##  [911,]  0.1052147019 -0.405305409  0.640539686
##  [912,] -0.6186858008 -1.198436938  0.385752918
##  [913,]  1.2741298744  0.982426908 -0.066684240
##  [914,] -1.6344514294  0.938944534 -0.475606869
##  [915,] -0.3218681709 -1.617608639 -0.164592976
##  [916,] -1.6222861533  0.321210460  0.056003965
##  [917,]  0.2217937339 -1.270086467  1.509475217
##  [918,] -0.9397657873 -0.376263674 -0.618910262
##  [919,]  1.2982541340  0.940418294 -1.133368967
##  [920,] -0.7187704773 -1.303023949  0.084966125
##  [921,] -0.1633322144  0.642982373 -0.167321260
##  [922,]  0.2308899567 -0.884929535  0.866644156
##  [923,]  0.0634441908  2.038259191  0.300394988
##  [924,] -0.4887569229  0.599591239  0.072902264
##  [925,]  0.8848414276 -0.353112085  1.364915618
##  [926,]  0.6566792091 -0.119290267  0.823324464
##  [927,]  0.1251127512  1.068697496 -1.483578356
##  [928,] -0.0630437285  0.493792892 -0.304256875
##  [929,]  0.9899111327  0.209044531  0.259439763
##  [930,] -0.2255004785  0.618981426  0.475614000
##  [931,]  0.9456461271 -0.011697648  0.395806031
##  [932,]  0.3981250743  0.401185481  1.636682576
##  [933,] -0.0386959116  1.463159047 -1.518791053
##  [934,]  1.4282265031  1.222835105  0.676911169
##  [935,]  1.5846164592 -0.487564434  0.348978043
##  [936,] -1.1818012792 -0.012879702 -0.412348932
##  [937,] -0.6450870131 -0.688657816  1.853936998
##  [938,] -1.3158212135  1.174070403  1.874134417
##  [939,] -1.5858874466 -0.943122648  0.187972941
##  [940,]  1.8331600838  0.495733229  0.420813387
##  [941,] -0.6345913706 -0.596242166 -1.594784291
##  [942,] -0.3555457570 -0.607242934 -0.161375727
##  [943,] -1.3295449687  0.654540900  0.084635079
##  [944,] -1.9787611660 -0.507091835  1.255480870
##  [945,] -0.9012613085  0.088412539 -0.051811139
##  [946,] -0.6395490819 -1.516072004 -0.123995854
##  [947,] -0.6605717966 -0.427347631 -0.154155512
##  [948,] -1.2046860538 -0.836971416 -1.660459706
##  [949,]  0.3318199558  0.915248857  0.660609930
##  [950,] -1.9704058312  0.601478996 -0.359846149
##  [951,]  1.1938940985 -0.788592430  0.808753410
##  [952,]  1.0773821583 -1.343123575 -0.350530513
##  [953,]  1.3988364266  0.238000344  0.797365255
##  [954,]  1.6540150836 -1.033637647 -0.027000724
##  [955,]  0.4288198003  1.182556404 -0.659233908
##  [956,]  0.5424024303  0.518164383 -0.648029331
##  [957,]  1.1788863465  1.328587291  0.256907531
##  [958,]  1.9713836156  1.012034171  0.438370486
##  [959,]  0.5695840390  0.026079593  0.040568647
##  [960,] -0.8742505821 -1.297786315 -1.621989307
##  [961,]  0.5822721611 -0.591163542  1.002798747
##  [962,] -0.7307933748 -0.285711792 -0.405987227
##  [963,]  0.0633849868 -0.479477775 -0.116407180
##  [964,]  1.3709118317 -0.400901345  0.823148911
##  [965,] -2.0195676009 -1.621731743  0.519122197
##  [966,]  0.2137359953 -1.066451228 -0.794181232
##  [967,] -1.8980499878  0.645629898 -0.670165445
##  [968,] -2.0021334173 -0.325497636 -1.013723888
##  [969,]  1.0354008642  0.390790828  2.110862653
##  [970,]  0.0152935001  0.099891794 -0.357401501
##  [971,]  0.3040462625  0.365550486  0.667931325
##  [972,]  0.8763046521  3.433792840  0.405028166
##  [973,]  0.3701051116 -0.161738876  1.062221830
##  [974,]  1.1707782236  0.997464171  0.917037148
##  [975,]  2.2121381992  0.223029918  0.236333483
##  [976,] -1.7731590392  0.039238865  0.319225543
##  [977,]  0.0769752312 -1.233090370 -0.902469037
##  [978,]  0.8608007479 -1.421167393  0.004576848
##  [979,]  0.3282812652  0.492361057  1.384613107
##  [980,]  0.8952956704  0.078595515 -1.319109081
##  [981,] -1.0839940367  0.329606121 -1.313192308
##  [982,]  0.2007760594 -0.539084791 -0.637013775
##  [983,]  0.3189829513  0.525561757  0.365278103
##  [984,] -0.6848882758  0.044253094  1.429377971
##  [985,] -1.2625211354  1.707057972  0.238260769
##  [986,]  1.3885961301 -0.318521551 -0.312556320
##  [987,] -0.2421078700  0.154749109 -0.077036712
##  [988,]  1.0010397344 -1.045214705  0.899024948
##  [989,]  0.0755200707  0.991805601 -0.413068483
##  [990,] -0.5198199903 -0.824130917  0.320153913
##  [991,] -0.8203772055 -0.910729017  0.379367906
##  [992,] -0.2800359347 -1.117361140  0.125537106
##  [993,] -0.3740062481 -0.985021915  0.293775033
##  [994,] -0.5775528006 -1.545068184 -2.014342486
##  [995,]  0.4246004689 -0.810644623  0.773448699
##  [996,] -0.6747531530  0.280635983 -1.032885362
##  [997,] -0.0240494757  0.817820112  0.960276099
##  [998,] -1.1689847462 -2.631665629 -1.271371546
##  [999,]  0.2850497411 -1.196063571  0.809946009
## [1000,]  0.1479639336  1.019933684  0.376476781
## 
## $simulated_resid$t
##                  [,1]         [,2]          [,3]          [,4]          [,5]
##    [1,] -0.1952835938  0.001366057 -0.0520539236 -0.4740534232 -1.0069673528
##    [2,]  0.3692378078  0.482763766  0.7592683456  0.8101294754 -0.0873102763
##    [3,] -1.1131243319 -0.028739371 -0.0909074473 -0.2129599616 -0.6657233252
##    [4,]  0.7833515919 -0.751230234  0.7327065904 -0.3643781016  0.2282845211
##    [5,] -2.3002464331 -0.295053772  1.4292639493  0.0412690621 -0.9058360045
##    [6,]  0.3600801085  1.525268088 -0.6794956783  0.4141077659  0.7846418843
##    [7,] -0.7069492089  0.374733125 -0.6309255810 -0.6653670220  0.4772440455
##    [8,]  0.7211416230 -0.119487498  1.4991561112 -0.0044261291  1.5397883643
##    [9,]  1.8081815774  0.415695991 -0.6377255713 -0.3644088876  1.6793340507
##   [10,]  0.3393113788  2.605921673 -0.3674167576 -1.7896640466 -0.0439780602
##   [11,]  0.1143801004 -1.137657672 -0.9921280744  0.2145772659  0.9578102016
##   [12,] -0.9410257389 -1.249051201 -0.4136832778  0.9064290195 -0.7395059250
##   [13,] -0.3175826295  0.260273179 -0.2152075385  0.2659370658 -0.8633401689
##   [14,]  0.6808477157  0.333750031  1.5403978161  0.8617494610  0.8711607051
##   [15,] -0.9463516642 -1.534221399 -1.0273126207 -2.4580298951 -0.8520798975
##   [16,]  1.7865595553 -0.110551322 -0.7712764861 -1.6604515443  1.6709476328
##   [17,] -1.3115904666 -0.582584673 -2.4342783802 -0.5194730061 -0.6072320922
##   [18,] -0.1922916640 -0.736370560  0.0200664680 -0.0663161917  0.4148195134
##   [19,]  0.5556118634  0.142439017  2.0857875313  1.6471749063  1.7790596690
##   [20,] -1.0413046845  0.744544662 -1.2031792908 -1.3005325103 -2.0105020679
##   [21,] -0.3799840127 -0.628728185 -1.6308421691 -0.1249594364 -1.4024012562
##   [22,] -0.5851700915 -0.172691472 -0.2986120783 -0.3660544186 -0.2584029641
##   [23,]  0.5758994165  0.575325665  1.1067279323  0.9341921002  0.1924856883
##   [24,]  0.1367256556  0.487985643  1.9346880793  2.5480178264  1.0917670762
##   [25,] -0.5378206215  0.371754663 -0.6897351767 -0.6624111732  0.4051833549
##   [26,]  2.0629611776 -0.365364268  0.8805813902 -0.6396352723  0.2727894764
##   [27,] -1.6455065310 -1.053083426 -2.2665000283 -2.0972925218 -0.4290541213
##   [28,] -2.1773975532 -1.972057727 -1.2391173993 -1.8610457938  0.3620412260
##   [29,] -2.0222096804 -0.554263982 -0.7605460156 -1.0390639643 -1.0845943174
##   [30,]  0.7285004307  0.803995884  0.2302789947 -0.4342304817 -1.6483614206
##   [31,]  0.5994466587  0.826661237 -0.5602626180  0.2991966662  0.0626276700
##   [32,] -0.3340961354 -0.223560941 -0.1819926519  0.1293507434  0.2256241488
##   [33,]  2.0658798958  0.289478167 -1.1061502989  0.2206881634  0.1383231039
##   [34,] -0.2752587693 -0.610599650 -1.0478029131 -1.3563292964 -0.5628743829
##   [35,]  0.0877579321 -1.109080176 -0.6852324126 -0.7897384730 -1.1940776915
##   [36,]  2.4419984385  2.198392197 -2.0615366455 -1.2685623896  2.7033192031
##   [37,] -0.9376531595 -0.911612167 -0.5120590481 -0.2369267221 -1.1462851906
##   [38,] -0.6232982342  0.616251129  2.0722120810  0.7467072187  1.3551761022
##   [39,] -0.3010834713  0.297999574  0.0316909636 -0.2622105971  1.4235756981
##   [40,] -0.7057740847 -0.355196346 -1.1878999962  0.0534894091 -2.5249707211
##   [41,] -0.0469693696  0.577532904  0.7898662569  0.8023685499  0.2354992744
##   [42,]  0.3467122815  0.060570851 -1.6137078425 -1.1199640880 -0.8217312772
##   [43,]  0.1528102019 -0.898474654  0.6657214424  0.0352424397  0.2139233388
##   [44,] -0.3258253838 -0.784561439 -0.3624091839 -0.0159825623  0.4694917375
##   [45,] -0.0239404842 -0.677259366 -0.3897642216 -1.3374037970 -0.6127662997
##   [46,] -0.7913355355 -1.233698406  1.0191535103  0.0064380731 -0.2699123143
##   [47,] -0.7759470312  0.451604503 -0.4933236907  0.3626020415 -0.1599591391
##   [48,] -2.0015084982 -1.124989733 -0.7736843381  1.1112161351 -1.0555279743
##   [49,]  0.1675452695 -0.893208792  0.8678609809 -0.1711805648  1.0383618939
##   [50,]  1.3499083221  1.470731230  0.7545862727  0.2636224274  2.1259496559
##   [51,] -0.6090914091 -1.762161251 -0.6543098454 -1.4520512265  0.7447032452
##   [52,] -0.7694298534 -1.297877476  0.2070183217  0.8779529234  0.7260265761
##   [53,] -0.5271407130 -0.787367582 -1.4045740344 -1.1987696733 -1.3473783918
##   [54,]  1.5527255206  1.237664103  0.6026808191  0.3981595022  1.1632313887
##   [55,]  0.7569333821  0.080189968 -1.0291241766 -0.3649644891  1.7988356099
##   [56,]  1.7564563347  1.082550437  2.5806388415  1.6307513743  1.1079340532
##   [57,]  0.3886019565 -0.755451450  0.9362887832 -0.3213794846  1.9548947319
##   [58,] -1.0840018543 -0.741971081  0.1702647373 -0.1597377858  0.7570659486
##   [59,]  1.4345174751  2.105265369 -1.2932639450 -0.6131307801 -0.6725026482
##   [60,]  0.3088288290  0.632098456  1.0142953871  1.2191669899  1.1827299003
##   [61,] -0.8922282733 -0.051618307 -0.6781137889 -1.1846242845 -0.3013733378
##   [62,]  0.9065539807  0.811496615  2.0868052171  1.1895012415  0.0753612880
##   [63,]  0.2441810903 -0.356010229 -1.8006425630  0.0035471877 -0.4902065824
##   [64,]  1.4059530607 -0.756659735 -0.5203419975  0.1944891227  0.2728647047
##   [65,] -0.6050523761  0.728034494 -0.4448601692  0.2153481222 -0.8027525268
##   [66,] -0.9905562531 -0.603872858  0.6082236816  0.0066600168 -1.0910192650
##   [67,]  0.9155339711 -0.646027116  0.1699945368  1.3420228805  1.5808668552
##   [68,] -0.7637630775 -0.667490680  0.4426426661 -1.3037188078 -0.0292194012
##   [69,]  0.6822729654  0.718648876  1.4995272617  0.1453463557  1.2004987862
##   [70,]  0.7540744987  0.127998626  0.9237428581  1.1305954603  0.4190285296
##   [71,]  1.3721211609  1.131380030 -0.0904344010 -1.0564959019  0.3320187108
##   [72,]  0.4854066753 -0.297960812 -0.6288293206 -0.4864844969  1.2531023579
##   [73,]  1.0498842906  0.146951920  0.1317272942 -1.0714632195  1.6501307549
##   [74,] -0.2252702016 -0.745980188 -1.4253064689 -1.5653340272  0.7316596812
##   [75,]  1.4285631014 -0.071748382 -0.1295506091 -0.0359143969  2.0382831123
##   [76,]  0.5626139397  1.078362410  0.1556401998 -0.3146980432 -0.7122504765
##   [77,]  1.1108246817  1.858169545  1.1118194902  1.3373854694  1.1589977408
##   [78,]  0.6820002354  0.233756746  0.2617710920 -0.3778237689  0.4960636251
##   [79,]  0.4691436248  0.853343296  0.1039213732  0.3517932929  1.3580135968
##   [80,]  1.3432988565  0.291743830  1.0957578471  0.1301570296  1.6471531549
##   [81,] -0.4702456965  0.609629400 -1.4505707463 -0.1836471013 -0.4835606628
##   [82,]  1.6013004741  1.070946991  0.6196311162  1.7033392108  1.4961711296
##   [83,]  0.2611838592 -0.464237871  1.5536286968  1.5712260844  0.6509198001
##   [84,]  0.8548825648  0.464579314  0.9871414083  1.0913597655 -0.1814130277
##   [85,]  0.1666813355 -0.031728405 -0.8753178982 -1.0711346106 -0.6083324065
##   [86,]  0.5777245192  0.464993611 -0.2066460411 -0.2429824221 -0.3926049785
##   [87,] -0.4164088600 -0.454109977  0.3602929283 -0.6801788746 -0.1396335308
##   [88,]  0.6169099771  0.840504151  0.6969792865  0.0066830718  0.2324071064
##   [89,]  0.0008343560  0.960472281 -0.0073395593 -0.6914573396 -0.8676379668
##   [90,] -0.1742399040 -0.068438408 -0.0437468975 -0.8821939947  0.1562413546
##   [91,]  0.1981231906 -0.285657362 -2.1523191200 -0.8480366952 -1.5437045112
##   [92,]  0.5608504157 -0.692810604  1.5998745228 -0.2318262449  0.0130522071
##   [93,] -0.8073410237 -1.950638025  0.3846320184  2.4236436319 -0.7301958954
##   [94,] -1.1896605705 -0.181867670  0.4703783251  0.7130174686 -0.5401289263
##   [95,] -0.6850636274 -0.965906977 -0.8559904191 -1.1643884746  0.2211122720
##   [96,]  1.8020084601  1.655177638  0.5587353792 -0.6385446879  0.5101177555
##   [97,] -1.1707877355 -1.167884039  0.9106692096 -0.3650890655 -0.9055881487
##   [98,]  0.7750024971 -0.559251098  0.3867465901  0.3984311605  0.2194673826
##   [99,]  0.4733432210 -0.418175457 -0.3708363134 -0.8666098616 -0.0951712196
##  [100,]  0.6392983570  0.328527015  1.7436949541  0.9982198630  0.5204863707
##  [101,]  1.0169266950  0.384307323  0.5531078097 -0.1371405109  1.2673397669
##  [102,]  0.1518814766 -0.775657674  0.3388055796  0.6089243012 -0.0726455433
##  [103,]  1.6926079168  0.824026385  0.1335110692  1.2280634377  0.1417842905
##  [104,] -0.8731197595  0.792451553 -1.2259924392  0.2104268055  0.9542461540
##  [105,]  0.8394030982 -0.764182649 -0.3582285753  0.3613124827 -0.2974245391
##  [106,]  0.1219397512 -0.061369640  1.8998029620  1.4752644086 -0.2416443265
##  [107,]  1.1852755210  1.069387692  1.3103011804 -1.7453569678  0.7117628242
##  [108,] -1.5885135739 -3.315483861 -0.7120374759 -0.5769862407  0.2643904591
##  [109,] -0.4964150297  1.012634441 -0.3392685263  0.4745425167 -1.2448588362
##  [110,] -0.3272436063 -0.753066175 -1.4939221759 -1.0890524357 -0.9671291516
##  [111,] -0.8767279112 -1.638200749  0.2716321529 -0.3675760933  1.2713304627
##  [112,]  1.2491524931 -0.303732380  1.0753501663  0.9221047839  1.3964805598
##  [113,] -0.0981524839  0.755192025 -0.0288921317 -1.7147630678 -1.0665026840
##  [114,]  0.2395259210  0.153082361 -0.6138085298 -1.2631597356 -1.4736618246
##  [115,]  0.2725279422 -0.879128506  1.4508488983  2.0454187755  0.4457738388
##  [116,]  1.1336136639 -0.088924662  0.9193893118  0.0565959790 -0.2743728829
##  [117,]  0.5596326528  0.932150004 -1.2879570510 -0.3384117822  0.2460307658
##  [118,] -0.2166799072  0.924316081  1.1231582172  1.4145502246  0.5934720601
##  [119,]  1.5374311315  1.344570070  0.0618850170 -1.4100010114  0.5572573599
##  [120,]  1.5233247335 -1.017450408 -1.6118215549 -2.1147534638 -2.8171948773
##  [121,]  0.8488501413  0.270583125 -0.4200497073  0.5038926032 -0.2235054880
##  [122,]  0.2986041255 -0.616565754 -1.3547679906 -0.7947333641  0.7083834262
##  [123,]  0.5002926086 -0.225955864  0.5025649789 -0.5085465339  0.5403536363
##  [124,] -0.4284144048  0.773961677 -0.9731237390  0.8223321325  0.5903768592
##  [125,] -1.4325337381 -1.733896734 -0.2889221786 -0.4318970002 -1.6652969221
##  [126,] -0.4365626079 -0.681668233 -1.4684641159 -2.2222159287 -0.0185758049
##  [127,]  0.5964469397  0.250276010 -0.8067626640 -0.5587780422  1.0872704495
##  [128,] -1.0327536156  0.415821751 -1.3903589876 -0.5062131666 -0.6204338965
##  [129,] -0.3997487094  0.854526286 -0.9094192887  1.0455903767 -1.0156743761
##  [130,]  0.2699089750  1.564464625 -0.1395962583  2.0463386603  2.1059348110
##  [131,]  0.4752851594  0.937941351 -0.8816638144  0.5696615975 -1.1792136839
##  [132,]  0.4064488623  0.170593043 -1.2266958740 -1.2087660635  0.7161897776
##  [133,]  1.8808293875  1.050260129 -1.5017593153 -0.2757376938  1.5711213787
##  [134,]  0.0093415138 -1.044066958  0.4504186337  0.7772743584  0.6562534645
##  [135,]  1.3559433255 -0.133256967 -0.0068927452 -0.7257659816  0.7742313117
##  [136,] -0.9671488890 -0.034394285 -1.4492268617 -1.2776136083 -1.1274866915
##  [137,] -0.6072235370 -1.528819079  1.0851510718  1.2485340690 -0.8644797395
##  [138,]  0.4722630426 -0.031045104  0.5992491105  1.7312912353 -0.1987708417
##  [139,] -0.3171567049 -1.786277327 -0.1689848805 -0.3644821607 -1.2611588609
##  [140,]  1.6270788884  1.139677154 -1.2010058005  0.1049014556  0.9428663861
##  [141,]  0.5958721491  0.485317842  0.6289594851  1.9228303715 -0.0942786123
##  [142,]  0.2436324119 -0.262220078 -0.0205586995 -0.9842767321 -0.7934313575
##  [143,]  1.6984126111 -0.039196560 -1.2136924133 -0.3310714182  0.5097724933
##  [144,] -0.2401711781 -1.345762486  1.5901330781  1.3580578163  0.7402329291
##  [145,]  0.0441181206 -0.180072858  0.3048189615 -0.1928795756 -1.1613626264
##  [146,]  0.5123047340 -0.626730866  0.4068924792 -0.2945730034  1.3235599458
##  [147,] -0.1596271988  0.200127874  0.2350573318 -1.2761149499 -0.7365954105
##  [148,]  0.4037669069 -1.438227987  0.8008938070  0.7180577640 -0.1983662486
##  [149,] -0.3693499020 -0.379434838  0.0415950596 -0.4228000773 -1.2289500553
##  [150,] -1.6025112033 -0.185199148 -1.2236855007 -0.3499740538 -0.7444403181
##  [151,]  0.0219604115  1.813114690  0.4076927207  0.9307678191  2.3650188765
##  [152,] -0.6477417925 -0.515243813 -1.5625618334 -1.2009002361  0.4711597858
##  [153,]  0.3596383442  0.083215388 -0.5512639204 -0.9313972411 -0.3143166679
##  [154,]  0.1981632139 -0.815083863 -0.2234896870 -0.4878513119  0.4378512772
##  [155,] -0.0153040500  0.386647748  0.9741056926  0.7762964440 -0.0265428133
##  [156,]  1.7119697473  2.430310343 -0.4230449845 -1.1361625620  0.9942306642
##  [157,]  0.6900951040  1.103829433 -0.5729299248 -0.2589197113  0.6779748832
##  [158,]  1.2955175623  1.455088799 -0.2032039811  1.0761958309  1.4637199135
##  [159,] -0.2123058320  1.020093563 -1.7251043904 -0.6404035670 -0.4304524528
##  [160,]  1.7036294049  1.433451151 -1.1221934293 -2.3912361147  0.0248548153
##  [161,] -1.4362394447 -0.811148673 -1.3607951756 -0.4688604190 -0.6697975828
##  [162,] -0.3108702917 -1.011958821  1.7138248937  1.0606260578  0.3942925533
##  [163,]  1.0951999030 -0.198568422 -1.2720694210 -0.9966576359  0.4995027066
##  [164,] -0.8433070428  0.204941981  0.4143507386  1.1410459927  0.3446298671
##  [165,] -0.7137750872 -0.001935653  0.0659104640  0.4346895084 -0.6357359770
##  [166,]  0.3248007621  0.131005158 -1.4347158603 -2.2592502925 -0.0504570224
##  [167,]  0.7054238788  0.053419870 -0.8223095013 -1.1035972698 -1.2709358305
##  [168,] -1.4240079693 -0.689243812 -0.3466055436 -1.7520067872 -1.0236001741
##  [169,]  1.2387222095  2.197118669  0.3028499652  1.2205167847  2.0637651916
##  [170,]  1.4531248784 -0.401136253  1.6509605298  2.0512699104  1.7172910087
##  [171,]  0.4534697688 -0.198365887  0.0240123227  0.9129350893 -0.9864817175
##  [172,]  0.9127851868  1.344429395 -0.4847470746  0.3686900794  2.0610449540
##  [173,] -0.9001413555  0.404583633 -2.7921407967 -2.0881238555 -2.9032036443
##  [174,] -0.0658700739  1.319556002 -1.5422173424 -0.2243057352 -0.7279700908
##  [175,]  0.1726614058  0.653725934 -0.4070822914 -1.2470434539 -0.7666395878
##  [176,]  0.4430826588 -0.168029944 -1.1582427511 -1.4760744637  0.2833476048
##  [177,] -1.0239722031 -0.818211100 -0.6584727371  0.0422688062  1.6512819717
##  [178,]  0.5526395764 -0.577772998  1.3097026662  1.2634999313  0.0086876842
##  [179,]  0.6248996661 -0.337821439 -0.1861063830 -1.0581180434 -0.4900964192
##  [180,] -0.1920824351  0.533162169  0.3129320413 -0.9262394831 -0.3331884705
##  [181,]  0.6926274140  0.088596193  0.6343232349  1.1826196107 -0.6741794220
##  [182,] -0.9585495956 -0.325180357 -0.8491186150 -0.2990710374  1.5956505978
##  [183,]  0.3215412573 -0.066456003  0.6437820475 -0.4037874810  0.9876080761
##  [184,] -0.6580596420 -2.039983591 -0.7279508155  0.4285361690  1.6753527086
##  [185,]  0.8782008910  2.839165051 -0.2955465763 -0.5512605033 -0.2193789429
##  [186,]  0.5832619406  1.464088760  0.1691368549  0.4657513847  0.3051484085
##  [187,] -0.1395842934  0.559253097 -0.5886590462 -0.7198885895  0.2990449345
##  [188,] -1.2700196145 -0.139146978  0.0316670984 -0.4547476408 -1.3204581243
##  [189,]  0.0898429687  0.619555623  1.2234172578  0.4716631683 -0.6931794383
##  [190,] -0.0268246741 -0.360434003 -0.7384916501  0.1657684178  0.4351044504
##  [191,]  0.7968358535  1.063614292 -0.9509407575 -0.7092828258 -1.2638615254
##  [192,] -0.1815517615  1.137208184 -2.0617621718 -1.1396464997 -0.2008109167
##  [193,]  0.0948131101  0.310540807  1.4061925578  0.1405827634  0.2472580308
##  [194,] -0.6073772596  0.198982383  0.1939379721  0.8155389734 -1.0716088602
##  [195,]  0.8626571692  0.025887704 -0.6875292601 -0.3492374086  0.2400385841
##  [196,]  1.7780472694 -0.383031552  0.9739338257  0.9333499417  0.5079044453
##  [197,]  1.0869584097  0.368176266 -1.0740383206 -1.4347446083  0.5937692378
##  [198,] -1.3868924373 -2.301301443 -0.0864016047  1.7197541111  0.3715680726
##  [199,]  0.1912458869  0.255714817  1.7536378109  1.0481991841 -0.8969444449
##  [200,]  0.1770167453  0.445733540 -2.1566757486 -0.5302174048  0.8944755599
##  [201,]  0.1384055975  1.265749280  0.2142747043  0.0893772026  0.0539014261
##  [202,]  0.2568273638  2.084978244 -0.3104405878  0.1321538858  0.4919902248
##  [203,] -1.3641337571 -0.774835774 -1.6137003112 -2.2274123407 -1.3991753357
##  [204,]  0.6500670940  1.252508021 -1.2262535398 -0.5719786168 -0.8876901666
##  [205,] -1.9984356633 -2.784598448 -0.4992171007  0.1017397069 -1.1131608879
##  [206,] -2.3757259176 -1.675369649 -0.7921294619 -0.4679212780 -0.8195184358
##  [207,]  1.0511849682  0.967138046  0.1865245983 -0.7870663422  1.4884321301
##  [208,]  0.2024150578  0.170605754  0.2410832661 -0.0928107440 -0.2466040101
##  [209,] -0.7991883422  1.246108231 -0.7560928122  0.0686748606 -0.6578007966
##  [210,] -0.3662622388 -0.608482345  1.1090698871  0.2386540369 -1.2013736982
##  [211,] -0.2219135227  0.379256243 -0.0139344940  0.4117229489 -0.2676967730
##  [212,]  1.4570939116 -0.019598043  0.6262280333  0.7711618586  0.1803389200
##  [213,] -0.0842324221  0.313980622  0.0623932136  0.3170942034 -0.2681536765
##  [214,] -0.0238490570  0.391985645 -0.1821507076  0.7065324955  0.1607080095
##  [215,] -0.9574540533 -0.978796470  0.1963172200 -0.2497761802 -0.4577261053
##  [216,]  0.1566889955 -0.031796914  1.1852001979  0.7570595055 -0.1156434274
##  [217,]  1.5137794709  0.668317915  0.4405057723  0.0671842494  1.6958394542
##  [218,] -1.8986435362 -1.566365463 -0.3605944753 -1.0401271689 -0.1072671738
##  [219,] -0.3068303531  0.190788450 -0.9755626556 -0.9249113152 -0.8424790640
##  [220,]  0.4757140281  0.196768498  0.5186343213  0.0814730092 -0.3043636045
##  [221,]  0.8224846735  0.440553500  0.6451167737  0.0741441281  0.0280017749
##  [222,]  1.1079578978 -0.026148724  0.5171211362  1.2522123349  1.2552147835
##  [223,]  0.6673766571  1.813148963  1.9392816724  0.8479281185  1.1822678386
##  [224,]  0.8648103725 -0.712915791  0.3275352989  0.0348667160  1.9665380384
##  [225,] -0.2143485940  1.227859277  0.1973848976  0.2079729377 -0.2392655499
##  [226,]  0.9189764004  1.069721032  0.6975113928  0.0265039133  0.4375512691
##  [227,]  0.0552508595  0.359097626  0.8806175605  0.0237003365  0.5130358021
##  [228,]  1.4947370534  0.197749228 -1.2322337962 -1.0710551168  0.0333417937
##  [229,] -0.5010495742 -0.293390476 -1.3306502721 -0.5168914990  0.3199220262
##  [230,] -0.6508758501 -2.081697024 -1.1670542312 -0.9993438852  0.4240316708
##  [231,]  1.0926983906 -0.003610886  0.8301597384 -0.0708364972  0.9652980021
##  [232,]  0.9200350208  0.610778461 -0.8442507404 -0.4450844299 -0.6873095290
##  [233,]  0.5341849226  0.106271972  0.1801851453 -0.0998419748  1.1803194335
##  [234,]  0.9769716290  2.525861423  0.1904229325  0.3455279822  0.6192232108
##  [235,]  0.2070942299 -1.482028401 -0.1131854698  0.1594597688  0.2352963245
##  [236,]  1.3778501377  0.487263754 -0.8009396850 -0.4651585524  1.8377051716
##  [237,]  1.0958701811  1.121407342  0.6174596482  0.6181019799  0.1752261645
##  [238,]  0.4267518636 -0.761342008 -0.6585100276 -1.0582997040 -0.2148530923
##  [239,] -1.4915722871 -0.813296424 -0.0295216916 -1.6708664548 -1.1840741850
##  [240,]  0.2350744704  0.858027146 -0.6975003806 -0.8546340160  0.6448922335
##  [241,]  0.5623422149  0.313485452 -1.0111440253 -0.3503371602 -0.5588176170
##  [242,]  0.5403644847  1.300782952  0.4180444937  0.7212054689  0.5566951201
##  [243,]  0.8929402047  1.010688294  0.9298789276  1.0527569111  1.5602207097
##  [244,] -1.0314306186 -0.531799091  0.0793236462  0.0555743061 -0.3164050054
##  [245,] -1.1955698304 -1.353135631 -1.1740464574  0.1473979877  0.3613806141
##  [246,] -0.8466383962  0.118119782  0.0262802466 -0.7462826918 -0.4734049492
##  [247,]  0.9733999404 -0.862614015  0.4706054104  0.2757312389  0.7538588762
##  [248,]  0.7552238868  0.914287381  1.3210874727  1.3637377985  1.0514104434
##  [249,] -1.0335685541 -0.286153927  0.7882804499 -0.8214799265 -0.7654013564
##  [250,]  0.0936842713 -0.323405159 -0.6876931958  0.0430567436 -0.9659397742
##  [251,] -1.9702386997 -1.375343084 -0.0673695175 -0.5540899350 -0.2765643569
##  [252,] -1.7008626182 -0.954571792  0.4349571938  1.1203377245 -0.4688007249
##  [253,]  0.8538832294  1.108753523 -0.1668647356 -0.1570043251  0.8905229260
##  [254,] -0.2269055896 -1.552887958 -0.6891093679 -0.8230166391  0.1351565021
##  [255,]  1.1377678133  0.586530327  1.1701983172  1.2216825967  0.6221653309
##  [256,]  2.1182882599  1.943393775  0.0114110412 -0.4257748155  1.9864675870
##  [257,]  0.7137287454  0.852593943 -0.0389590300 -0.1289061262  0.4293075307
##  [258,]  0.2876878268  1.449472236  0.2953522126 -0.6274738368 -2.1743832383
##  [259,]  0.5766579879  0.238056188  1.2878904295  0.0237711013 -1.2458066036
##  [260,] -1.9974877907 -0.777392455  0.1944466441 -0.8941268742 -1.3208083096
##  [261,]  0.0514936814  0.171715281 -0.0791333043 -0.9711881639  0.2707730299
##  [262,] -0.6776780928 -0.728303082  0.5220497657  0.6454208101  1.9140368083
##  [263,] -0.6598170256  0.189496081  1.3768779364  2.6838179460  1.0126974736
##  [264,] -0.9816537308  0.193038483 -0.1101521206 -0.3045639411  0.4348518983
##  [265,] -1.4886702901 -1.063375335 -1.4937450967 -0.4770437459 -0.5654804215
##  [266,] -0.7089349212 -0.266298613  1.1910414808  0.3720957234  1.2993908097
##  [267,]  1.6768145519  0.712888374 -0.7049813379  0.5449943879  0.5044024507
##  [268,] -0.2328168938 -0.211721200  0.7333300439 -0.7081541392  0.3645478677
##  [269,] -2.3125161141 -2.009024359  0.0947586572  0.7476682100  0.0027376869
##  [270,]  0.8162364791  0.125249431 -0.0723883492 -0.4945900410 -1.3844026671
##  [271,] -0.3748847397  0.216890838 -0.1308785082 -1.9822781360  0.0893709927
##  [272,] -1.8579758483 -1.197449645 -1.5578595120 -1.7763337340  1.1829615929
##  [273,] -0.3483462883 -0.184083315 -0.7109432451 -1.1554584251  0.1373809222
##  [274,] -0.3871661878 -0.814763548  0.2682029221 -1.3938330300  0.3518618023
##  [275,] -0.6477176894 -0.911369699  0.5640784154 -1.0094751358 -0.6579850763
##  [276,] -0.3200908850 -2.460845001  0.5014775817  1.0310623875 -0.2073202060
##  [277,]  1.6180133868  2.158799655 -0.3797529563 -1.2338173819  0.4590329718
##  [278,]  1.3348860361  1.851119886 -0.9262226293 -1.6538076406  0.1828578634
##  [279,] -0.6684183543 -0.074818268  0.7726337305  0.2110188852 -0.3489620128
##  [280,]  0.1894799878  0.022813050 -1.1112806716 -0.1456962618 -0.9749330871
##  [281,]  2.7810758387  2.513776018  0.3841573504  0.2246469535  1.6557985332
##  [282,] -0.7613024025  0.182642211  0.1975899432  0.0912060488 -0.0484469320
##  [283,]  0.4582265738  1.056039090  1.4100671992  0.3585627089  0.7997097914
##  [284,] -0.5074272382 -0.423419887 -1.5940619134 -0.5467897100 -1.5075822053
##  [285,] -0.0526533935  0.002135349  0.9072586715  1.1937875135  0.4506370916
##  [286,]  0.7804014565  2.174995847  0.8080068573  0.9007797263  0.9100340145
##  [287,] -0.1435484808 -0.099115837 -0.1508301385 -0.6634073742 -0.1254196388
##  [288,] -0.4487929700 -0.114736879 -0.1085202809  0.2670607050 -0.3058732698
##  [289,] -0.3598666514  0.267603286 -0.0456985027 -1.0876574029  0.1319363743
##  [290,] -0.9130477253 -0.303182651 -0.5696624619 -0.2319962072 -1.1035970300
##  [291,] -0.6761937432 -1.016761426  1.2553025364  0.6291434283 -0.1834157724
##  [292,] -0.5118807580  0.655312674  1.4114055514  1.3611697878  0.2449141799
##  [293,]  0.6582461015  0.653648487  0.4672161726  0.6931774577  0.1459570406
##  [294,] -0.7310238962 -0.773778171  0.0848834493 -0.6390661545 -1.4019816107
##  [295,] -0.0762701678 -0.463600125  1.0941732289  0.9733122865  0.7054826859
##  [296,] -0.7070312654 -1.402569655  0.2870060642 -0.8439695511 -1.1202095441
##  [297,] -0.5297855725 -0.518593106 -0.8924569465  0.5258072899 -0.2459334872
##  [298,] -0.1432024156 -0.159059237 -0.3656376977  0.9358216201  1.6368273783
##  [299,]  0.7504129055  0.613490883  0.9838559406  2.2789645910  1.0304967245
##  [300,] -0.4960701169  0.199091883 -0.2045937249 -1.1977735299 -0.1666360480
##  [301,]  0.0318481141 -0.341432055  0.8455170337 -0.5277720129  0.8415236399
##  [302,]  1.0706626955  0.308030911 -0.8783803374 -0.0973673618  0.7910077556
##  [303,] -0.6389971647 -0.558632017  0.2266449244  0.0094452874  0.6408330760
##  [304,]  0.6433404772 -0.082962535 -0.8674066913 -0.4443759368 -0.8521731449
##  [305,] -1.3479250012 -1.048137119 -0.8881631634 -0.9614168617 -0.4398087420
##  [306,] -0.2489389981  0.736643066 -0.3770752259 -1.1901428944  0.1630537611
##  [307,]  0.0338665360 -1.771387088  0.4782153544 -1.0664955489  0.3132521643
##  [308,] -1.0818521966 -0.651423770 -2.0881402432 -0.9105046641 -0.4695727500
##  [309,] -0.0194974939  0.165057373 -0.8957871357 -0.8052165505 -0.6009190253
##  [310,] -1.8554030314  0.226243051 -2.3180136575 -0.8800249532 -0.9728559200
##  [311,]  0.2587150517  0.504782433 -1.2759828230 -1.3953643532 -0.7839176256
##  [312,] -1.8096294341 -1.816164194 -1.1242687144 -0.5457183204 -0.2306890861
##  [313,] -1.7772089405 -0.231732585  0.2832674521  0.7809452947 -0.8085407407
##  [314,] -0.0007996836 -0.838170420 -2.3312747034 -0.6247639443 -2.0307077134
##  [315,] -0.5516700633 -0.256400296 -0.0332410513  0.1605117050 -0.4106711875
##  [316,]  0.2926891453  0.809578230  0.4364133389 -0.0757210846 -0.5920931569
##  [317,] -1.0428109049 -0.673494537 -1.0923669747 -1.3754796666 -0.4248968646
##  [318,]  0.2455503324  1.889013455  0.2918577675 -0.0934843967  0.0310189176
##  [319,]  0.6899151524  1.510944395  0.4862917631  1.7025564125  1.0614684132
##  [320,]  0.9963626088 -0.453656151 -1.6072312671 -1.0042211491 -1.2716125820
##  [321,]  1.8296768676  1.389170130  0.0587786529 -0.1913939467  0.5635933803
##  [322,] -0.8503645821 -0.276626763  0.1420967669  0.7695767114 -1.0494706971
##  [323,] -1.2697781658 -0.645614427  0.2141978101  1.0896934367 -0.6947197879
##  [324,]  0.5512918827 -0.165785997  0.6459489875 -0.0649098892  1.2949933131
##  [325,] -0.8238552942  0.152999886 -0.6134775995 -0.7379579341  0.5959083803
##  [326,]  1.0202739904  1.445008200 -0.8432443214 -1.6673492337 -0.4090967259
##  [327,] -0.6857964010 -0.803542795 -1.3958035609 -0.5064498665  0.1692357110
##  [328,]  0.9920571486  0.842518575  0.3928292794  0.2462142478  1.3881527073
##  [329,]  0.7416621672  0.753662976  0.7211411119  0.4106237518  0.3981876976
##  [330,]  0.3094717379 -0.568723410  1.4268104807  1.9173501193  0.4497584900
##  [331,]  0.1165239122  0.436296002  0.9602251649  1.0288828441  0.3847332150
##  [332,]  1.6830720750  1.670320459  0.0739423753  0.2739238845  2.1844538129
##  [333,] -1.9525466146 -0.185636010  1.1427535815  1.3557434380 -0.1467855319
##  [334,]  0.5014663586 -0.613863333  0.8940591280  0.5273749993  0.3842308089
##  [335,] -0.9263205144 -0.106913525 -0.6530699034  0.4448572890 -0.2470104641
##  [336,] -0.8026807305  0.106722157  0.6733041816  0.0461512863 -0.2540409406
##  [337,]  1.5132345983  1.209241060 -0.5021061290  0.0787649662  0.4132679176
##  [338,] -1.6987035303 -0.383448239 -1.3170985104 -1.7819857870 -0.1592379120
##  [339,]  0.2919144890  1.013167061 -0.0940561014  0.7063779021 -1.2238263652
##  [340,]  1.8269398785  0.563041458  0.5774422857  0.8006170306  1.2236158314
##  [341,]  0.7921546818 -0.196446120 -0.2056753371 -2.3078298097 -0.2291999824
##  [342,] -0.6443570102 -1.699629528 -0.3852009578  0.5459442685  0.3316402930
##  [343,] -0.6633566690 -0.276947444 -0.4797223600 -0.6908847939  1.0691368661
##  [344,]  1.6959220846  0.821439488 -1.2186576517 -2.1365816313  3.4048736505
##  [345,]  1.4587101014  2.691210397  1.1778835881  0.0549134834  0.4813963145
##  [346,] -0.6379554194 -0.471629688 -0.6906727656 -0.8597339443 -0.0068038195
##  [347,] -0.2564229364 -0.804834501 -1.3567672645  0.0917302164  1.2151406044
##  [348,] -0.4360361118  0.242310988  0.2097666150  0.1651609737 -0.4147503965
##  [349,] -0.5543054202 -0.602893392  1.3713178497  0.5870665822  0.9184668814
##  [350,]  0.4333957849  1.748783525 -0.9043703227 -1.6863857550 -0.1503485265
##  [351,]  0.4960382376  0.264668231  2.6014076590  1.1270087055  0.0505691277
##  [352,]  0.1614171307  0.039480552 -0.4245903298 -1.0936191047 -0.7613675972
##  [353,]  0.3220710922  1.609568433  1.3070703583  0.8270510254  0.2101304365
##  [354,]  0.8966548035 -0.268246900 -0.4018633351  0.5623826573  0.4870990915
##  [355,] -2.1275967629 -2.450968503 -0.7680286439 -1.4525652049 -1.7241902543
##  [356,] -0.3281176448 -0.568510277 -0.1473589160  0.4922925361 -1.3391466980
##  [357,]  0.6806412290 -0.456011743 -0.2355633426  0.3480661135  0.3277990795
##  [358,]  0.1010524399  0.887437477  1.1744400529  0.3587238602  1.3941033231
##  [359,]  0.7135201097 -0.137894300  0.1012632863  0.0287841355  1.4750666836
##  [360,]  0.3202077828 -0.123979968  0.2069128280 -0.3103704909  0.3075074903
##  [361,]  1.4916780266  0.435064203 -0.3319338654 -0.7438628087  1.4474887405
##  [362,] -0.4413939430 -1.139572894 -0.5036783181 -0.9282776258 -1.0542053142
##  [363,]  0.1647829728  0.008056660  1.3011438563  1.3714869762  0.8124978987
##  [364,] -2.4617740653 -1.962777516  0.6555310700 -0.8850514755 -1.1269736740
##  [365,] -0.6345709497  0.106452327  1.1561545662 -1.0657557365  1.2374477002
##  [366,]  0.7125576536  1.123681418  1.3274409075 -0.9179625125 -0.2395217572
##  [367,]  0.8077299357  1.489078639  0.7856432506  2.2383561693  1.6261049245
##  [368,] -0.3276924577 -1.467321314  1.6470322300  1.0409663328  1.5253180907
##  [369,] -0.8452029076 -0.777602541  1.2596868886 -0.2341009937 -0.7200506613
##  [370,]  0.3311818418 -1.268380978  0.0672289761 -0.6912156971  1.0620272980
##  [371,]  2.1592001592  0.606544086  1.6612843003  0.9715072972  1.7888262660
##  [372,] -0.6222242458 -0.755741131  1.0196087506 -0.6973042614 -1.2837053475
##  [373,] -0.5894780766 -0.013634763 -0.8409791219 -0.9943755162 -1.8326650168
##  [374,] -0.1214853098  0.219116513  0.4505649174 -0.0966453896  0.3731817774
##  [375,] -0.3254240614  0.954518410  0.3054874660  0.0209831496 -0.3671624046
##  [376,]  0.6431933936 -0.568620858  1.2179424190  0.5564554411  0.3297913386
##  [377,] -0.8028935809 -0.961467543 -0.3133052293  1.0575631830  0.5595910799
##  [378,] -0.1938388601  1.010077831  1.8663758402  2.9639228104  1.9846085642
##  [379,] -1.0569936888 -0.410458703 -1.6335797406 -1.3281578713 -1.9429458322
##  [380,] -0.5243905425  0.580180835  0.1900485145  0.2777439816 -1.0649185410
##  [381,] -0.2649161555 -0.853554046 -0.7081126028 -0.0168128135  0.6716887052
##  [382,] -1.0002203970 -0.530750479 -0.3533133104 -0.3649966802 -0.0116902841
##  [383,] -1.1961973275 -0.785114482  0.5175684542  0.9586629087 -1.3886697831
##  [384,] -0.8228243653 -0.113968727 -1.1342250607  0.4111683846 -0.4091461435
##  [385,] -1.0718944355 -0.695934242  0.9589399098  0.8049980972 -0.8929791291
##  [386,] -0.5867223494  0.787931253 -0.8705107675 -1.2756963682  0.0005190947
##  [387,]  0.5015447349  0.163099171  1.4096709160  0.3370566655  0.3351650112
##  [388,] -0.5611032765 -0.472987649 -1.2826683798 -1.7108988462 -0.2402384904
##  [389,]  1.9260668986  2.190640847  0.5676148617 -0.6941065049 -0.3945117593
##  [390,]  0.3684660600 -1.223571891 -0.0115243810 -0.1510892950 -0.3220292086
##  [391,] -0.5020489961 -0.290428332 -1.5108216676 -1.8679550618 -1.8173506544
##  [392,]  0.3917691057 -0.217558126 -0.1129866128 -1.0073538610  0.8049681695
##  [393,]  2.3028305589  3.063944499  1.6710629945  3.1001164425  1.7055226162
##  [394,]  0.7666932770  1.275814171  0.3007984664 -0.2520630434 -1.4119704595
##  [395,]  0.5554465046  0.839088004  0.5780920767  0.5326996562 -0.0177778556
##  [396,]  1.2081923714  1.682149498  1.0390388138  0.3376183699  0.9098860194
##  [397,] -0.0861200581  0.258052211 -0.1834403329  0.8887995479  1.9004447580
##  [398,] -2.1067460630  0.507550974 -0.1761667087 -1.2873757582  0.0348726597
##  [399,]  0.6060760633 -0.400666879  0.2073760173 -0.3355533192  1.7110792795
##  [400,]  1.3663760613  0.112921362  1.4628851934  1.7729621887  0.5959643264
##  [401,]  0.0178217701 -0.191331502 -0.9341185046 -1.2255201079 -0.3799041045
##  [402,] -1.7140590487 -0.430119681 -0.1596001865 -1.3116256998 -1.3970806090
##  [403,] -0.7313793328 -0.128525768  1.6388455884  1.3085044108  0.1201129538
##  [404,]  1.0290330321  0.104858055  1.6287783513  1.2143956274  1.7030064916
##  [405,]  1.5588405052  0.915691888 -0.2415452009 -0.4940050817 -0.0789397218
##  [406,]  1.3604932043 -0.131420048  0.8171256073  0.1183357353 -0.1739822729
##  [407,]  0.5213803867  0.029156359  2.6104140031  1.5274170425  0.5273849851
##  [408,]  0.1315293609  0.204652556  0.3562499339 -0.0431632916  0.2127892863
##  [409,] -0.1738075306  0.115958791  2.2230009746  1.3770575735  0.1148675384
##  [410,] -1.0024550807 -1.192759025 -0.1400736788 -0.6464068634 -1.1786500299
##  [411,]  0.5883357782  0.270071158  0.2598459919  0.9064721208  0.8636769175
##  [412,]  0.0172312751 -0.475603148 -0.6775844015 -0.4695516620 -0.3787249594
##  [413,] -0.1060223835  0.089198782  1.0849999890  1.3971894533  2.3472436388
##  [414,]  0.3761128375  0.077227186 -0.2870436614 -0.7357656411 -1.1833564218
##  [415,]  0.3191556211  0.391112436  1.4201422872  0.6792431986 -1.1754875490
##  [416,] -0.9613865364  0.016546179  0.2532512769  0.8668048771  0.5476022186
##  [417,]  0.9124421535  0.017629052 -0.0699631472  0.7119320897  0.5219342153
##  [418,]  0.5222229425 -1.023395330  0.2873866114 -1.2803086716  1.7780657574
##  [419,] -2.9453470112 -2.675438492  0.3723820366  1.3150274902  0.0250297526
##  [420,]  0.4655495447  0.425077064  0.1883913886 -0.9136151889 -0.0599940313
##  [421,] -0.2668360317 -0.319009688 -2.0860213577 -1.7097144755 -2.9932592953
##  [422,]  0.2735678008 -0.674858123 -0.2275284429  0.4191370722 -0.6846908144
##  [423,] -0.2169590675  0.123167547 -0.3894182725  0.0289271300  0.2446606862
##  [424,]  1.4062938986 -0.002464128  1.0990259126 -0.8520404202  2.1241482007
##  [425,]  0.1478946024  0.602580485  0.7662582711 -0.3331474052  0.4616993706
##  [426,] -0.1556534989  0.173650486  0.1151067872 -0.0072373607 -0.7020941428
##  [427,]  0.4084330424 -0.560864786 -1.1901191011  0.0418946854  0.0231636877
##  [428,]  0.4284946238  0.786579728  0.5768042190  0.6915884656  0.4350194674
##  [429,] -1.7317153939 -2.145135816  0.0345313857  0.2055128858 -1.0665516638
##  [430,]  0.2392306291  1.409907521  0.7283700145  0.9261441006 -0.6738934138
##  [431,] -1.0655690781 -0.295526973 -2.5330208887 -1.4823397978 -1.4021475315
##  [432,] -0.2915261171 -0.387340409 -0.2810981977  0.2115354604  0.9499561894
##  [433,] -0.3110292018 -1.776661140  0.7507840009  0.7931476145 -0.7797639780
##  [434,]  2.5664749288  0.907061441  0.5614284415  0.6955933456  1.1892883741
##  [435,] -0.3073557828 -0.671901896 -0.2976356538 -0.5264865129  0.4285237600
##  [436,]  0.2147532846 -0.492251046 -0.0530759122 -0.7980466377  0.5874827001
##  [437,]  0.3256799903  1.357994730  0.1946897889  0.5401736895  2.7855715596
##  [438,] -1.1885867777 -1.635371806 -0.2668880733  0.2625742170 -1.6144930240
##  [439,] -0.9091895353 -0.817478174 -0.2415965492  0.1813741903 -0.3631252237
##  [440,] -1.3065256855 -1.239033211 -1.2936877578  0.1554498936  0.8252224126
##  [441,]  0.3804719342 -0.241997822 -0.0806463651 -1.3630309422 -0.3861999699
##  [442,]  0.8125090672  0.631223581  0.5524837158  1.5289282156  0.7530614240
##  [443,] -0.5709100449 -0.970293786 -0.2719802777 -0.6428790557 -1.7035686956
##  [444,]  1.0940395406 -1.704714728 -0.1608302193  1.5043458844 -1.2686597304
##  [445,] -0.1287204150  0.181838529 -0.2114425991  0.3710764389 -1.6114514168
##  [446,] -2.4744270100  0.816920077 -1.4552480464 -0.8080484419 -2.5724202754
##  [447,] -0.9034418360 -1.489695764 -0.5361827182 -1.0572782930 -0.1593130239
##  [448,]  0.8676043419  0.470993873  0.5387699309  0.1859163872  0.6179602701
##  [449,]  0.4646599288 -0.231722199 -1.0960542435  0.6621505004  1.1786373324
##  [450,] -0.4158718403 -0.346188746 -0.7664280727 -1.2934562413  0.5158717032
##  [451,] -1.9298241502 -1.782473736  0.9913030073 -0.0015186359  1.3203677108
##  [452,]  0.6075551080  0.216914810 -0.0605394164 -0.1096286212  1.1874809452
##  [453,] -0.9753076582 -1.658503677 -0.3844758259  0.5549444349 -0.5983037591
##  [454,]  0.2552739191 -0.541274739 -2.0526614809 -1.2346327776  0.7051812326
##  [455,]  1.2287254628  0.756022163  0.2132910264 -0.4051734091  2.4728986513
##  [456,]  1.0492756796  1.656888040 -0.3224371820 -0.9192378148  0.0008752627
##  [457,] -0.3030465590  0.347285893 -0.6130497680 -0.8779645461 -0.0384313528
##  [458,]  1.6836834036  0.456675336  1.1094714261  1.0862787619  0.5986292634
##  [459,] -0.1181508992 -0.038697509 -0.6647806660 -2.0627967115 -0.1301589829
##  [460,] -0.1346598354  0.119554510 -0.9860124397 -0.1164221244  0.5108389820
##  [461,] -0.2520350095 -0.760367907 -2.3309275041 -2.2049421461 -2.2609359632
##  [462,]  1.6282919287  0.789964684 -0.4676508565 -0.2771851661  1.2979740512
##  [463,] -0.7427128587  0.079019079 -0.3186622827 -1.8747192491 -0.3588881380
##  [464,]  0.8339215103  0.576422000 -0.3707172476 -0.1514659861 -0.2263847819
##  [465,]  0.9481735641  0.207749602  0.6660005303  1.2841513120  1.0301761106
##  [466,]  1.5960755043  1.413548106  0.7760420835  1.2424220728  1.5072249492
##  [467,] -1.9171132358  0.721679989 -0.1614496529 -0.1709663064 -0.9420384068
##  [468,] -0.0292577515  0.625970710  0.8234403997  0.7570386707 -1.9536872949
##  [469,]  0.6035979943 -0.170136334 -1.4890860969  0.2602329561  0.3956556834
##  [470,] -0.4954873371 -0.464232360 -0.4717344033  0.3217575464  0.1343378930
##  [471,]  0.0486179981  0.661403768 -0.4971688680  0.6601190481  0.9584461817
##  [472,]  1.9344820625  1.847073234  0.6990484738  1.4508988477  1.6476595678
##  [473,]  0.6022435265  1.597445877 -1.2876841448 -0.8162794414  1.5746863467
##  [474,] -0.2192888193  0.088026291  0.7590325749  0.2029983599  1.4935482216
##  [475,] -1.2308689559 -2.004043394  0.1528144576 -1.4992219490  0.6536249254
##  [476,]  0.6313758716  0.569343769  0.5455253964  1.0148327045  0.3177642376
##  [477,] -0.4729701773 -0.900123269  0.5917911302  0.0435042271  0.1366206005
##  [478,]  0.1932952911 -1.167696803  0.3532497108  0.4598130648  0.5735143552
##  [479,] -1.5023807853 -0.391815355 -1.3583943810 -1.1710526762  0.8572446596
##  [480,] -1.5413063149 -0.735867256 -0.0987879503 -0.8251634262 -1.0078058997
##  [481,] -0.1396691694 -1.621625661 -0.5002180233 -0.0126241206  0.7093797115
##  [482,]  1.6624002304  1.600935945  1.1252331100 -0.3507191956  2.4441910769
##  [483,] -0.5495309225 -0.573312211 -0.0700794629 -0.9172040173 -0.8886192750
##  [484,] -0.4946621204  0.169508777  0.1766641237 -0.2513885222 -0.8901710101
##  [485,] -0.4025385950 -0.844388421  0.6412720879  0.2679680489  1.3015020267
##  [486,]  0.9137529541  1.429460021 -1.2460689949 -0.9054969727 -0.2480208781
##  [487,] -0.3846354251 -0.305901884 -0.8751854469 -0.6360431497  0.3714712932
##  [488,]  3.2897907374  1.711329011  0.9620210638  1.1296394481  0.8707766803
##  [489,] -0.9500560866 -0.390996379  0.3662647590  0.1785863258  0.1491100962
##  [490,]  0.0777889452  0.832371755  0.3172372405  0.4761915239  0.1809343803
##  [491,]  0.3363553872  0.112284199 -0.5777979448 -1.5188610794 -0.9463589699
##  [492,] -0.4178259696 -1.023311449  0.4036875809  0.9972525130  1.8835822171
##  [493,] -0.6909743733 -1.443913317  0.9883882798  0.1764573195 -1.0991951158
##  [494,] -0.3426508057 -1.319435911 -0.5884659784  0.1895906749 -0.6176719056
##  [495,] -0.6065275416  0.366967696 -0.0964877829 -1.4294582604  0.6380220065
##  [496,]  0.4150238469  0.213364321  0.2957543861 -0.3816173939 -0.3982877697
##  [497,]  1.1273281757  0.765595296 -0.4444192598 -0.0368708301 -0.4182748564
##  [498,]  0.0987502920 -0.818207360  0.9081610567  1.0096962305  0.7070706785
##  [499,]  0.9892353194  0.824004748 -0.9685085653  0.4537889301  1.1878900345
##  [500,] -0.3798728496 -1.529548479 -1.2451056064 -0.0410414093  1.3500028947
##  [501,]  1.0003813114 -0.605958930  0.2735810224  1.4361611455  1.3997227718
##  [502,]  1.0600420442  0.354550994  0.5165491112 -0.1795788680  1.6043773726
##  [503,] -0.8803768756  0.698473222 -1.6285115884 -1.1019559401 -0.3022628370
##  [504,]  1.6416463291  0.465426958 -1.2381518171 -1.3705626289  0.8573709247
##  [505,] -0.4192950086 -0.658638455 -0.8571811161 -0.3170934454 -0.1481342572
##  [506,]  0.4305396068 -0.032289281 -0.6058680875 -1.3620906090  1.3759251225
##  [507,]  0.7938378902 -0.144534163  0.7747879012  0.4127623523 -0.0150778639
##  [508,] -0.2442572842 -0.484035724  0.0051171179 -0.4801527839  0.0937033946
##  [509,] -0.9421876824  0.216041025 -0.4346557757  0.5849338859  0.3180926641
##  [510,] -0.2422131305  0.067424982 -0.8950678557  0.1227661075 -0.0679560777
##  [511,]  0.8905786699 -0.316935102 -0.0079589815  1.6069732106  2.1259688284
##  [512,] -0.2496664575 -0.126857838  0.9885339017 -1.6509863657 -0.0032618930
##  [513,]  1.2192262516  1.664407526 -0.5874161452 -0.6485672310  0.7983418215
##  [514,] -0.6585981802 -0.596878006 -0.9923930869 -1.1807425409 -0.6497582584
##  [515,] -0.9150598754 -0.583658776 -0.2102135862  0.0009204219 -0.4962651953
##  [516,] -0.5718543903 -0.358677027 -0.1232533244 -0.4999485483 -0.1034719627
##  [517,] -0.1129820006 -1.107257090 -0.0566655953  0.2214150216  0.7461984152
##  [518,] -0.3303552239 -0.445141874 -1.1314146364 -0.5796908682 -0.0945088450
##  [519,] -0.3069796927  0.093853896 -0.5901156696 -1.4225096713 -0.3520966902
##  [520,] -0.0017788730 -1.727706177 -0.6069616755  0.4055612113 -0.1941316085
##  [521,] -0.5792915450 -0.500879420 -1.0452375949  0.3185252580 -0.4900986995
##  [522,] -0.0738377756  0.748858473  0.2499067249 -0.3552762614  0.6423197169
##  [523,]  1.1218744732 -0.216898186  0.6953395600  0.9835311653  1.5397669994
##  [524,]  0.5026885062  1.540422040  0.7182471273  0.4620829431 -0.5061703102
##  [525,]  1.8914382543  1.212231551  2.0526368051  1.6515923697  0.9392894617
##  [526,] -1.6922181776 -0.124442555 -1.3670017242  0.1741195667 -2.2176432387
##  [527,] -2.0883657756 -2.080786286 -0.8018235918 -1.0997331091 -1.5829700592
##  [528,]  0.3362834367  0.713161474  1.0241126234  0.5429974022  1.2011042333
##  [529,]  0.8786867733  0.307377233  1.6652902406  1.7986870619 -0.1005900692
##  [530,]  2.8063961289  0.949678071  1.9037708231  0.9897836776  2.0005839316
##  [531,] -0.2437468010 -1.054212899  0.1009632664  0.9151865716 -1.2171224327
##  [532,]  1.3274955920  1.367499402  0.3849585377  2.2207738159  0.6790596016
##  [533,]  0.4521155140  0.609036616  0.4818995238  0.7842314890  0.6251398828
##  [534,] -0.9947001030 -1.361553165  0.0276234897 -0.4194818087  0.9195617556
##  [535,] -1.2937991647 -1.133270861  1.2222572210  0.0227740072  0.4858314543
##  [536,] -0.6805393838 -0.868542494  1.5266829661  0.9759114417  1.1437399979
##  [537,] -0.1789881947 -0.006978164 -1.3337772188 -0.3283904796 -0.3228137256
##  [538,] -0.9698256362 -0.643142768  0.6898067388  0.8740621124  0.0036752131
##  [539,] -0.1768374328  0.912032701  0.1464837168 -0.1113088384  0.1174099470
##  [540,]  0.0937241081  0.299181947 -0.9934848306 -1.4190123180  0.0377142436
##  [541,]  0.3364305345 -0.481773932 -0.3980010483 -1.5168921240  0.5283308090
##  [542,] -0.0792031918 -1.205907389 -0.3485978122 -0.5319932956 -0.6537772946
##  [543,]  0.8910822757 -0.196351223 -1.0520075504  0.9830142758  0.8090241984
##  [544,] -0.1194283992 -0.014895631 -0.0247929115  0.2505798966  0.4159087820
##  [545,]  0.1244297389 -1.117785175  0.5539906224 -0.6309963178 -0.0760815100
##  [546,] -0.5788957925 -0.041485346 -0.5278664550  0.7298997505 -0.6397929056
##  [547,]  0.8413393710  1.060253340 -1.5812800837 -1.0956997726 -0.3953217947
##  [548,]  1.8389787469  2.844396096 -0.6518868821  0.1774543252 -0.7157575811
##  [549,] -0.3001527864 -0.384414079 -0.8339293727 -1.1511048440 -0.8755588417
##  [550,] -1.8995783894 -0.591316350 -0.2601474009  0.5873626279 -2.2917936734
##  [551,] -1.3889260000 -0.746175221 -1.6081192345 -0.5301711618  1.2172262182
##  [552,] -1.5888757177 -1.117864135 -0.5269503766 -0.7056021290 -1.2010067828
##  [553,] -0.1970786870 -0.326319336 -0.2972126106 -1.1164332097 -1.1739668011
##  [554,] -0.7982192613 -1.760207381  0.4200033474 -0.2902813771 -0.9363200996
##  [555,] -1.1792284191 -0.790253209  1.3252103124  0.6505753358 -0.0763506264
##  [556,] -0.8564511073 -1.556907809 -0.7579406791 -0.7642725423  0.4341640721
##  [557,] -1.2275695631 -0.943653025 -0.3762616503  0.1655764119 -0.8399858288
##  [558,]  0.6630968366  1.658664033  0.1916022124 -1.1102720439  0.6405059604
##  [559,]  0.5885540084  0.039209314 -0.5172589233 -0.2988861519 -0.1418447514
##  [560,] -1.8220465840  0.052226495 -1.4376146213  0.1147575926 -0.5511796919
##  [561,]  0.1553284181  0.441569425 -0.9316352888 -0.1569940876 -0.1407815025
##  [562,]  0.6486198199  1.844713229  0.1136864624  0.2039044723 -1.3356566428
##  [563,] -0.3344598689 -0.821168152 -0.3525348809 -1.5324677310  0.3830028547
##  [564,]  0.4306378141 -0.207025512  0.0731473394 -0.0812393566 -0.0874345969
##  [565,] -0.2044552502  0.307070375  0.6787724604  0.6547633322 -0.0707593176
##  [566,]  0.4162739149  0.879504417 -0.1346265738  1.3029655714  0.4829553934
##  [567,] -0.9049990919 -0.986357414 -0.2480509012 -0.4390008504 -0.4169804772
##  [568,] -0.7776156629  0.851927245  0.6262449016 -0.1020136586 -0.6618779367
##  [569,] -0.8305661467 -2.212448162 -0.7572733439 -0.7397690767 -1.4995727628
##  [570,] -2.2078385932 -1.718942375 -0.4117433067  0.7251746251 -1.9313631056
##  [571,] -0.1370994970 -0.549134809  1.2957346428 -0.3948809086 -0.4542317900
##  [572,] -0.4111301422 -0.043743107 -0.1229430293 -0.4134553697 -0.0167361262
##  [573,]  1.4403852546  0.760794892  1.9587766812  0.8748678178  0.9215982875
##  [574,] -2.1626223110 -0.021491806  0.8833265831 -0.5514248703 -2.0614323024
##  [575,] -0.1665893693 -0.785598363 -0.3763049125 -0.7234567306  0.3209473832
##  [576,] -0.2729677407 -0.122185001  0.5190135485  0.3989747633 -0.1071540768
##  [577,]  1.5521420936  1.346073834  1.2765525878  0.9209958525  0.7708841273
##  [578,] -0.8745735448 -0.651714488 -1.5745842621 -1.6419147416 -2.1558808779
##  [579,] -1.7975160659 -1.780485826  0.2476557634 -0.0275784471 -2.2648150734
##  [580,]  0.5666473512  0.778829992  0.2153656136 -0.1604802980  0.6266579453
##  [581,] -0.1222489325  0.066731697  1.3607354748  0.4257603147  0.3593879127
##  [582,] -0.8084324141 -0.622435177  0.8595734242 -0.4203771595 -0.7175645747
##  [583,]  1.2841028565  0.906629737  0.7040598723  1.8496839057  1.7156831393
##  [584,]  1.7989935945  1.886305332 -2.0160304423 -1.0174853638  0.5294973302
##  [585,]  1.2923226058  0.348049633  1.0222536959  0.2233784214  0.8179591783
##  [586,] -0.7508582078 -1.091382399  1.2571074284  0.2114152356  1.2750760729
##  [587,]  0.3186542216  0.752137482 -1.9927321871 -1.8600877147 -0.3332038306
##  [588,]  1.0484746475 -0.377581815 -1.0466342728 -0.6215247092  2.1125947121
##  [589,]  0.0191508745  1.568259612  1.0719780365  0.3819475533 -1.7730150858
##  [590,]  0.1051877871  0.109890523 -0.6795901583 -1.4984834447 -0.0836240255
##  [591,]  2.0743122090  0.877117194  1.0983112714  1.4640631398  1.5943823589
##  [592,]  0.2360690355 -0.761485776  1.8119123081  1.2131655565  1.5626106455
##  [593,] -0.0086541343 -0.512874893  1.7524884664  1.0203699313  2.3322178502
##  [594,] -1.0044248866 -0.603196227 -0.0783247410  0.7805754362  0.3116568274
##  [595,] -0.5447065756  0.380525094  0.5693271501  0.0362543427  0.0757679467
##  [596,]  0.7276755177  1.353733865  1.0124175034  1.4492644378 -0.1721869045
##  [597,] -0.6164791307 -1.041959482  0.4349513275  0.6689510080  0.3477345330
##  [598,]  0.9201095013 -0.572522187  1.6137630250  1.6348472631  0.9964030525
##  [599,] -0.0276556517 -0.377809029 -1.1198553906 -0.7605404054 -1.1484005911
##  [600,]  1.2295695449  0.953318515  1.0911904827  2.3124722788  0.0760845434
##  [601,]  0.0122049424 -0.006645964  0.3316490898 -0.1100596248  0.4414012186
##  [602,]  1.2857664778 -1.038222865  1.3544420600  0.3164619141  1.8639622694
##  [603,]  0.6733636021 -0.418211959 -0.9277953966  0.8423948256 -0.0668452656
##  [604,] -0.1922769209  0.903599325 -1.1064054390  0.3576458447 -1.6039519167
##  [605,] -2.0575927153 -2.230572191 -0.0098073147  0.6996912011 -1.6558370261
##  [606,] -0.3347103762 -0.167518126 -1.2916611392 -0.3722750297 -0.6413523888
##  [607,]  1.5541963535  0.533402248  1.0784931879  0.8844185898  0.9215404699
##  [608,] -0.9625680456 -0.144199632  0.9942567878  1.3930443962 -0.7737720222
##  [609,]  0.6072946118 -0.996356857 -1.6002365242 -2.3217145776  0.0060012238
##  [610,] -0.2393221553  0.341496543  0.4249511342  0.1852544652 -0.1975669300
##  [611,] -0.6780490154 -0.307033020 -0.3934444913 -1.4192472454  0.7900773569
##  [612,]  0.4460424721  0.820918321 -1.1744684552 -2.0196129094 -1.0538202634
##  [613,]  0.3454838842  0.303789945 -0.1399693578 -0.4747661393 -0.3105972440
##  [614,]  1.5313233735  1.052051551  1.8731947355  1.7972134086  0.1133668657
##  [615,]  0.3013317487  1.902366381 -0.2154543418  0.9518682936 -0.4819646243
##  [616,]  0.2858353117 -0.020680919  0.2577396954  1.0561039351  0.4866576090
##  [617,] -0.3663279987  0.044279651  0.1655498766  0.4535956074 -0.5673964390
##  [618,]  1.1250501419  0.525083648 -0.2240773529 -0.1910392934  0.6284694775
##  [619,] -0.5241679402 -0.090038583  0.3383787089  0.0864703101 -0.9546720499
##  [620,]  0.2130625062 -0.080804742  2.4668022404  1.6943961300 -0.3447581062
##  [621,] -0.4961247109 -0.553200796  1.1357218535  1.5953791110  1.3027330279
##  [622,]  0.8056639732  1.045011136 -1.1973658582 -1.1828750399  0.6236896689
##  [623,] -0.2169651136  0.021311605 -2.5875457937 -1.8905127856 -0.8629461405
##  [624,] -1.9060274719 -0.913541247  1.6285975490  1.0353426440  0.3248204402
##  [625,] -0.9531958022 -0.864251247 -0.4100115187 -1.9932191499  0.0990265743
##  [626,] -2.0172022301 -2.341405167  0.1580502968  1.8369505166  0.1693011655
##  [627,]  0.2334445331  0.940356122 -1.1479357985  0.4198714854  1.1374394962
##  [628,]  0.0479248213  1.887133845 -0.0360242662  1.2356387036 -0.5955157758
##  [629,]  0.0271150839 -0.456319252  0.4647845128 -0.2766024780 -0.5363005991
##  [630,]  1.3776643882  0.674623554 -0.8556322843 -1.2785949583  0.2615639111
##  [631,] -0.2100357077 -0.788089053 -0.3143083880  0.1063176935 -0.3827397410
##  [632,] -0.7452652467 -0.663019739  1.8710710699  1.8084085459 -1.8659429986
##  [633,] -1.3465435690 -0.049517972 -1.0340931653 -1.0211918059  0.2244647702
##  [634,] -0.7474871624 -0.937682735 -0.6383259044 -1.9734056365  0.1697170970
##  [635,] -0.4085135389  0.091045237  1.0205046333  0.8721574707  1.3092105859
##  [636,] -0.0478229783 -0.356862153  0.2182700201  0.2995613278 -0.6221546020
##  [637,] -1.2436564063 -0.951000779  0.1039044788 -0.1175005259 -0.4361420712
##  [638,] -0.1130584105 -0.198049208 -0.7922140067  0.4189867945  0.5405041627
##  [639,] -0.8624718724 -1.470767289  1.1284107777  1.0632890125 -1.0893266693
##  [640,]  0.9897107458 -0.880013917  0.1652854069  0.6093015529  1.0249738761
##  [641,]  1.6203222448  1.454433238  0.7838676607  0.8937425476  0.8118249700
##  [642,]  1.1752687193 -0.589446277 -0.5810048975 -1.1170320547 -0.6149298554
##  [643,]  0.1413021308  0.006851356 -0.4079853855  0.4480269035  0.3582205403
##  [644,] -1.7451290127 -0.905825121 -0.3564959507 -0.4676403100 -1.4152862194
##  [645,] -0.0536942300  1.027336953 -1.0918554426 -1.5453061447  0.3472023909
##  [646,] -1.8509081517 -2.402837054 -1.6972415757 -1.3633807649 -1.2377861061
##  [647,]  0.4125269078  0.199245359 -1.3671040230 -0.8629427029  0.8787294502
##  [648,]  1.2175160146  0.104366537 -0.1401878438  0.1667355611  1.9261751263
##  [649,]  0.7948899320 -0.371660622 -0.8957998875  0.4682339182  1.2500032069
##  [650,]  1.7748516769  1.029232180  1.2859901784  1.3803231045  0.7825406386
##  [651,]  0.6104986003 -0.672122710 -0.6267764432 -1.0149999938 -0.7383818441
##  [652,] -0.9401853941 -0.423139269 -1.4642398148 -0.0504281590 -1.8843561663
##  [653,] -0.3934639574 -1.788995269 -0.1720361857  0.8195367877 -0.8636570777
##  [654,]  0.2380511561 -0.195454331 -0.4208058058 -1.1245899486 -0.1183621730
##  [655,]  0.3912984222  1.074527912 -0.4758734777  0.3458793443 -0.4317527448
##  [656,] -0.4823469227 -0.897499695  0.3260354047 -0.2958999904  0.0607888679
##  [657,]  0.1861939158 -0.546983268  0.2807053620  0.7061949025  0.1652668407
##  [658,]  0.7588092532  0.921521763 -1.1014834514 -1.0792884164  0.7946186417
##  [659,]  0.5927939971  0.397529919  0.0367709919  0.8649040268  1.5557596518
##  [660,]  0.4222216864 -0.001149722 -0.4064633943 -0.9266413673  1.1529779755
##  [661,]  0.1019210762  0.231649948  0.2259815480  0.0693725556  1.2545324043
##  [662,] -0.3341014430 -0.734828940 -0.2454717698 -0.4059890483  0.9106515571
##  [663,]  0.1370165679  0.210790466 -1.0769754018 -0.7339548651  0.2277546501
##  [664,]  0.0243878904 -0.239799793  0.5828449288  1.6867609636  1.1674471309
##  [665,]  0.0862538922 -0.478219614 -1.3057407117  0.1099834388 -0.3336986713
##  [666,] -1.9623421751 -2.093961671  0.1574272273  0.9717901802 -0.1320539908
##  [667,] -0.0710589861 -1.030960258  0.1232832239  0.1052105235  0.3615665246
##  [668,] -0.5000720990  0.117998640 -1.0827100929 -1.4320411876 -0.9978904994
##  [669,] -0.5767321379  0.439531825  0.8587530331  1.2177339704  1.4906925155
##  [670,] -0.0552953309 -0.428315084 -0.1508571550  0.0069565643  1.8884181286
##  [671,] -0.3192105106  0.167379450  1.1455184692  0.7963993672  1.0709069541
##  [672,]  2.7719218930  2.759997938 -0.4814977280 -0.7541429037  0.5010390227
##  [673,]  2.5570887588  2.186747648  0.2559229759 -2.0392873146  1.2133654175
##  [674,] -0.3719923284 -0.857597871 -1.1696934646 -1.5836865267 -0.9717177546
##  [675,]  0.4681364942  0.852483051 -0.0560528043 -0.1096651296 -0.4309355282
##  [676,]  0.5269636594  0.704730767 -1.7888545023 -1.1002393983  1.0103620696
##  [677,]  1.0138037825 -0.225954400  0.8004039796  0.4790875984  0.0520456210
##  [678,]  0.1603847235  0.929310070  1.6723314230  0.5115337960  0.4329661389
##  [679,] -1.2798945661 -1.323822316 -1.9304787577 -0.2678720713 -1.3045201649
##  [680,] -0.1577769684  0.336292191 -0.5194855353 -0.5027785838 -0.3717435763
##  [681,]  0.5826042084 -0.612159196 -0.8745221142  0.1770912320  2.3067562108
##  [682,]  1.1758178758  0.004537278 -0.6661287252 -0.9431110732  1.1575918165
##  [683,]  1.0816611577  1.147851608  1.5183194479  1.1875090103  1.1618926921
##  [684,] -0.0571307780 -0.361346471 -0.5287986358 -0.4949751335 -0.5451922126
##  [685,]  0.9464608594 -0.359230193 -1.4906262739 -1.0156184421 -0.2865844458
##  [686,]  0.2274456495 -1.272692490 -0.0622454473 -0.6584631424  1.9367415910
##  [687,]  0.2379798803  0.453690905  0.0877209886  1.3169141081  0.7975333871
##  [688,] -1.1572091873 -0.520672151 -0.1156115660  0.4268441198 -1.4525021747
##  [689,]  0.2629702279  0.525788691  0.3816980116 -0.3069284788 -0.1338844588
##  [690,]  1.4711464907  1.334934963  0.7593711411  0.8053843888  0.9353343512
##  [691,]  0.2939936404  0.946363041  0.2096898598  0.2628590947 -0.0580995523
##  [692,] -0.1792871825  0.484736638  1.1176992945 -0.5846487643  1.4250520885
##  [693,]  0.9119373075 -1.013722107 -0.5496545660 -1.9074535391  0.8297275093
##  [694,] -0.7233133810  0.291346293  1.0265876423 -0.0390571117 -0.7919482216
##  [695,] -1.0926314869 -2.042043060 -0.6928773230  0.1053696519 -1.2047304789
##  [696,] -0.0533760917  0.034542787 -0.2237294208 -0.2816443760 -1.3479637966
##  [697,] -1.2729401359 -0.383859061  0.0030723003 -1.5730084646 -0.5064730955
##  [698,] -0.8194229206 -0.974016394 -0.3858057045 -0.1062548240 -0.2489999465
##  [699,] -0.2946031121 -1.248884480 -0.4386696968  0.7152675016 -0.4761526345
##  [700,]  0.4875162997 -0.042118574 -0.2654581237  0.6089406400 -0.6381583161
##  [701,]  0.6848892623  0.824992600 -0.0680689915 -0.6861177382  0.3256761747
##  [702,]  1.0837722307  0.552644975  1.1530500228  0.8363006918  1.7874475900
##  [703,] -0.8674776991 -0.670855785 -0.0005653254 -0.9496401694  0.3715172242
##  [704,]  0.0611584775  0.370274984  0.1566765741  1.9375249296  1.2920751518
##  [705,] -0.2875674789 -0.597067777 -0.9449768298 -1.0997348848  0.4218677766
##  [706,] -0.0819898170 -1.533270368  0.3591102895  0.4287069299 -1.6706792590
##  [707,]  0.0842671402 -0.531285299 -2.0401536569 -0.4698444748 -0.2469792340
##  [708,]  0.4031754287 -0.222955865  1.3795174445  1.6642086520  0.9725144897
##  [709,]  0.6133698416 -1.261769950  0.0689128005  1.3456879821  0.8654561624
##  [710,] -0.0839316516 -1.908571752  1.0448573328  0.1168033783 -0.3615800281
##  [711,] -0.8356560748  0.594033955  0.3065755608  0.9221300937 -0.9909267031
##  [712,] -0.8315678882 -0.166394126 -0.6282987353  0.3819427222 -0.3916527200
##  [713,] -0.4026125431  0.973603690 -0.7379799187 -1.0552389443 -0.6720448928
##  [714,] -0.6907176938 -1.221636570 -0.9024567268 -0.2968716975 -0.2280251675
##  [715,] -0.0287771058 -0.921702917  0.7842429112  1.1734107941  1.4461495001
##  [716,] -0.1859332979  0.097065099 -0.2182108393  0.1607908746  0.1692904254
##  [717,] -0.3930645173 -1.015471726 -0.4798038257 -1.9726305245 -1.3162829826
##  [718,]  1.3699757861  2.439756327  0.2317314107  1.2963914107 -0.6715188164
##  [719,]  0.3845203210  0.195373492 -0.7949441091 -0.7682833236 -0.9619403701
##  [720,]  1.7881849974  1.362572776 -0.2583131547  0.6687528470  0.2701467475
##  [721,]  0.5949530359  0.068408886  1.3696878334  1.1021471363  1.4332962325
##  [722,]  1.0459014332  0.224672926 -1.6344356093 -0.5216447030  0.1372396235
##  [723,] -0.6544884314 -0.411521896  0.0437189772 -0.7834788958 -1.1958870267
##  [724,] -0.0753777199 -1.484035583 -1.1651902936  0.2817093854  0.3780670559
##  [725,]  1.3721863108  0.752801428  0.8799733862  1.3803418316  1.4530491310
##  [726,] -1.0733850348  0.225769645  1.7102025686  0.3770479889 -0.6958214872
##  [727,]  0.4123054854 -0.507148328  0.2545252151  0.0197527698  0.6035726945
##  [728,] -0.5866229982 -0.325764101 -0.5036609819 -0.6020751471  0.6544771416
##  [729,]  0.7985698694 -0.418749146  0.7027917896  0.2232529670 -0.4827712468
##  [730,] -0.2187783154 -0.137546664 -0.6638345573 -0.1016849130 -0.8889104968
##  [731,]  1.8737697683  0.942886986  0.9174513618  1.4423167139 -0.3371230788
##  [732,] -0.0923154212 -0.153779964 -0.6864751074 -1.0639657455  1.1952389657
##  [733,]  0.1620640422 -0.523629497 -0.0230154166  0.5812280825  0.8527338041
##  [734,]  0.1304513755 -1.086194964 -0.2293882541 -2.1553527095 -0.5215803912
##  [735,]  0.9265900812  1.135388719  0.2756928337 -0.8663927083  1.1705296946
##  [736,]  0.2684756663 -0.847431646 -0.4948560577  0.3496978448 -0.1373783817
##  [737,]  0.5358577778  1.823460107  0.2894353299  2.5432996416  1.0634471961
##  [738,] -1.6365247580 -1.090049483  0.8803690170  1.8407062373 -1.4033083332
##  [739,]  2.6204938766  1.906881045  1.7916505413  1.7774547457  1.9163865576
##  [740,] -0.4630388708  0.051486554 -1.4283293795 -0.5080985297 -1.6178714841
##  [741,] -0.0006222093  0.412631301  1.0998072185  1.0500295731  0.0373033131
##  [742,]  0.9230232659 -0.457082693 -0.7121509657 -0.7504596856 -1.1466057604
##  [743,]  0.7627176236  1.764314976  0.9877056606  2.1226654738 -0.8607044604
##  [744,]  1.1478925450  1.849620945 -0.5227316961 -1.3973585875 -0.5951421630
##  [745,] -2.6328764362 -1.036893548 -1.8408092229 -2.0535804642 -0.5913403597
##  [746,]  1.9201853094  0.339362926  0.4030303798  0.1119923050  0.8577377022
##  [747,] -0.5041972263 -0.571929078  0.7758245742 -2.5210214696 -0.0801514593
##  [748,] -0.4606974414 -0.293740752 -0.7751913141 -1.1692660032 -0.9340584596
##  [749,] -1.0050956068  0.125210064 -0.5866402238  1.5661046429 -1.2688879816
##  [750,]  0.2682287021  1.698490654 -1.5018977955 -2.8046406924  0.1493734686
##  [751,]  0.5762690611  0.797442308 -0.2395546129  1.0091037444  0.0034209486
##  [752,] -0.1521262176 -0.333435926 -1.5667085114 -1.2292100658 -0.3323860429
##  [753,] -0.3484944904 -0.618136248  0.3274826369  0.6370961533 -0.2177696727
##  [754,] -0.7015153502 -0.107348980 -0.9939101816 -0.4685581534 -0.5036273396
##  [755,]  0.7822233153 -0.560550201  0.7776261797  1.4601699145  0.0809550909
##  [756,]  0.9027667599 -0.006823273 -1.4580785440  0.1569519542  0.2027517647
##  [757,] -0.9690078683  0.035768904  0.6387807452 -0.6987933275 -0.9463161437
##  [758,]  1.2473212635  0.748478799 -0.1168377887 -1.5629925826  1.5204631965
##  [759,] -0.4120644864 -0.758822065  1.5353736537  0.3246118691 -1.6513539780
##  [760,]  1.5668574792  1.828552449  0.6142729669 -0.7394006843  0.1675434666
##  [761,]  1.2643425025  1.676049116  1.0700147012  1.0306669563  1.1471740595
##  [762,]  0.8208919442  1.481833866 -2.0581246972 -0.8399734650 -0.7668486523
##  [763,] -0.0499859535  0.510528348  0.8100941099  1.2227044974  1.3269272347
##  [764,]  0.0480377176  0.964431981  0.5888903644  0.0217202140 -0.3294798298
##  [765,]  1.4045206777  1.660723174 -1.0358268930 -1.5742807786  1.0166042951
##  [766,] -1.0006310790 -2.661345973  1.1514496265  1.8814703170  1.6646223437
##  [767,]  0.0749070509 -1.132343579  0.6024855696  0.7143223345  0.6509196145
##  [768,]  0.2655645595 -0.606375406  0.1987829543 -0.9904015863  1.5167067805
##  [769,]  1.0390035688  0.444357565  0.0345552472  0.8816708322  0.9099371551
##  [770,] -0.4009961305 -1.909030597  1.4326264347  2.2490162583  2.1326094051
##  [771,]  1.2642194554  1.489641737 -0.6308031750 -1.2450405745 -0.2810339813
##  [772,] -0.8666310724 -0.233629030 -0.4624688817  0.7850516842 -0.5610402909
##  [773,] -0.2500809069 -1.135030802 -0.9075772134 -0.9799782149 -0.4659341692
##  [774,]  0.9055328735  0.692995896  0.8373045032  0.2669135375  0.7355735207
##  [775,]  1.9250282590 -0.044872991  0.5651410142  1.0662419981  2.2053504659
##  [776,] -0.3966348575 -0.374810156 -0.9314438795 -0.2077631813 -1.8846822396
##  [777,]  2.2498952673  0.236465221  0.4078715664  0.1096360927  0.1512180834
##  [778,] -1.6976548158  0.035604627 -1.2476848666 -0.9514497293 -0.9768381931
##  [779,]  0.1894546545  0.747065822 -0.4168891499  1.6555224337  0.1454361574
##  [780,]  0.4821728071  0.051381553 -0.4413736887 -0.2409620079  0.4283770366
##  [781,] -1.1151648687 -0.222272623 -1.3798487803 -0.4128684180  0.3476149218
##  [782,] -0.2836911114 -1.824890952 -0.5681464879 -1.8595743096  0.2806600216
##  [783,] -0.0884783619 -0.860410365  1.6673388460  0.9911178509  0.8250751249
##  [784,] -0.7336663865 -1.430809734  0.8756435523  0.8629778368 -0.4352951523
##  [785,]  0.4927678316  0.854747907  0.2103876262  0.9356473085 -0.1436901578
##  [786,]  0.4714996824  0.262531804  0.5938844628  0.2956734254  0.1960592834
##  [787,] -2.7519523493 -0.465281354  0.0029146889  0.4756620591 -2.7754224225
##  [788,]  0.7333667147  0.279919701  0.8371786805  0.6229910287  1.9973593619
##  [789,] -1.2835950314 -0.833849462 -0.2201919169 -0.4295458167 -0.8145099452
##  [790,]  0.6935444529  0.831287448  0.3880816619 -0.4108528412  0.3681526782
##  [791,] -0.3710607971 -0.176615197 -0.6866033270 -0.3741873735 -0.2455521323
##  [792,]  0.7565498263  0.832136629 -0.4165080529 -0.6745309863  0.7743877285
##  [793,] -1.2171375868 -0.249793813  0.5814946828  1.0687609462  0.6544704005
##  [794,]  0.5048802876  0.664716355 -1.2302887076 -1.1921383451 -0.6347121396
##  [795,]  0.8538267970  0.463795616 -1.6597411659 -0.1478580286 -0.0965232717
##  [796,] -0.8773116136  0.011331040  0.0255840106 -0.0670089889 -1.2369656315
##  [797,] -0.7814307964 -0.596654506 -0.8170815967 -0.1530057367  0.3551975038
##  [798,] -0.0647194649  0.579448557  0.8487372333  1.0230793675  1.6354189318
##  [799,] -1.0399040663 -1.351064028  0.5678328214  0.9662244670  0.2607975748
##  [800,]  1.1741181389  1.022611902  1.1548545408  1.1412580510  0.5034819775
##  [801,]  0.8142092232 -0.300462428  0.7904397937  1.2048209274  0.2567240954
##  [802,]  1.6944885575  0.655930717  1.8833330045  2.4951777947  2.8118215210
##  [803,]  1.7977217496  1.835432932  1.4492109004  0.4092735730  0.3843575941
##  [804,]  1.4862964615  1.282316066 -0.3633139179 -0.1028991226  0.5914026220
##  [805,] -0.1829056837  0.724795541 -0.6481508261  0.1112013460  0.4943736070
##  [806,]  1.1349978779 -0.034264498  0.1792167177  1.0734899352  0.5976588549
##  [807,]  2.3104884454  1.841386256  0.2823361123 -0.9809517598  2.7615445498
##  [808,] -0.5563563743 -0.195205445 -0.7116009265 -1.1529410874 -1.1022386800
##  [809,]  1.0729245031  1.531670288  0.7466778140 -0.3784800869  2.0285947486
##  [810,] -0.0952657739  0.547872904 -0.7443893827  0.4829205003  0.4399770253
##  [811,] -1.3176849704 -0.958357054 -1.4173901997 -0.2579115343 -0.4488873138
##  [812,] -0.1435118159  0.774715493  0.0503533058  1.4127548739  0.4358676364
##  [813,] -0.6566864182 -0.878636139  0.0356492785 -1.3809622817 -0.6311659180
##  [814,]  1.5567529702  1.785006112  1.8232308223  2.6317685256  2.0945767629
##  [815,] -0.5380042359  0.219648994  0.7880591346  0.2662423872 -0.0919375404
##  [816,]  2.4367457945  2.024145182  0.8352377158 -0.4326853751  0.9213554333
##  [817,]  0.5475903847 -0.212105545 -0.8971946987 -0.4012665878  0.2389110670
##  [818,]  1.2658111721  0.225419552  0.6628337262 -0.4313710040  0.8513874549
##  [819,]  0.7948760269  1.349157558 -0.6334006387  0.7040146491  0.4881492672
##  [820,]  0.2067663146  0.267821773  0.8067648120  1.1818816337  0.5908109181
##  [821,]  0.7565725440 -0.340040850 -1.3425090847 -0.5729882926 -0.0622032606
##  [822,]  1.3850851026  0.319867323 -0.3685787934  1.3030628290  1.3717407209
##  [823,]  0.2064874096  1.017721252  0.4484653363 -0.3674238707  0.3188891842
##  [824,]  1.2135751774  1.390096125  0.3118798628  0.3337239275  2.2626296218
##  [825,]  2.4530846391  1.200211044 -0.4386316494 -0.2585599569  0.7607560589
##  [826,] -0.6718522858  0.179318738  0.8041314629  1.6858753662  0.9665015955
##  [827,] -0.6024036508 -0.275974515  1.1248162355  0.8278124423  1.9378296173
##  [828,] -1.6054745627 -1.160905179 -1.9245429419 -0.4612492267  0.2638624249
##  [829,] -0.7795266083 -1.032304520  0.1970971978  0.2522387640 -0.7621424895
##  [830,]  0.4603790573  1.338320307  0.7895242090  0.2056489825  1.6671706475
##  [831,]  1.1482430754  1.677481138 -1.4615230143 -0.4791741636  0.7456367143
##  [832,] -0.2842245646  1.339357006 -0.1810207571 -0.4079303674 -0.6769673552
##  [833,]  0.1326673264  1.007563359  0.7116079685 -2.4447018944 -0.2289877187
##  [834,]  0.5719877116 -0.160132292  0.6888752813  0.1387444674  0.8786810968
##  [835,] -1.5023213027 -1.033512525  0.5881053617  0.4375850641 -1.1826097975
##  [836,] -1.0843433512 -1.218618370 -0.9535011539 -0.6358941940 -0.8279246290
##  [837,] -3.3241273425 -2.501948278  0.0211385305  0.8940194000 -2.2668894287
##  [838,]  0.3328054476  0.575185712 -0.0173680758 -0.3287255102  1.4796498062
##  [839,] -0.4597816906  0.088397246  0.6970959868 -0.0694039709  0.2753293107
##  [840,]  1.2049488361  0.973722744 -0.3962177455 -1.6195849530  1.9431776483
##  [841,]  0.5698711097 -0.032352950  0.5250362280  1.2427176242  0.9034056574
##  [842,]  0.1193870670 -0.581875952 -0.4993842980  0.8986795402 -0.1459432403
##  [843,]  0.0360395851 -0.049159428 -2.3501768306 -0.8483920401 -1.3499731330
##  [844,] -0.0459191884 -0.148064323 -0.0203398102  0.2367717457  1.5018408294
##  [845,] -0.1258912098 -0.826739019 -0.0248454835 -0.0513082776  0.0643651520
##  [846,]  0.0346783993 -0.746186398  1.3548325469  1.1158599597  0.2621379294
##  [847,] -1.7368725008 -2.059329941 -0.1098580580 -1.1636879761 -1.3415701377
##  [848,] -1.8993474580 -0.895268453  0.8296269880 -0.4588063775 -1.4288607319
##  [849,] -0.5278810570  0.342635504  0.0800431166  0.2305995089 -1.1862173244
##  [850,]  0.0384960496 -0.444625245  1.2513518297  0.6066673279  0.4787120281
##  [851,] -0.5363691319 -0.495080783  0.6707202252  1.0425965562 -0.6310451522
##  [852,] -0.3320511223  0.009061276  0.0806582401  0.1533907106  0.8141378132
##  [853,] -1.2641250400 -1.318833227 -0.3968510476 -0.4892095105 -1.5688115702
##  [854,]  0.3218436492 -0.340533780 -0.1034133306 -0.3560823049  0.6814646075
##  [855,] -0.7264433846 -0.852973705  0.7612383127 -0.2503907895  0.3563833966
##  [856,] -0.8526566984 -1.096520659 -1.7920037402 -2.3081888669 -0.8740898864
##  [857,]  0.0318437364 -0.793311732 -0.7766796942 -0.8719405942  1.0926266812
##  [858,] -0.7461373125 -0.890138729 -2.2368168828 -1.3888063776 -0.9736520405
##  [859,] -1.2154027542 -0.305619664 -0.9904265862 -0.0849449329 -1.0732629547
##  [860,]  0.1424759626 -0.713300150  0.4165258803  1.4772960403  0.0028116698
##  [861,] -0.6030459671 -1.328612272 -0.5108128740 -0.7100675974  0.0198168970
##  [862,] -1.6738682084 -1.101207898  0.2689374932  0.1928949669 -0.4079973299
##  [863,]  1.0248916769 -0.195728471  0.1931935610  1.4323524219  0.1728254225
##  [864,] -0.5288845101 -0.896528718  1.4090309367 -0.1185423077 -0.7002990822
##  [865,] -0.7471931889 -0.271940281 -0.5163404998  0.6715430253 -0.5891314815
##  [866,] -1.2807564971 -0.530073902 -1.4286255382 -0.2117185413 -1.7919525827
##  [867,]  0.4322612157  0.385792849 -1.1148030753 -1.4879173690  0.6497841715
##  [868,]  0.0716604880  0.411807369  0.2714340223 -0.1027630456 -0.5838864654
##  [869,]  1.5954124287  1.159085183 -0.3060313681  0.2574194033  0.8655177351
##  [870,]  0.6817562380 -0.028365284  0.7827840752  0.8493056289  0.5104340160
##  [871,]  0.6970027938  0.512089925  0.3154857143  1.3849203806 -0.3281833275
##  [872,] -0.4776027914 -1.379056957  0.6888236769  0.4610199113 -0.6084622027
##  [873,] -2.4882242616 -1.360711986 -1.0993434853  0.6507884262 -0.9434145040
##  [874,] -0.1649268781 -0.393464652  0.5084723080  1.1482440818 -0.2858408934
##  [875,] -1.0576992339 -1.113076622 -0.7312241570 -0.9781315349 -0.8299388763
##  [876,]  1.1052355829  1.379770177 -1.0172171759 -0.8534099885 -0.8844845092
##  [877,]  0.9288807573 -0.907184195  1.7884033351  1.6791410445  1.9590287976
##  [878,]  1.1447064258  0.568036202 -0.5703996784  0.1234573676  0.4635057677
##  [879,] -0.7883549845 -1.049489522  0.5945825501 -1.3513625034 -1.7062129780
##  [880,] -0.5046218019  0.130497365 -0.5239193856 -0.1220817102 -0.3859840798
##  [881,]  1.2472187489  0.658487946 -0.3540683345 -1.2020932382  1.7545794602
##  [882,] -0.6310112749 -1.647294489 -0.4097785149 -0.7140818688 -0.5339130455
##  [883,]  0.8429566644 -1.083228425  1.8483357090  1.9633284854  0.2553410488
##  [884,]  0.1486134933  0.232377573 -1.8746790629 -0.6111338354 -0.6498490344
##  [885,] -0.6199389151  0.191104988 -0.2323179664 -0.0854191114 -0.2918820182
##  [886,] -1.0246565484 -1.047968185 -1.9617135388 -1.0820835668 -0.0057157958
##  [887,]  0.5316431014 -0.688572991  0.7112531531  0.3138654563  1.0146065028
##  [888,]  1.2789614963  1.234872785 -0.4491229728 -0.2289229828  0.4272621799
##  [889,] -0.2933741381  0.068090858 -1.2339221736 -0.6105356082  0.0982703140
##  [890,]  0.7857457794  0.483704779 -0.9972641347 -1.0300416362  0.6276588706
##  [891,]  0.9591214221  0.647653910  1.3137168509  0.5726683555  1.5924519786
##  [892,] -0.5528856187 -1.744333901 -1.7927406602 -0.3400203222 -1.2887560798
##  [893,] -0.0217410776 -0.401146251  0.0247905090 -0.6404425813  1.2023497708
##  [894,] -0.6907028860 -1.051563579 -1.6695254854 -1.2042380896  0.1980413465
##  [895,]  1.1310615696 -0.216517168  0.9506371999 -0.1727232859  0.7738740837
##  [896,] -0.8399209926 -0.359765174 -1.4459823392 -0.4100186965 -0.2829558889
##  [897,] -0.1910878345 -0.240557633  0.6395863151  0.7456318958  1.1623487443
##  [898,] -0.3436501676 -1.026606210 -0.4040664897  0.7349781189  0.2153733716
##  [899,]  0.6466383513  2.343240336 -0.0419351112 -0.6415495686 -0.2425325283
##  [900,]  0.1934620761 -0.336024737  0.2994178894 -0.0708478924  0.0728562112
##  [901,]  1.8054476964  2.270000077  0.5385320198  0.3966996532  0.1311867325
##  [902,]  1.0281142956  0.561240612  1.2011947508  0.7703058615  1.4261338744
##  [903,] -0.0434129347 -1.003625533 -1.9099983083 -0.6410047784 -0.1530298811
##  [904,]  0.7018569101  2.407526498  0.8782564257  0.9160757345  0.9072939643
##  [905,]  0.3697910117  0.960176696 -0.4850799231 -0.5048464779  0.1365947337
##  [906,]  0.2818311404 -0.942651693  1.2696603229  2.1468246634  0.5471363702
##  [907,]  0.6420270718  0.702267772  0.4385872423 -0.6070669818  0.3952324939
##  [908,]  0.9709867606  0.365417184 -0.2967993882  1.7119569800  1.3460405227
##  [909,] -0.8256983039 -1.412280076  0.9147773066  1.0827042350 -0.3780450645
##  [910,]  2.6249891115  2.213637510  0.5555354346  1.0337458168  1.7572673487
##  [911,] -1.4933124812 -0.951840552 -1.1056148294 -1.0063667842 -0.2880735637
##  [912,]  0.1712122087  0.097681783  1.3594723796  0.1421452164  1.0947932735
##  [913,] -1.2432341667 -1.916257280 -1.6437805632 -0.1751778883 -0.8158145697
##  [914,]  1.2932127458  2.080213720 -1.5750733522 -1.1771811691  2.1439262258
##  [915,] -0.0635233280  0.052396588  0.4636062505 -0.4633411022 -0.9016159155
##  [916,]  0.2258694245 -0.411405862  0.1634408816  0.7756217365 -0.4550026308
##  [917,] -1.0485309652 -0.568839277 -1.9524412602  0.3749379153 -0.6234676599
##  [918,]  0.7097510154  0.387673332  2.7228051655  1.6631014202 -0.2719097075
##  [919,] -0.0032185261  0.106029831 -0.4381882005 -1.7464955098 -1.5993053839
##  [920,]  1.2653406541  1.621025963 -0.3069737121 -0.0865414964  1.4030546031
##  [921,]  1.7412188550  1.027015612  1.1418771091  1.5567423529  1.3573658268
##  [922,]  0.8253516553 -0.496262898 -0.1951017337  0.7536884602  0.9675602168
##  [923,]  0.1871460701 -0.302927799 -0.6060785439  0.0069009694 -1.3666186496
##  [924,] -1.0087594813 -1.439827677  1.6699102504  1.7690612879 -0.2562698222
##  [925,]  1.3202189942  0.835465464  0.0405667886  0.6448119261  0.2729505729
##  [926,]  0.4428527539  0.457150429  0.6216905258  0.9172164708  1.2038046145
##  [927,] -1.3975885369  0.343562199 -2.2712658859 -0.4629090551 -1.5877945010
##  [928,]  0.1914678409  0.498962434  1.7032195493  1.7432098147  1.5896610089
##  [929,] -0.5336257623 -0.594878898 -1.2238845365 -0.3463047173  0.6099174674
##  [930,]  0.4179851969 -0.226363328  0.6489641300  2.6407278141  1.6293917254
##  [931,] -1.2814612372 -0.986267356  1.4695974840 -0.9717004363 -0.8256079104
##  [932,]  1.2752482279  0.254452717  1.9731335285 -0.2585903343  0.9630960731
##  [933,] -0.7431215480 -0.227191217 -0.7204998304 -1.0676362267 -0.8151980091
##  [934,]  0.2860330652 -0.447866463 -1.8342543208 -0.3776553255 -0.5399001051
##  [935,] -0.3107235060 -0.914317161 -0.5604577117  0.5356193508  1.3428821468
##  [936,] -2.4946450396 -0.304310353 -0.6862124841  0.4004412980 -0.0835911911
##  [937,]  0.7168743838  1.029390653  0.9520763124  0.4063380975 -0.8367890691
##  [938,]  2.0179151018  1.800417053  0.4953875814  0.1004251219  0.2661629976
##  [939,]  1.3408398340  2.103147856  0.5764212852 -0.8569837898  1.4610151157
##  [940,] -2.1902175440 -1.891198629 -0.1839258260  0.2030720205 -1.0246409881
##  [941,]  0.8901615994  0.100032565  1.7739570089  0.9345563192  0.4478775560
##  [942,] -1.7749454715 -2.428104101 -0.2287379258 -1.7931668732 -1.2048723179
##  [943,]  0.6794109828  0.903117444  0.5241738566  0.0653414494  2.1377887220
##  [944,]  0.7949212013  0.469397583  0.6758731175 -0.2703471742  0.4683565058
##  [945,]  1.1545180615  1.193641853  0.2021393917  0.0854581886  0.1602826287
##  [946,] -0.1627362547 -0.853322570  0.4872992102  0.1504133684  0.5644271623
##  [947,]  1.7186301953  1.038910469  0.6793199448 -0.5053849076  0.0229387811
##  [948,]  1.0017394133  1.553147965  1.8219428175  2.3352347638 -0.6657543334
##  [949,]  0.2936272485 -0.194396697  0.2439996966  0.3963022739  0.8913256383
##  [950,]  0.4052068250 -0.110268130 -0.7156481913 -0.0368035522  0.0306930042
##  [951,] -0.3637515159 -0.636249454  0.1520013367 -0.0879184369 -0.3932874228
##  [952,]  1.1231083165 -0.013619843  1.8625003264  1.8781596183  1.3775427077
##  [953,] -1.3641895142 -2.085978137 -1.7566832590 -0.8671265219 -0.6502051204
##  [954,] -1.2053345807 -1.628067365 -1.0026116879 -1.3832222038 -1.2221821656
##  [955,] -0.1742045903  1.321610865  0.4125934350  0.9054742529  0.0143525237
##  [956,]  0.6291621681  0.609325270 -0.6637907833 -0.5287237534 -1.2248547710
##  [957,]  0.2957591699  0.917042792  0.4333112754  1.7200821629 -0.3562646225
##  [958,]  0.4231874777  0.586157208  0.9140613753  0.7595849597 -0.2413391662
##  [959,]  0.3284144816  0.794914851  0.5243510084  0.1522279802 -1.2987539461
##  [960,] -0.3748765357  0.581476063  0.7358364779 -2.3091534052  0.5289394033
##  [961,]  0.0916350771 -0.092648395  0.5548013688 -0.8577270513  0.7682312125
##  [962,]  1.0380666685 -1.437198406  2.0727358882  1.8518664859  0.5990164792
##  [963,] -0.7838621823 -0.546134357 -1.0819984797 -2.1293631716  0.5551902421
##  [964,] -1.3213892317 -0.546403356  0.1380544763  0.5946368159 -0.9788743829
##  [965,]  0.0417145155  0.128738243 -0.0188787618  0.8802334054 -0.3493812746
##  [966,] -1.8902596408 -1.901543515  2.0288208599  1.5049494139 -2.5867975268
##  [967,]  1.7576060452  1.686292488 -1.2051781983  0.6741822616  0.5480776148
##  [968,]  0.6798524433  0.795789638  0.5249821096  0.7039310612  0.1927593236
##  [969,]  0.1424721305 -0.612029435  0.2614657030  1.1263865612 -0.7106942870
##  [970,] -0.3670289889 -0.453246900 -0.1380216965 -0.4950603110 -1.5700700137
##  [971,]  1.4220962676 -1.010856456 -0.8995793771 -0.0209972756  1.2706594562
##  [972,] -0.3025876804  0.937611736  0.8764102866  0.0512593858 -0.6450571631
##  [973,] -2.5856603475 -1.965216545 -1.3329184852  0.3394649585  2.1859308602
##  [974,]  0.4281010256  0.430986646  0.2788613046  0.4362032569  0.6540462084
##  [975,]  1.1841589261  1.135849686  0.4382225853  0.8903838449  1.5464217524
##  [976,] -1.5389342395 -0.506203017  0.1804184209  0.0163061776  0.4075055109
##  [977,] -0.5531757294 -0.823246096 -0.4948215704 -0.4885381097  1.1740924990
##  [978,]  0.8273117886  0.873443371 -1.0087699922 -2.9562148329  0.5117846727
##  [979,] -2.3460117533 -1.450641129 -0.4069239792  0.3841891710 -2.5124160001
##  [980,]  0.2904462980 -1.223584924 -1.1359425625 -0.5805003860 -0.9935986016
##  [981,]  0.8210303904  1.207297357  1.5386984389  0.7936548424  1.2042942608
##  [982,]  0.9312659482  0.157986208  0.0034670091  0.1027208421 -0.8033759709
##  [983,] -1.0832331204 -0.578700876  1.3118104245  1.1838391981  0.5863476197
##  [984,]  2.0404536777  1.887236830  0.0206949983  0.0169613631  1.1284923456
##  [985,] -1.7622795499 -2.175130854 -0.9640048562 -0.9212479867 -0.4494047867
##  [986,]  0.1072857482 -0.564360181 -0.6336288295 -0.0653542460  0.1711095933
##  [987,] -0.7330084337 -0.203062467  0.7251036616  0.8482431388 -2.1682468207
##  [988,]  1.0402519276  0.424690985 -0.1528479666  0.2990073809  0.6798157163
##  [989,] -1.9454503669 -2.155501597 -0.7673263582 -0.4484699324 -0.4769074606
##  [990,] -0.0316374335 -1.182382071 -0.0214681679 -0.7779156590  0.2096906460
##  [991,] -1.2849691934 -1.576431688 -1.4964649319  0.3890558409 -2.1998064861
##  [992,] -1.2562178723 -1.798283994 -1.8751799776 -2.1326966608 -1.1110357365
##  [993,] -1.5837245730 -1.745927016  3.2859979533  1.2972810492  0.5852575480
##  [994,]  0.0729135894 -0.591847009 -0.5422144750 -0.5145724821 -0.4948850212
##  [995,]  0.7471456585  0.942398908 -0.3937421934  0.4878185677  1.6394609442
##  [996,]  0.4185562631  1.792115787 -1.0164364963  1.1978766575 -0.1047554571
##  [997,] -0.6484760987  0.094914381  0.1944785249 -0.0823856963 -0.5295243481
##  [998,] -0.0877281191 -0.514065093 -0.0877249093 -0.7816584010  0.0331522396
##  [999,]  0.2032124424  0.640590592  0.5377623206 -0.0792726688  0.1047384153
## [1000,]  0.0996767755  0.418874080  0.0607032867 -0.4491493985 -0.6296039960
##                 [,6]         [,7]         [,8]
##    [1,] -0.642275092  0.130565300  0.272357934
##    [2,]  0.645752538  0.473618568  0.212068717
##    [3,] -1.245681129  0.682340849 -0.510989503
##    [4,]  1.797828219  2.149603229 -0.390891368
##    [5,] -1.297601227  1.049307219 -0.444475110
##    [6,] -0.127575130  0.486185183  0.439966159
##    [7,] -1.130364730 -1.409545116 -1.622502929
##    [8,] -0.209060940  0.921125076 -0.386004518
##    [9,]  1.742144781  1.101384768  0.701572429
##   [10,] -0.122868447  0.183103136 -0.760699039
##   [11,] -0.502336840 -0.271863635 -0.217327580
##   [12,]  1.247860362  0.562590762  0.633896312
##   [13,] -0.726920401  1.189286530 -0.308066785
##   [14,] -0.470716915  0.869633020  0.989725518
##   [15,]  0.015514333 -0.576556441 -0.442178877
##   [16,]  1.415876824 -0.651065377 -2.110862067
##   [17,]  1.143180037 -0.719276986 -1.512939323
##   [18,]  0.317197494  0.036915637  1.019877696
##   [19,]  0.198033102  0.698914242  0.131471125
##   [20,] -1.647882768 -0.584645766 -0.507397129
##   [21,] -0.042255418  0.167267750  0.237436763
##   [22,]  0.293541162 -0.322836333 -0.468624578
##   [23,] -0.467646758 -0.552685536 -0.364045461
##   [24,]  0.174580470  0.525785781  0.820588961
##   [25,] -0.367475052 -0.010821685 -0.751115097
##   [26,]  0.974898352  0.691767626 -1.230212392
##   [27,]  0.492240130 -1.756166215 -0.972849722
##   [28,]  1.784858069 -2.626197932  0.923453809
##   [29,] -1.795757820  0.855717406 -1.249648720
##   [30,] -0.959177785 -0.950169047  0.076584964
##   [31,] -0.258886498 -0.966011793 -1.374326292
##   [32,] -0.018413855 -0.809698198  0.653116916
##   [33,]  1.239333576 -0.493177393 -0.644276036
##   [34,] -0.064487933 -0.737147912 -1.043709417
##   [35,]  0.227433391 -1.006684879 -1.287882378
##   [36,]  0.554205492 -1.570767493 -1.504030727
##   [37,] -1.430045015 -1.880328197  0.460794939
##   [38,] -1.124024479  1.464340943 -0.078676351
##   [39,]  0.873780491 -0.133148356  1.187416565
##   [40,] -1.634631845 -0.724854230 -1.963810714
##   [41,] -0.281869828 -0.757553697  0.995956238
##   [42,] -0.622541942 -0.412801002 -1.567128885
##   [43,]  0.843873659 -0.540101652  1.378876887
##   [44,]  0.707304951 -1.196598716  0.241726064
##   [45,] -0.280548970 -0.540093464  1.276928961
##   [46,] -1.552996134  0.323301156 -1.160169545
##   [47,] -1.142834376 -0.165596443 -0.768090688
##   [48,]  0.936660718 -1.985877307  0.322215426
##   [49,]  0.001982976  2.191651830  0.558818131
##   [50,]  1.303767161  0.188497343  0.403395041
##   [51,]  0.435954361 -1.343950249 -0.488210275
##   [52,] -0.051294647 -0.309044362 -0.457582344
##   [53,] -0.242773023 -1.143696374  0.226058651
##   [54,] -0.325223183  0.298161552  1.050350586
##   [55,]  0.395881533 -0.691067627 -1.091056185
##   [56,] -1.249629268  0.825865386  0.621214337
##   [57,]  1.048211318 -0.928891722  0.892449372
##   [58,] -1.330823519 -0.264436483 -1.337679696
##   [59,] -0.382731191 -0.639719565 -0.530047058
##   [60,] -0.318134213  1.003684944 -0.559530325
##   [61,]  0.713622840  1.616077309 -0.395967935
##   [62,]  0.291933609  0.309828686  2.235804903
##   [63,]  0.213499060 -0.528613568 -0.423382111
##   [64,]  0.961662499 -0.756412176  0.280252606
##   [65,] -1.020516430 -2.482550554 -1.101128103
##   [66,] -0.491148996  0.649996759  0.808795439
##   [67,]  0.480155256  1.442104431 -1.095663475
##   [68,] -0.827602430  0.363800222 -1.142448911
##   [69,]  0.881121724  0.060334970 -0.429028239
##   [70,]  1.910300232  0.806343810 -0.927362843
##   [71,]  0.373490539 -0.890046344  1.007546679
##   [72,]  0.229035552  0.680176195 -0.116257575
##   [73,]  2.602504270 -0.293768525  0.457422745
##   [74,]  0.014355915 -0.113686592  2.026642541
##   [75,]  1.880258343  0.501117651  0.013353678
##   [76,]  2.049374567  0.628569417 -0.703934855
##   [77,]  1.148903748  1.063322887 -0.367431557
##   [78,]  0.883453146  1.311127457 -0.491398015
##   [79,]  0.051642267 -0.908342183  0.196840059
##   [80,] -0.296096057  0.273429360  1.059184763
##   [81,] -0.657318374  1.334800808  0.527230773
##   [82,] -0.418782928  0.266245386  0.531118783
##   [83,]  0.788217633  0.994655703  0.505810895
##   [84,]  0.746135807  1.195083237 -0.798021364
##   [85,] -0.429017539 -0.499812480  0.347610610
##   [86,]  1.342248174  1.998032217 -0.480737003
##   [87,] -0.823882656  0.215051049  0.256031410
##   [88,] -0.592462752  1.008924278  0.349176308
##   [89,] -0.741209697  1.192185580  0.359801692
##   [90,]  1.220464959  1.094955594  1.157770794
##   [91,] -0.838412329 -0.872638418  0.446898769
##   [92,] -0.132385098  0.500981033 -0.912573948
##   [93,] -1.614683718  0.436738936 -2.807539492
##   [94,] -2.414594677  0.192488327  1.145141629
##   [95,] -0.445440815 -1.081743932  0.825363733
##   [96,] -0.336474136  1.176440157  1.455295549
##   [97,] -0.168102988 -0.869966739 -0.987556466
##   [98,] -0.291983751  0.281154513  0.215073807
##   [99,]  1.581291722 -0.898871515  1.364076320
##  [100,]  1.226515040  1.096760266  0.230253129
##  [101,]  1.734807642 -0.212540573  0.685402815
##  [102,]  0.383228690 -0.676603887  0.754071515
##  [103,] -1.079989399 -0.107729887 -0.357473434
##  [104,] -0.352402268 -0.836869441 -0.530369317
##  [105,]  0.134978261 -1.369189084 -0.106139807
##  [106,] -0.663140076  1.214322586  0.992824952
##  [107,]  2.435125851 -0.862030769  2.829043261
##  [108,]  1.560106326 -0.889213913 -1.016006978
##  [109,] -0.653618017  0.950476005  0.988854066
##  [110,] -1.418863164 -0.329384724  1.244829626
##  [111,] -2.076265322 -0.696264363  0.635772146
##  [112,]  0.715863059  1.956455760 -0.322528129
##  [113,] -1.790808408 -0.799434574 -0.235479363
##  [114,] -1.550460245 -0.253944780 -0.775006186
##  [115,] -0.040355221  0.706703146  1.101179513
##  [116,]  2.230202089 -0.576335552  1.547076920
##  [117,]  0.900184635 -0.678846149  0.030843184
##  [118,] -1.124711620 -0.465575214 -0.226586889
##  [119,] -1.689575611 -1.620256677 -0.389160781
##  [120,]  3.072940219  0.728876674 -1.224807435
##  [121,]  1.288790809  0.462465350 -0.166973740
##  [122,]  2.303474841 -0.238840509 -1.196896328
##  [123,]  1.467068082  0.063990052  0.898574103
##  [124,] -0.250296919 -0.141246511 -1.169900964
##  [125,]  0.205265964 -1.945947300 -1.177979630
##  [126,] -0.515633954 -2.109122694  0.263261297
##  [127,] -0.709685202  0.860450383 -2.274423876
##  [128,] -0.781186217 -1.534406592 -0.597864242
##  [129,] -1.406736994 -1.142004086 -0.430270893
##  [130,] -0.150215189  0.940747483 -0.552891716
##  [131,]  2.235936202 -0.349797237  1.544082450
##  [132,]  2.782858552  1.080134598  1.344675601
##  [133,] -0.289232627 -0.490308815 -0.047265676
##  [134,] -0.562135989 -0.909914876  1.824710269
##  [135,]  1.287540341  1.559293807  0.747377771
##  [136,]  0.924387077 -2.878753429 -1.307514378
##  [137,]  1.417282031 -0.347379369 -0.284100707
##  [138,]  0.480161909  0.300269129  0.454337822
##  [139,] -0.277845658  0.470765398 -0.050399599
##  [140,] -0.428971773 -0.072877180 -0.335472822
##  [141,] -0.717784587  0.050129063  0.635700650
##  [142,]  0.069159057 -1.083242551  0.661791009
##  [143,]  1.587889045 -0.450502642 -1.185120745
##  [144,]  0.393102953 -0.414107458 -0.901326094
##  [145,]  2.209982956  0.912553428 -0.510589630
##  [146,] -1.296762096 -0.450758394 -1.053217450
##  [147,] -0.942058817 -0.830679984  0.065910696
##  [148,]  1.177899192 -0.239538044  0.653065401
##  [149,]  0.332618090 -0.214267924 -0.239690532
##  [150,] -0.928579552  0.476509314 -1.172646028
##  [151,] -1.055376478 -1.289628902  0.259389309
##  [152,]  2.071996058 -0.319221673  2.042522728
##  [153,]  1.300641801 -0.635171702 -0.390630801
##  [154,] -1.129697531  0.088753461 -0.625546433
##  [155,]  0.687840665  0.728210118  1.289487697
##  [156,]  1.212874561 -2.066121898  0.177443368
##  [157,] -0.361213722 -0.910942926 -1.145751028
##  [158,] -1.824231699 -0.637236532  0.861933410
##  [159,]  0.527297808 -0.956710692 -0.185039996
##  [160,] -0.133952611 -0.938325419 -1.115085659
##  [161,]  0.144001849 -0.336327052 -1.151050613
##  [162,]  1.990375920 -0.238917456 -0.095111986
##  [163,]  0.745551864 -0.551684605 -1.542203089
##  [164,]  0.541261643  0.952651926  0.770108557
##  [165,] -0.790094567  0.657387656  0.163274996
##  [166,] -1.084838174  0.448769229 -3.125950473
##  [167,] -0.233336195  0.465318859 -0.537357572
##  [168,] -0.150115945  0.052008552 -1.265638489
##  [169,] -0.119453851  0.488317863 -0.414225309
##  [170,]  0.427211873  0.862859471 -0.600897414
##  [171,] -0.285571753  0.180958328 -1.537952376
##  [172,] -0.644913841  0.627718010 -0.034589903
##  [173,] -2.114011685 -0.496038507 -0.613888743
##  [174,]  0.452190445 -0.927667901 -0.679244273
##  [175,] -0.596198126 -0.765824089  0.762588656
##  [176,]  0.922631178 -1.719750162 -1.985789295
##  [177,]  0.072391278 -0.175041071 -0.838459467
##  [178,]  1.986255571 -0.471378940  0.263447218
##  [179,]  1.719025711  1.067319592  0.094376748
##  [180,] -0.872566123  0.100952908  0.212853329
##  [181,]  0.881711861 -0.327025583  1.519778016
##  [182,]  0.394276731  0.014709621 -0.343716520
##  [183,] -0.808316766  0.419422985  0.248419827
##  [184,]  1.565747789 -0.535054907 -0.043762364
##  [185,]  0.208929703  0.121437257  1.455429343
##  [186,] -0.374350205 -0.749294366 -0.880732951
##  [187,] -1.754787084 -2.153337203  0.287611428
##  [188,] -0.317418372  0.172478726  0.824752513
##  [189,] -0.119324955  0.055215977  0.805266350
##  [190,]  0.066792940 -0.254000254 -1.214823351
##  [191,]  0.085204659 -1.079512948  1.177916830
##  [192,]  0.222494769 -0.668349857 -0.509224931
##  [193,]  0.717648972  0.949260641 -0.093896863
##  [194,]  0.417850885 -1.241492760 -0.458332610
##  [195,] -0.669786649  0.818561388 -0.117178431
##  [196,]  1.293852202  0.001917011  1.851806589
##  [197,]  1.517168280 -1.923008544  1.093892664
##  [198,] -0.679981010  1.000887106 -0.662001295
##  [199,] -1.543886777  0.307209524 -0.181747109
##  [200,] -0.327906351 -0.375412006 -0.772477374
##  [201,] -1.532072244 -0.388882584 -0.958198662
##  [202,] -0.610933482  0.095773739 -0.939711737
##  [203,] -1.830141505 -0.853556869  1.131162836
##  [204,]  1.919407684 -0.593266799 -0.237440780
##  [205,]  0.232871352 -1.038575051 -0.213804392
##  [206,] -2.037201212  0.210689156 -1.074973444
##  [207,]  0.853959042 -0.182512696  0.056543185
##  [208,]  0.305059631  0.051536778  0.094537906
##  [209,] -0.506309186 -0.592032699 -0.553039063
##  [210,] -1.105878512  0.602559009 -0.362558622
##  [211,]  0.018206146  2.002348842 -0.525054387
##  [212,]  0.631845548 -0.462193254 -0.583667154
##  [213,]  0.632476797  1.721351052  1.173930003
##  [214,] -0.048626730  0.701900443  0.368072256
##  [215,]  0.346525731  0.621304365  0.521063683
##  [216,]  1.139982411  0.553626936  1.059204189
##  [217,]  0.274949577  0.754178976  1.112812033
##  [218,] -0.426793402  0.409408655  0.225771683
##  [219,] -0.356479258  0.495008172 -0.704009298
##  [220,] -0.149283088  0.259654999  0.768778890
##  [221,]  1.492259182 -0.288789039  0.480840513
##  [222,] -0.039761767  0.703929113 -0.373033697
##  [223,]  0.010079466  1.221371572  2.261120159
##  [224,] -0.121507357  0.881691121 -1.245092103
##  [225,] -0.521299799  0.719888748 -0.723100351
##  [226,]  0.254121961  0.215139144  1.558245583
##  [227,]  0.620760475  0.446762061  0.614090086
##  [228,]  0.363043859 -0.618238562  0.448088863
##  [229,]  0.051468706  1.609411549  1.727352117
##  [230,] -0.285930384  0.442595327  0.251930803
##  [231,] -0.467790014  1.242150145  1.325849835
##  [232,] -0.058920268  1.338359466  1.761908526
##  [233,]  1.733419960  0.423852556 -0.165847325
##  [234,] -0.493578477 -1.479006976 -0.241396652
##  [235,]  0.504846270 -0.818180295  0.183327907
##  [236,]  2.092540333 -1.807752560  1.857619238
##  [237,]  1.142696825 -0.398559951  0.185232694
##  [238,]  0.026755511 -0.881380694 -0.866777329
##  [239,] -0.121247624 -0.477967682 -0.437647750
##  [240,]  0.563696320 -0.827477340  0.075295855
##  [241,]  0.719816781 -0.539953054 -1.393393169
##  [242,] -0.247582111 -0.357468865 -0.164371873
##  [243,]  0.712686061  1.397552961  1.379882683
##  [244,] -1.942645066 -1.305694837  0.564531968
##  [245,] -1.380697487 -1.532325985 -0.460404176
##  [246,] -0.705383738 -0.628437127  0.083467578
##  [247,]  0.097690524  0.283122530 -0.541468073
##  [248,]  0.991984064  1.366848155  0.560919272
##  [249,] -0.886021329  1.138240963 -0.070095714
##  [250,]  0.852465130 -0.704094461  0.411497911
##  [251,] -0.809992402 -0.187094258  0.314210493
##  [252,]  0.388200371  2.087298039 -0.040421838
##  [253,] -0.262355796  0.706396471 -1.547703408
##  [254,] -1.670702485 -1.065037223  0.792987670
##  [255,] -0.929160699  0.311042292  0.931783065
##  [256,] -0.022085068 -0.123561929  0.834724396
##  [257,]  1.121585636  0.782606230 -0.002929988
##  [258,]  0.816463713  0.189725351 -1.497887227
##  [259,]  0.162343739  0.910506786 -0.578872910
##  [260,] -0.438895449  0.041113038 -1.597760163
##  [261,]  0.485467130 -0.581622876 -0.053467052
##  [262,]  0.306721963  0.566217987  2.860917960
##  [263,]  0.493790574  1.251197862  1.037148639
##  [264,]  0.466114998  0.564711184 -0.842463515
##  [265,] -0.169674662 -0.436071529 -0.234071781
##  [266,]  1.648013805  0.164205781  0.137926578
##  [267,]  0.228056124 -0.533793382 -1.324065396
##  [268,] -0.303157454  1.935041083  1.626003281
##  [269,] -0.697466307  1.159723494 -0.008870419
##  [270,]  0.088469136  2.111619071 -1.219045442
##  [271,] -1.385832661 -2.137542197 -2.139286746
##  [272,] -0.952409669 -0.338558107 -0.672072709
##  [273,] -0.065081469 -0.681793166 -0.349921747
##  [274,]  1.540318909 -1.077649964  0.954172461
##  [275,] -2.770330332 -2.607445985 -0.758548075
##  [276,]  0.802475092  1.041382813 -0.600864946
##  [277,]  0.592683115 -1.521067532  0.393023187
##  [278,] -1.066118724 -1.664238443 -0.247144370
##  [279,] -0.526738989 -0.046777798 -0.052074869
##  [280,]  0.610875598 -2.157776396 -0.462294491
##  [281,] -0.570169834  1.146959043  0.498972561
##  [282,] -2.068560518 -0.821971939 -1.015234820
##  [283,] -0.841045380  1.452564302  0.356587017
##  [284,]  0.439449445 -0.186047606 -0.455623071
##  [285,]  1.336152595 -1.623755908  0.195541864
##  [286,] -0.519148918  1.096808072  0.207219464
##  [287,] -1.031329723 -1.312881062 -1.426196986
##  [288,] -0.134816683 -0.552304404  0.274109437
##  [289,] -0.654412877 -0.888099853  0.567680578
##  [290,] -0.080146889 -1.041466372  0.806316108
##  [291,] -0.604484182 -1.234802869  0.838667287
##  [292,]  0.581166445  1.287382183  0.644300187
##  [293,]  0.709438334 -0.175121442 -0.511160577
##  [294,]  0.010057274 -0.143222321 -0.062335399
##  [295,]  0.033973993  1.545784770  0.061501370
##  [296,] -0.084986304 -1.014091585  1.056322039
##  [297,]  0.075705602 -0.719209267 -0.087059443
##  [298,] -1.043068750  1.207828841  1.143391603
##  [299,]  0.447233192  0.494081329 -0.890640741
##  [300,] -1.440588343  0.794179742 -0.951196427
##  [301,] -1.981185023 -0.873924517  1.589670106
##  [302,] -0.992365547  1.062201836 -0.138313826
##  [303,] -0.002286346  0.396012306 -0.259775106
##  [304,]  0.262566713  0.457189941  1.433306431
##  [305,]  1.226864700  1.366349058 -1.365415543
##  [306,] -0.587318191 -0.278313380 -0.512324622
##  [307,] -0.409942967 -1.953777480 -0.470691255
##  [308,]  0.336514874 -1.336545313 -1.694406630
##  [309,]  0.694205834 -1.832606665 -0.715878270
##  [310,] -0.378522948  0.560812103  0.986150399
##  [311,] -0.877190793 -0.847150807 -0.296774835
##  [312,]  0.341985399 -1.198095530 -1.534929147
##  [313,] -0.468106824  0.819134566 -0.148042734
##  [314,] -1.477051968 -0.456606567 -0.993900687
##  [315,] -1.738418434 -1.205629087 -0.444106653
##  [316,] -0.355376036  1.498245548  0.260888315
##  [317,]  0.489917456 -0.659725341  0.242769043
##  [318,] -0.115715262 -0.364768119  0.345155189
##  [319,] -1.032672501  2.042401370 -0.978610343
##  [320,]  0.832077337 -2.575856746  0.231401030
##  [321,]  0.691587705  0.197592276 -0.658650241
##  [322,]  0.330925446  1.090964012  0.719730467
##  [323,] -0.868530045  0.651097251 -0.490418112
##  [324,] -0.122435352  1.810982199  1.591043304
##  [325,] -0.486404388 -0.117652405  0.075303359
##  [326,]  0.465631527 -0.363743738 -0.235428705
##  [327,] -0.961014922 -0.904312211 -0.023642917
##  [328,]  0.516155341 -0.177023262 -1.652646017
##  [329,]  1.934187472 -1.488338732 -0.886832522
##  [330,] -0.654519459  0.160676434  0.205598901
##  [331,]  0.910717187 -0.309722440 -0.746224269
##  [332,]  0.676357817  0.498868258  0.166319227
##  [333,]  0.067525579  0.368981088  1.289319077
##  [334,] -0.510424989  0.969863413 -0.846669004
##  [335,] -0.328576441  0.648211469 -1.572484402
##  [336,] -1.215717814  0.544791368  0.412830879
##  [337,]  0.986600445 -1.568521822 -0.106668975
##  [338,] -1.779746061 -0.834130733  1.802718638
##  [339,] -0.983498229  0.863441289 -1.002892965
##  [340,]  0.836203802 -0.076323290  0.027460709
##  [341,] -0.870463698  0.850849507 -0.221712178
##  [342,]  0.804874986 -1.225652040 -0.111508559
##  [343,] -0.543621364  0.626687669 -0.503939410
##  [344,]  2.224558064  1.112778825  3.728275970
##  [345,] -0.493451183 -1.701227810  1.551031615
##  [346,] -0.391321978 -1.802361369  0.389801536
##  [347,]  0.066126810  0.274682659 -0.737445769
##  [348,]  0.480184151 -0.385515532  0.722517701
##  [349,] -0.316559257  0.210173907 -1.157865734
##  [350,] -0.501516129 -0.412642376 -0.781653278
##  [351,]  0.156536583  2.224709022  2.446568770
##  [352,]  1.001012207 -0.768100602 -0.196348683
##  [353,] -0.918275396  0.816305557 -0.877412850
##  [354,]  2.272228692 -0.142957301  0.651229348
##  [355,] -0.134367076 -0.539001536  0.188089253
##  [356,] -1.200738738 -1.271915849 -0.818734845
##  [357,] -0.701623792 -1.397280062 -0.697052664
##  [358,]  0.221883916 -0.614805089 -0.532288335
##  [359,] -0.369281368  0.528709461  1.058190937
##  [360,] -0.346939781  0.514104890  0.059484985
##  [361,] -0.849359689  0.999007140  1.858234417
##  [362,] -0.032336337 -1.197736205 -2.573147071
##  [363,]  0.891457545  1.507664973  0.422107522
##  [364,] -1.035087390 -0.280916276 -1.196970826
##  [365,]  1.242646928  1.842427842  0.372382675
##  [366,]  1.071916465  0.471858608 -0.559068055
##  [367,]  0.448602644 -1.584054253 -0.198470053
##  [368,] -0.039366154  0.670585094  2.482492558
##  [369,]  0.105013567 -0.485207215  1.791575732
##  [370,]  0.249988551 -1.306650029  1.635494849
##  [371,] -0.268052990  0.511283741  0.255312064
##  [372,]  0.097849607  0.569257070 -0.282788137
##  [373,] -1.261253720 -1.640212185 -1.268484491
##  [374,]  0.548457117  1.935348627  0.240105321
##  [375,] -0.344306267  0.630317563  0.010667094
##  [376,] -0.214701540  0.023268265  0.929548265
##  [377,]  0.513016652  1.090807939  0.793143663
##  [378,]  1.840405502  2.420920913  0.781040397
##  [379,] -0.177075230 -1.319306194  0.116259618
##  [380,] -1.129135404  0.074720766  1.789827001
##  [381,]  0.222168297  0.505973177 -0.292843640
##  [382,]  0.226681051  0.618548744 -0.442410888
##  [383,] -1.530056897  0.959962094 -0.337305403
##  [384,] -0.840298888 -0.368859295 -1.707110994
##  [385,] -0.577900965 -1.149363949 -0.004424344
##  [386,] -0.960599868 -1.590078895  0.003740977
##  [387,]  0.645554969  0.433946042  2.403555603
##  [388,] -1.979850364 -1.504965863 -2.040825999
##  [389,]  0.172362390  0.388005255  0.291548732
##  [390,]  0.609853201 -0.995414341 -0.375531472
##  [391,] -1.481856754  0.227780609  0.305389399
##  [392,]  0.166020628 -2.347062539  0.555038124
##  [393,]  2.059995970  0.751579504  1.682792675
##  [394,]  1.444641105 -0.371073925 -1.049280706
##  [395,]  0.656131641  0.107018914 -0.436560405
##  [396,]  0.056321927  0.976121169 -1.020623736
##  [397,]  1.685204335 -1.109799760 -0.359752491
##  [398,] -1.256329542 -1.215019595  0.070654494
##  [399,] -1.426785075 -0.141770751  0.440299233
##  [400,]  2.280138123  1.094464798  0.832663286
##  [401,] -1.019851108  0.289728708 -1.133075538
##  [402,] -1.564794349  0.279892649  0.937471893
##  [403,]  0.761416155  0.816187935  1.013964608
##  [404,]  0.990621856 -0.356918725  1.303670968
##  [405,] -0.989519690 -1.948429781  0.186273604
##  [406,]  0.453289533  0.971019291 -0.647310358
##  [407,]  2.078525631  2.573658040  1.430702221
##  [408,]  1.640193001 -0.032527944 -0.275261120
##  [409,] -0.334332723 -0.247606306  1.469042159
##  [410,]  0.356318096 -0.542002370  0.321315778
##  [411,]  0.041525391 -0.887839716  2.329375918
##  [412,]  0.488600015  0.364988591  0.763898697
##  [413,]  0.031190460  0.838644903  1.863732724
##  [414,]  0.013257058 -0.478424444  0.716426982
##  [415,]  1.110176198 -0.111868321  1.036678958
##  [416,] -0.491739061  1.617517708 -1.360710061
##  [417,]  1.055319272  0.405448110  0.763433611
##  [418,]  1.082511573  0.745965980  1.676290009
##  [419,]  0.077609543  0.097825043 -1.183709058
##  [420,] -0.172216026 -0.694545763  1.621383737
##  [421,]  0.712798005 -3.137850045 -1.270566419
##  [422,]  1.530831755 -0.072411546 -0.175080772
##  [423,] -0.819467358 -0.803253141  0.170836143
##  [424,] -0.401615541  0.311113933  0.708240989
##  [425,]  0.054580163 -0.015954261  2.189080104
##  [426,] -0.317553897 -1.326876226 -2.093209258
##  [427,]  0.052080295 -1.123280447  0.963264938
##  [428,] -0.487429529 -2.143379987 -0.477434815
##  [429,] -0.213903056  0.870438983 -1.339886061
##  [430,]  0.726912223 -0.206970832  1.341401819
##  [431,]  0.604576062  0.363656752 -1.028071652
##  [432,]  0.322576771  0.843239572  0.040099460
##  [433,] -0.703545181  1.278642131  0.185936274
##  [434,] -1.169668790 -0.490972226  0.806034132
##  [435,]  0.470296071  0.135903856 -1.225106144
##  [436,] -0.255114433 -0.904830500  0.036524249
##  [437,] -1.113567360 -0.086854929 -1.311426073
##  [438,]  0.617165075  2.004500358  0.703993537
##  [439,] -0.491746921  0.820568998 -0.488708855
##  [440,]  0.470815125 -1.957735045 -0.576277653
##  [441,]  0.044706072  0.594537102 -0.433909663
##  [442,]  0.032681082 -0.616975810  0.852148610
##  [443,] -1.164441534 -1.332244567 -1.340536984
##  [444,] -0.246664418  1.227243382  2.682327090
##  [445,] -0.192169806  0.505830863  2.577869249
##  [446,] -0.913184042 -0.438609406 -0.285787931
##  [447,]  0.467240670  0.171597089 -0.762779679
##  [448,] -0.450165207  0.641053737 -0.292518942
##  [449,] -0.430977455 -0.154793161  0.811900210
##  [450,] -1.079591894  1.218014797 -0.032294333
##  [451,]  0.094525757  0.673674154  0.367902449
##  [452,] -0.475595121  0.184796532 -0.877915883
##  [453,]  1.011495006 -0.985393274 -0.024488212
##  [454,] -0.197613012 -0.560112908  1.047874296
##  [455,] -0.305294874 -0.124060795  0.294880177
##  [456,]  0.074239212 -0.747963185 -1.112385092
##  [457,] -0.291786903  1.304282575  0.731067018
##  [458,]  0.607408208 -1.351164504  0.510298266
##  [459,] -1.081895950 -0.236162533  0.171818676
##  [460,] -1.183827545  0.755432667  0.626413669
##  [461,] -0.949765511 -0.104472963 -2.058842674
##  [462,] -0.341611584  1.179320438  0.925866788
##  [463,]  0.162861091 -0.623816005 -0.882035419
##  [464,]  0.083552411  0.341290068 -2.161127863
##  [465,] -0.391508377 -1.110203561  0.352049101
##  [466,] -1.042566454  0.838812028 -0.305760324
##  [467,] -1.074704247 -0.166438100  0.030690218
##  [468,] -0.494831471  0.743081792  1.177728722
##  [469,]  0.681728403  0.111381583 -2.046201586
##  [470,] -1.584792678 -0.401926755 -0.845136925
##  [471,] -0.506601963  0.676450722  1.852197410
##  [472,]  1.323159114  1.480135189 -0.066061360
##  [473,] -0.006850566 -0.063536143  0.170013916
##  [474,]  0.640300446  0.318814533 -0.177074400
##  [475,] -0.003520900 -1.635233805 -0.460606737
##  [476,] -0.750214406 -0.059007634 -0.122784474
##  [477,] -1.101134271 -0.947344753  1.122482253
##  [478,] -0.577756188  0.037345284 -1.108438099
##  [479,]  0.154175323 -0.237605476  0.506762614
##  [480,]  0.851483137 -0.756395211 -0.104241905
##  [481,]  0.049290017 -0.901840905 -0.510670701
##  [482,]  1.088882990  0.113323086  1.793545083
##  [483,]  0.823530859 -0.013683117 -0.144841041
##  [484,] -1.762731765 -2.485989934 -0.727354704
##  [485,] -0.910944026  1.394161998  1.757766152
##  [486,]  0.223184291 -1.041943527 -0.815605759
##  [487,]  0.151255930  0.175162605 -1.627227079
##  [488,]  2.863373174  0.142006646 -0.138054238
##  [489,] -0.620993576  1.164015696  0.296552287
##  [490,]  0.103090989  1.938986664 -0.140118724
##  [491,]  1.700627869 -0.390356098  0.254283088
##  [492,] -0.071109781 -0.255462516 -1.423330891
##  [493,] -0.093199014  1.404115259  0.886817681
##  [494,] -0.199756640  0.415272490  0.617505142
##  [495,]  0.156681047 -2.555660292 -0.605550918
##  [496,] -0.718461706 -1.562782558  1.576216220
##  [497,] -0.135321369  0.695901715 -0.159423648
##  [498,] -0.271135241  0.154969930  0.052533338
##  [499,]  0.143553066  2.930335566  2.513558018
##  [500,]  0.168560865  0.545731372 -1.382653090
##  [501,]  0.673549250  0.793963531  2.025587849
##  [502,]  1.510321517  0.933566128  0.349576409
##  [503,]  1.348082974 -1.174822134 -1.567067140
##  [504,] -0.190849013  0.203019701  0.441724205
##  [505,] -0.038922321 -0.274002482  1.086503495
##  [506,] -0.351892670 -0.462426636  0.556986285
##  [507,]  0.746404438  0.891337315 -0.139526870
##  [508,]  1.838206071  0.352348812  1.296448373
##  [509,] -0.560154773  0.563050176 -0.444693049
##  [510,]  0.099205581  0.687482077 -1.150252024
##  [511,]  1.051855780  0.084979837  0.106770680
##  [512,] -0.521750860 -1.806795857  1.413248874
##  [513,]  0.388044547 -0.214324194 -0.478854073
##  [514,]  0.720580074 -0.310487225 -1.228353762
##  [515,] -0.372944236  0.362985327 -0.609939304
##  [516,] -0.448570951 -0.578703316 -0.245976326
##  [517,]  0.890728739  0.169315185  0.272941537
##  [518,]  0.903501015 -1.546342001  0.021395611
##  [519,]  1.279073779 -0.004134975 -0.228384419
##  [520,]  0.600746689 -1.509354008  0.072587620
##  [521,]  1.650682539 -0.083107683 -0.714687745
##  [522,]  0.915806461  0.331069038  0.362503772
##  [523,]  1.346856823  1.642586025  0.842091190
##  [524,]  0.825696367 -1.235482923 -0.065673833
##  [525,]  0.964728556  2.012940748 -0.525813344
##  [526,] -0.483671520 -0.126325477 -0.781498671
##  [527,]  0.170923151  0.090523558 -0.644349312
##  [528,]  0.925973966  1.449411130  0.267682669
##  [529,]  1.293491668  2.471053496  0.357861026
##  [530,]  1.541352453  0.537381182  2.884251451
##  [531,]  0.662489415  1.424711019 -1.186394482
##  [532,] -0.080935472 -0.301176650 -0.891048097
##  [533,] -0.041706329 -0.351864522  0.460365966
##  [534,]  0.241852101  0.016471806 -0.206874162
##  [535,] -1.179446238 -0.507842833 -0.739448507
##  [536,] -1.312557637  1.576224929  0.871853858
##  [537,]  0.299909114 -1.328978007 -1.221665015
##  [538,]  0.007452727  0.962693825  0.510471243
##  [539,] -0.009850033  0.779871552 -0.238855548
##  [540,]  0.064826362  0.206973171  1.132084957
##  [541,]  1.611896189 -1.921825762 -1.127904133
##  [542,]  0.092809476 -1.311170484 -0.686920421
##  [543,] -0.082936017  0.277701632  0.611144266
##  [544,] -0.754015057  0.505491942 -0.550884603
##  [545,]  1.423771269  0.010587326 -0.234567536
##  [546,] -0.118672095  0.316775922 -0.346548034
##  [547,] -0.183174542 -1.305495749 -1.078364030
##  [548,] -0.519210555 -0.615750249  0.406569176
##  [549,] -0.453574419 -0.605588862  0.192124665
##  [550,]  0.294397157 -0.022925484  2.390680632
##  [551,]  0.578921568  0.380497274  0.147523758
##  [552,]  1.854406674  0.110913841 -0.977069146
##  [553,] -0.199424215 -0.412453482 -1.458320771
##  [554,] -0.095522464 -0.291014780  0.591935756
##  [555,] -0.652624330  0.720725169  0.366106442
##  [556,] -1.181746933 -1.660372174  0.106866342
##  [557,]  0.164467677  0.330943733 -1.434814491
##  [558,]  2.149923452  1.848883415 -0.088146521
##  [559,] -0.872541558 -0.270192784  0.307419555
##  [560,]  0.221773776 -0.860307028 -1.018819531
##  [561,]  0.132500058 -1.072340724 -0.944365953
##  [562,]  0.069035399 -1.013292597 -0.263941346
##  [563,] -0.735719162  0.415254924  0.701877949
##  [564,] -0.269723412  0.279094986 -0.104321601
##  [565,] -1.914492088  1.022749973  1.749646350
##  [566,]  1.218640029  1.211875701 -1.496025738
##  [567,] -0.984371117 -1.039983954  0.663198049
##  [568,] -0.012776822  0.213383402  0.032092585
##  [569,] -0.151944604 -1.809320538 -2.068875742
##  [570,] -1.994029441 -0.929809749 -1.378062991
##  [571,] -0.679100046  0.389580559  0.492962541
##  [572,]  0.105900839  0.517394455  0.338683871
##  [573,]  0.891114960 -0.500224596  1.161082392
##  [574,]  0.594859930  0.921991908 -1.143824425
##  [575,]  0.535847514 -2.074925886 -2.021521742
##  [576,] -0.423475382  2.102075370  1.424652802
##  [577,]  1.117220623  1.516607539  1.019186231
##  [578,] -0.260843316 -0.043351475 -0.435899961
##  [579,] -0.249602690  0.505886969 -0.543328166
##  [580,]  1.474027233 -0.218179075  1.060129747
##  [581,] -0.644341129 -1.158559605 -0.659294696
##  [582,]  0.720270803 -0.267900605  0.637524615
##  [583,]  1.506678174 -0.555968051 -1.340501121
##  [584,] -1.014096266 -0.683736921 -1.561543929
##  [585,]  1.726358049  0.488705721  1.456331518
##  [586,] -0.725070033  0.565884182  2.528063799
##  [587,]  0.691724642  1.316841555 -0.391548970
##  [588,]  1.439731411  1.142706315  0.083350777
##  [589,] -0.064702540  0.715545570 -0.481643167
##  [590,] -1.317253165 -0.260091553 -0.514211866
##  [591,]  2.378141872 -0.118240417  0.461996263
##  [592,] -0.470822879  0.544034512  0.633034597
##  [593,]  0.254903048 -0.720785456  0.460839440
##  [594,] -2.019789588 -0.663249278 -1.289904458
##  [595,]  0.520326810  0.496251459  0.817506070
##  [596,]  0.304119325 -0.228938554  0.679180068
##  [597,] -0.379896057 -1.235094890 -1.065468918
##  [598,]  0.673180877  0.888577870  0.071473377
##  [599,] -0.438800471 -0.879086833 -1.779059484
##  [600,]  1.805493130 -0.049061589 -0.924738709
##  [601,] -0.497459902 -0.178059354 -0.287166116
##  [602,] -0.780326786  0.532905526  1.500533108
##  [603,] -0.031416494 -1.441143326 -1.080347270
##  [604,]  0.245404479 -1.336374960 -0.652231602
##  [605,] -0.385844988 -1.617781021  1.232638217
##  [606,] -0.533829969 -0.703490958 -0.332492616
##  [607,]  0.611080869  0.784422501  0.430891553
##  [608,] -0.394916357  0.345048198  0.140146456
##  [609,] -0.207794278 -2.374754746 -0.352068252
##  [610,]  0.327810111  0.698236643  0.199245722
##  [611,] -0.659495781 -1.039091245  1.883519701
##  [612,]  0.730349924  0.274849675 -0.050980311
##  [613,]  0.166968194 -1.402706890  0.791807965
##  [614,]  1.767061647  0.268516497  0.656932770
##  [615,] -2.057923052 -0.964182339  0.754558047
##  [616,]  0.120078746  1.117932903  0.008176815
##  [617,] -1.585978027 -1.139509029  0.960558591
##  [618,] -0.625593514 -1.134348752 -0.132139573
##  [619,] -0.793312009 -0.457216237 -0.471504390
##  [620,]  0.156198117  2.572079092  0.898276373
##  [621,] -0.707173473  0.408621747  2.755677279
##  [622,]  0.419102948  1.343310706 -0.423655275
##  [623,] -0.803567042 -1.581677785 -1.504732468
##  [624,]  0.488419375  0.403033016  1.301973213
##  [625,]  1.066328968 -2.169295675 -0.367353065
##  [626,]  0.401217693 -0.806734942 -1.538556558
##  [627,] -1.255469413 -0.552905361  1.093277391
##  [628,]  1.416226932  0.440353028  0.586285945
##  [629,]  0.129342587 -0.272023940  0.553914913
##  [630,]  0.754229987  1.247380683 -0.359515533
##  [631,] -0.187070961  0.123683835 -0.824793767
##  [632,]  1.251868402 -0.404915826 -0.333251380
##  [633,]  0.773097779  1.584793830  1.390962999
##  [634,] -0.836458086 -1.423830295 -1.628634558
##  [635,]  0.107578199  0.649764914  1.684583786
##  [636,] -0.790090997 -0.014920051  1.042247063
##  [637,] -0.166870716 -0.008786598 -0.167676200
##  [638,]  0.042864416 -0.161429920 -0.075281104
##  [639,] -0.203888991 -1.090938195  0.080013528
##  [640,] -1.169518545  0.492887046  1.972402468
##  [641,]  1.319737929  0.370396065  1.585828476
##  [642,]  0.815631019 -0.966337631  1.648477143
##  [643,]  0.751722945  1.232344251  1.012004911
##  [644,] -0.291257853 -0.366136727 -0.441997328
##  [645,]  0.020500337  0.270442038 -0.716403153
##  [646,]  0.035802668 -0.550886380 -0.228675133
##  [647,] -0.427158997 -1.370686271 -0.462375525
##  [648,]  0.655652241 -0.657047028 -0.422227827
##  [649,]  1.345800057 -0.447451489 -0.583049482
##  [650,]  1.945396180  0.820964793  1.633273462
##  [651,]  0.120873153 -1.603358036 -0.650560551
##  [652,] -0.303686272 -0.275937445 -1.339001579
##  [653,] -0.182380684 -0.511152960 -0.820980421
##  [654,] -0.060577653 -1.385951433 -1.018996424
##  [655,]  0.589367023 -0.495815798  0.509108396
##  [656,]  1.549557142  0.533916087  0.013936817
##  [657,] -0.437159581  0.267914145  0.072650391
##  [658,]  0.012045590  1.041243515 -0.672788069
##  [659,]  1.323884786 -0.889182746 -0.316598305
##  [660,]  0.197580283 -0.247579629  1.251654367
##  [661,] -0.819783253  0.457884758  0.588783358
##  [662,]  1.087089640  1.159834180  0.220444051
##  [663,]  0.948099060  0.428030947  0.824263315
##  [664,]  1.131790263  0.149347245  2.150666294
##  [665,] -1.074748700  0.506591354  0.212578254
##  [666,] -0.478593358  0.043190310  0.518283697
##  [667,]  0.690040639  0.880435924 -0.772941473
##  [668,] -1.074131988 -0.730922502 -0.699895104
##  [669,] -1.159114685  1.108994075  1.556181541
##  [670,]  2.309113240 -0.069618315  2.057221259
##  [671,]  0.307063546  0.004780379  0.664350082
##  [672,]  1.452720463  1.025821001 -0.455678632
##  [673,]  1.281598835 -0.346531789  0.879670975
##  [674,]  0.400080839  0.046393990  1.666503399
##  [675,] -0.931143600  1.659871111 -0.817787194
##  [676,] -2.050884191 -2.158312344 -0.603398354
##  [677,]  1.406965706  2.130433834 -0.320670604
##  [678,] -1.147239828  0.208909734 -0.209038963
##  [679,]  0.030137594 -0.140854477 -1.089274325
##  [680,]  0.776404219 -0.004667117  1.506423785
##  [681,] -0.440141894  1.455467687  0.186889213
##  [682,]  0.069457554  0.616623916 -1.990736704
##  [683,]  1.037732037  0.129583420  0.887444631
##  [684,]  1.205934778  0.790975824  0.877432289
##  [685,]  0.061064066  0.243761923 -0.449552407
##  [686,]  1.198397648 -0.144095367 -1.544132218
##  [687,]  0.271906002  0.512345719 -0.424832197
##  [688,] -0.076824189  1.062841061  0.067166749
##  [689,]  0.854583817  0.825629683 -0.263151662
##  [690,]  0.231864649 -0.692546269  0.965137112
##  [691,] -1.449057777  0.844451945  0.884373032
##  [692,] -0.124961488  0.998439096  1.734286767
##  [693,]  0.433177264 -1.071279582 -1.340224206
##  [694,]  1.316789425 -0.857944381 -0.543612444
##  [695,]  1.199420920  2.035482157  0.327098359
##  [696,] -1.642272862  0.007114724  0.403888852
##  [697,] -0.865630951  0.428251025  0.827952030
##  [698,] -1.012594737 -0.395050921  0.271863257
##  [699,]  1.120899184  0.427972186  0.057960502
##  [700,]  1.767440913  0.736478040  2.193048176
##  [701,] -1.220231135 -1.036386241  0.767277192
##  [702,]  1.891288149  0.402100985 -0.758340092
##  [703,] -0.014686663  0.941148399  0.512355813
##  [704,]  0.339022340  1.915719441  0.026084106
##  [705,]  1.187874331 -1.695229068 -1.760818626
##  [706,] -1.146801381 -1.532021191 -1.216344729
##  [707,]  1.105810214 -0.685743409 -1.479639337
##  [708,]  1.373917767  0.077809375  0.955755684
##  [709,]  1.235833365  0.324027162  1.861851902
##  [710,]  1.866540907 -0.016809957  0.032275976
##  [711,] -1.567612856 -0.325152060  1.654852093
##  [712,]  0.415800720 -1.347926997  0.279905378
##  [713,]  0.552765374 -1.012227066 -0.166307420
##  [714,] -0.093732456 -1.465876026 -0.525799333
##  [715,] -0.181115747  0.876056302 -0.970054900
##  [716,]  0.985898549 -0.981923703  1.849351030
##  [717,]  0.016261445 -0.378277445 -0.719073122
##  [718,] -0.091845808  0.404137345 -0.481661340
##  [719,]  0.724662208 -0.972308698  0.245136521
##  [720,]  1.368172992 -0.044415783 -0.147105341
##  [721,]  0.451994839  0.551222107  0.549000752
##  [722,]  1.943603880  0.178369542 -0.055947102
##  [723,] -0.199142719  0.431531802 -0.973244430
##  [724,] -0.512216609 -0.439599273 -0.336338254
##  [725,]  0.517075424 -0.992519774  0.198411184
##  [726,] -1.590799528 -0.554594893  0.449464732
##  [727,]  0.326486788  0.606687685  0.433248689
##  [728,]  1.939438773  0.643602290  0.499661544
##  [729,]  1.063235362  1.670137541  0.045228749
##  [730,] -0.029387213  0.050140353 -1.113109873
##  [731,]  0.114330612  1.446659428  0.779833161
##  [732,]  1.141621851  0.101746711 -0.109988953
##  [733,] -0.170083770 -0.344688340 -0.797694771
##  [734,]  0.688559847 -0.124474824 -1.393387846
##  [735,]  0.067381717  0.411921153  0.658042580
##  [736,] -0.908690449  0.022496422  0.257219959
##  [737,] -0.770336693  0.258304805  0.031934874
##  [738,]  0.323944230  1.126746110  0.185198329
##  [739,]  1.245685557  0.560795576  0.316127217
##  [740,]  0.635616305 -0.353925080  0.848109227
##  [741,]  0.249229677  0.555233553 -0.314866127
##  [742,] -0.272293551 -1.130215165 -0.275439757
##  [743,]  0.669899205  0.083508213 -0.367325380
##  [744,]  1.317642070  1.552480174 -1.947277739
##  [745,] -0.820888321  0.234740802 -1.921590283
##  [746,]  0.200685231  0.018801077  0.585464031
##  [747,]  0.687847415  1.325470669  0.447426074
##  [748,]  0.678719574 -0.806235235 -0.771649934
##  [749,]  0.848149275  0.784765346  0.668215851
##  [750,] -0.500467110 -2.367802263 -1.653512807
##  [751,] -1.275589067 -1.485563910  0.671524626
##  [752,]  1.079488723  0.122082619 -0.261021612
##  [753,] -0.855894054 -0.198014460  0.463728535
##  [754,] -1.421101252 -0.979613480 -0.653796963
##  [755,]  1.349731990 -0.455093858  0.032457556
##  [756,]  0.548607259 -1.881956503 -0.018446739
##  [757,] -0.238191132  1.297691015 -0.672151008
##  [758,]  1.140298818 -1.118331700 -0.371910433
##  [759,] -0.689059569  1.157820323  1.076592530
##  [760,] -0.262489676  2.311106629  0.400135994
##  [761,]  0.921271807 -0.327519121  0.836699883
##  [762,]  1.055473162 -0.715184527 -1.223414468
##  [763,] -0.278667045 -0.803284021  0.731493427
##  [764,] -0.295053389 -0.498749136 -0.958572625
##  [765,]  1.985073438 -0.337952164  1.449817127
##  [766,] -1.040469902 -1.428722706 -0.359529496
##  [767,]  0.485321047  0.558118957 -1.890446883
##  [768,]  0.485745214 -2.500759695  0.809204591
##  [769,]  0.554090948  0.187482034 -0.953976265
##  [770,]  1.395699079  1.573274060 -1.628671188
##  [771,]  1.180742298 -1.778666700 -0.397313779
##  [772,]  0.301101595 -0.639847464  0.511331662
##  [773,]  1.176805951 -1.248180926 -0.167417610
##  [774,] -0.726634956  0.938105137  1.416364843
##  [775,]  1.126457605  1.016163908  1.546661491
##  [776,] -1.670786932 -0.505334188 -0.666468337
##  [777,]  2.218794560  2.070972187 -0.895736388
##  [778,] -0.794684221 -1.606583462 -1.480951112
##  [779,]  0.351304182  1.870839315 -0.073943729
##  [780,]  0.093294823 -1.013733198  0.444251477
##  [781,] -0.496829215 -0.361732286  0.314771127
##  [782,] -0.731258222 -0.953409929 -0.909703708
##  [783,]  1.232055943  0.744319520  3.076027298
##  [784,]  0.092860111  0.826179047 -0.610236864
##  [785,]  0.471168901  0.076064058  0.279909632
##  [786,]  1.744997321  0.868417240  1.221009271
##  [787,] -1.098583684 -1.507841370 -0.947597844
##  [788,] -0.103611985  0.853801995  0.979647144
##  [789,] -0.750290947  0.347193333 -0.724541466
##  [790,]  0.936985196  0.459008527  1.120389828
##  [791,] -0.430473609 -1.527643542  1.158041284
##  [792,]  0.052704710  0.314992664  1.099905591
##  [793,]  0.374886913 -0.382574652  2.066715488
##  [794,]  0.134228928 -1.998762512  0.242842393
##  [795,]  0.428208564 -0.155482249  1.379902367
##  [796,]  0.616863512  0.045715239  1.877434348
##  [797,]  0.384835380  0.889220058 -0.693266911
##  [798,]  1.541942570  1.179398012 -0.426243536
##  [799,] -2.056087755  1.108703621  0.561853690
##  [800,] -0.075749663 -0.187228327  0.233254991
##  [801,]  1.669126525  0.115087412  1.596611873
##  [802,] -0.538049512  1.957325144 -0.010910437
##  [803,]  0.620968800 -0.785881472  0.051544659
##  [804,]  0.981505524  0.539532154  0.905341621
##  [805,]  0.966286525 -0.357147179 -0.900226035
##  [806,]  0.974886589  1.058315673  0.652275987
##  [807,]  0.187950834 -1.450643492  0.776237568
##  [808,] -0.006212901  0.024857207  0.345336919
##  [809,]  0.769020580 -1.867782802  1.094476347
##  [810,] -0.690692366 -1.025245894 -0.841066119
##  [811,]  1.085607405 -1.007431416 -1.883592332
##  [812,] -0.651475141 -0.116703278  0.751568388
##  [813,] -0.095757414 -2.633091959 -0.498514160
##  [814,]  1.542309293 -0.445984584 -0.752424650
##  [815,] -1.593069757 -0.054454806 -0.588059557
##  [816,]  2.981472757  1.673194591  1.793022058
##  [817,]  1.125162251 -1.003486989 -0.113937469
##  [818,] -1.149940966  0.134604767  0.487203226
##  [819,] -1.912447257  0.441136113 -0.145590660
##  [820,]  1.362596201  1.635494894 -0.413423224
##  [821,]  1.103809840  0.439660486 -1.070780089
##  [822,]  0.559090300  1.030499530 -0.361512039
##  [823,]  0.439859494  1.221475598 -1.005774267
##  [824,]  1.211098396  1.670280887 -0.077643315
##  [825,] -0.054818321 -0.982851455  0.504805607
##  [826,] -0.191844398  1.552231495  1.748288254
##  [827,] -1.347030281 -0.658549237  0.940985609
##  [828,] -0.270514094  0.107218746  0.617482587
##  [829,] -0.747187352 -0.938466312  0.057124840
##  [830,] -0.138116893  0.567301893  0.317856498
##  [831,]  0.881035693 -1.336319807 -0.650923616
##  [832,] -1.538160754  0.267658548 -0.793214832
##  [833,]  0.088054724 -0.054109226 -0.830933933
##  [834,]  1.363983722  0.147141781  0.316046821
##  [835,] -0.082141711  0.742959049 -1.134192187
##  [836,] -0.260963457 -0.169249598 -0.010994507
##  [837,] -0.300471736 -2.235085543 -3.368542856
##  [838,]  0.232079129  0.920708320 -0.010809682
##  [839,]  1.250489478  1.180066177  0.162447393
##  [840,]  1.380226964 -0.533837294 -2.092448234
##  [841,]  0.880819123 -1.116196881 -0.449312820
##  [842,] -0.064390819 -0.682192754 -0.529621659
##  [843,] -0.329877392 -0.307251329 -0.437844578
##  [844,] -0.881246039 -0.949975539  1.024699941
##  [845,] -1.290495947 -0.530624341 -0.611976227
##  [846,]  0.351960116  0.904807236 -0.675575477
##  [847,] -0.783503424 -0.546285921  1.045061972
##  [848,]  0.633131943 -0.311838628  1.372945581
##  [849,] -1.256838026 -0.113391050  0.077421266
##  [850,]  0.181693092 -0.659554674 -0.177470791
##  [851,] -0.924093116 -0.258829229 -0.827607574
##  [852,]  1.847562026  0.082207853 -0.008690673
##  [853,] -2.163469769 -0.017560201 -0.102098427
##  [854,] -0.590135251  0.090627736 -1.107377655
##  [855,] -0.865044954 -0.284240330 -0.598449287
##  [856,]  0.150401720 -0.207294995 -2.843873164
##  [857,] -0.513768587 -2.691949999 -2.750850737
##  [858,] -0.401779444  0.220119833 -0.067419509
##  [859,] -0.810403367 -0.789521407 -0.681244300
##  [860,] -1.995703963  1.484694007 -0.918539306
##  [861,] -1.093532030  0.784633253  0.298393695
##  [862,]  0.220533123  1.119052165 -0.158403872
##  [863,]  0.190579943  1.324516107  0.480218837
##  [864,] -0.044382346  0.536004867  0.104869972
##  [865,] -0.123581315  0.381581244 -0.004605238
##  [866,] -1.693910177 -0.662479751 -1.579751663
##  [867,]  1.319232420 -0.705264779 -1.536094931
##  [868,] -0.868144885 -0.173036560 -0.173661021
##  [869,] -0.647592221 -0.892087198  0.273116265
##  [870,]  0.465905506  0.540820176  1.776686924
##  [871,] -0.938822718  0.029522362 -0.144219287
##  [872,]  1.049991143 -1.952381487 -0.666037954
##  [873,]  0.788463258  0.529529901 -1.023819509
##  [874,]  0.191090502 -0.513659200  1.511349191
##  [875,]  0.956135872  0.337578858 -0.712842833
##  [876,] -0.315054819 -1.079177119  1.412235780
##  [877,]  1.152437292  1.028886982  1.632513689
##  [878,]  0.906088687  0.280885782 -0.659424431
##  [879,]  0.841627683  1.115994657 -0.241187945
##  [880,] -1.135412182  1.482937425 -0.399680277
##  [881,]  1.315873552 -0.487371932  0.054227588
##  [882,] -0.975816043  0.239580076 -0.255186356
##  [883,]  0.523354185  2.479025459  0.596012071
##  [884,]  0.093961700  0.345935992  1.153908997
##  [885,] -1.328332500  1.340938609 -1.384534045
##  [886,] -1.250163474 -0.808484593 -0.947080656
##  [887,]  0.156137509 -1.071334756 -0.194582233
##  [888,]  1.236725035 -0.373933809 -0.099686611
##  [889,] -0.606783909  0.544256822  1.807929751
##  [890,]  0.249198464  0.493848377 -0.741970239
##  [891,]  0.107290916  1.533354471  1.169773794
##  [892,]  1.378336035 -0.680692162  0.218120482
##  [893,] -0.930631619  0.023561081  2.950277414
##  [894,] -0.997146631 -0.569367513  0.348438161
##  [895,]  0.296033249  0.796048221  0.861776890
##  [896,] -1.248634510 -0.670166775 -0.549014421
##  [897,]  1.207066144  1.341955277  0.918889530
##  [898,] -0.451998686 -0.300596231 -1.180232230
##  [899,] -0.881851049 -1.792087575  0.968953793
##  [900,] -0.727244135 -0.328755429 -0.387644721
##  [901,]  0.170763221  1.107534283  1.014862541
##  [902,]  1.389178906  1.926292554  1.564270265
##  [903,]  0.059411732 -1.313038198 -1.184879534
##  [904,]  0.204376930  0.232582853  2.016396306
##  [905,] -1.586169567 -1.677517862  0.150163253
##  [906,]  1.059696364  0.674083999  0.198883918
##  [907,] -0.346008504 -0.598441972  0.918550532
##  [908,] -0.016023039 -0.886951475  1.390857227
##  [909,]  0.349838123  0.259581252  0.075867200
##  [910,] -0.070381415  2.047720729  0.435316599
##  [911,] -1.308016516 -1.191840808 -1.785754415
##  [912,] -0.834941362  1.662685813  0.819380344
##  [913,] -0.620953191 -0.182938529 -2.002970378
##  [914,]  0.804804865  0.254074593  0.229413323
##  [915,]  1.031452255 -0.582853563  0.270604742
##  [916,] -0.525453216  0.204501725 -1.740164460
##  [917,]  0.858280761  1.173594052  0.158605464
##  [918,]  1.208237769  0.822243163  1.311340319
##  [919,] -1.445342707 -1.121812303 -0.535593124
##  [920,]  1.218541524  0.989100077  0.959258787
##  [921,]  0.281633538  1.115959066  2.184406402
##  [922,]  0.413104348  0.445290921 -1.134220253
##  [923,]  1.252864844 -0.524380234 -1.152850829
##  [924,]  1.711541348  0.473189385  1.056565112
##  [925,] -0.016471801  0.289671233  0.974759833
##  [926,]  0.857724605  0.712329450  1.149518698
##  [927,]  0.081306398 -0.085198531 -0.293301639
##  [928,]  1.139319788  1.481284674  0.523978435
##  [929,]  0.261521552  0.835302648 -0.365138032
##  [930,] -0.705759105  2.163791692  1.077690352
##  [931,] -0.581363325  0.521245638  1.093654491
##  [932,] -0.546280344  0.676951205  1.891348705
##  [933,]  0.463087338  0.441787546  0.204614135
##  [934,] -0.431474782  0.325958394  0.328646090
##  [935,]  1.628336267 -0.234638475  1.293635439
##  [936,] -1.541234905  1.097623176  0.692283445
##  [937,]  0.996230612  0.405413113  0.595421040
##  [938,]  0.411560987 -0.421471798  0.107218728
##  [939,]  1.217378808  1.650252315  1.550322537
##  [940,] -1.124837858 -0.330893973  1.851292728
##  [941,]  2.555932480  1.185457135  0.343292069
##  [942,] -0.831513991 -2.390168813 -2.005773345
##  [943,] -0.691275338  1.359410163 -0.608882731
##  [944,] -0.260231863 -0.055856552 -0.218150414
##  [945,] -0.648565388 -1.180272753  0.537265457
##  [946,]  1.282942627  0.672118581  0.053916747
##  [947,] -0.320482002  0.452770210  0.506207657
##  [948,]  1.963726199  0.331080496 -0.258007865
##  [949,]  0.888462706 -0.048620989  0.866107426
##  [950,]  0.467471600 -0.486228114  0.398477193
##  [951,]  1.146789102 -2.487217923 -0.560164970
##  [952,]  0.862642443  1.010843083  1.629081893
##  [953,] -0.268641661 -1.031717151  0.039860500
##  [954,] -1.942961678 -0.113445179 -1.029102785
##  [955,] -0.158530043 -0.329096802 -0.356855473
##  [956,] -0.328455357 -0.839690191 -0.319656101
##  [957,]  1.374867778  1.473514625  0.738974216
##  [958,]  0.459999711  2.109234712  0.005887259
##  [959,] -1.933904789 -0.605042862 -0.356520559
##  [960,] -0.004056031 -0.012808113  0.436029391
##  [961,]  1.364516197  0.537394543  0.798061854
##  [962,]  2.388726412  2.387612009  1.970981894
##  [963,] -0.347269053  0.364388913 -0.233147209
##  [964,]  0.412135592 -0.090140546 -0.508748252
##  [965,]  0.085875952  0.304110191  0.549650731
##  [966,] -0.750280031  0.521258487  1.155726961
##  [967,]  0.283895021  1.357876130  0.743840498
##  [968,] -0.326913513 -0.088993049 -0.699944425
##  [969,] -1.346009595  1.336970332  0.673810059
##  [970,] -0.730245217 -0.999808154  0.015611614
##  [971,] -1.751403202  2.597854964 -0.114868721
##  [972,]  1.196620593 -0.411514885  0.724964993
##  [973,]  0.422977386  0.324986952  0.753482186
##  [974,]  0.207510242 -0.439178493 -0.528158461
##  [975,]  1.871916926 -1.735352070  0.743099721
##  [976,]  0.187395496  0.337283059  0.974271879
##  [977,]  0.745539813 -1.091718184  0.509578280
##  [978,]  1.560688795 -1.612800323 -0.740663311
##  [979,] -0.315498945 -2.361336722 -1.607962268
##  [980,] -0.706753973 -1.857501153 -1.339971607
##  [981,]  0.920286845  0.506672519  1.092067582
##  [982,] -0.401704680 -2.327241945  0.515720536
##  [983,]  0.461804365  0.908518240 -0.949001233
##  [984,]  1.616314295  0.173046722 -0.498209327
##  [985,] -1.176721738  0.209374026 -2.243311356
##  [986,]  0.602637783 -0.087033717  0.218878709
##  [987,]  0.828194545  0.292428100  0.481330642
##  [988,]  1.238152226 -0.667355083 -0.622803795
##  [989,]  1.823629690  0.765180074 -1.972939997
##  [990,] -0.428460945 -0.832960123  0.139361256
##  [991,]  0.103277517 -0.510242679  0.339368280
##  [992,] -1.081362848  0.911187348 -1.092449417
##  [993,]  0.121754416  1.172002343  1.800707429
##  [994,] -0.145371457 -0.976883861 -0.942264886
##  [995,]  0.898411510 -1.065629951 -1.281963761
##  [996,] -0.816376433 -1.218431502  0.166117389
##  [997,] -0.498411151  0.256071426 -0.765551862
##  [998,]  0.154528020 -1.254242783  0.305043771
##  [999,]  0.805116245  0.600213237  0.967449359
## [1000,]  0.022835701  1.091468271 -0.352146662
## 
## 
## $tail_upper
##              [,1]         [,2]         [,3]         [,4]         [,5]
## [1,] 0.0000000000 0.0229218236 0.0006580736 0.0003642573 0.0086222337
## [2,] 0.0229218236 0.0000000000 0.0003403118 0.0002020644 0.0010202037
## [3,] 0.0006580736 0.0003403118 0.0000000000 0.0279600531 0.0015607793
## [4,] 0.0003642573 0.0002020644 0.0279600531 0.0000000000 0.0010873192
## [5,] 0.0086222337 0.0010202037 0.0015607793 0.0010873192 0.0000000000
## [6,] 0.0016716968 0.0001881053 0.0001731534 0.0001989784 0.0008946779
## [7,] 0.0003546379 0.0001968458 0.0031051577 0.0018781417 0.0009311947
## [8,] 0.0002653675 0.0001912344 0.0023440362 0.0007910424 0.0005601702
##              [,6]         [,7]         [,8]
## [1,] 0.0016716968 0.0003546379 0.0002653675
## [2,] 0.0001881053 0.0001968458 0.0001912344
## [3,] 0.0001731534 0.0031051577 0.0023440362
## [4,] 0.0001989784 0.0018781417 0.0007910424
## [5,] 0.0008946779 0.0009311947 0.0005601702
## [6,] 0.0000000000 0.0003608645 0.0001789964
## [7,] 0.0003608645 0.0000000000 0.0010056318
## [8,] 0.0001789964 0.0010056318 0.0000000000
## 
## $tail_lower
##              [,1]         [,2]         [,3]         [,4]         [,5]
## [1,] 0.0000000000 0.0229218236 0.0006580736 0.0003642573 0.0086222337
## [2,] 0.0229218236 0.0000000000 0.0003403118 0.0002020644 0.0010202037
## [3,] 0.0006580736 0.0003403118 0.0000000000 0.0279600531 0.0015607793
## [4,] 0.0003642573 0.0002020644 0.0279600531 0.0000000000 0.0010873192
## [5,] 0.0086222337 0.0010202037 0.0015607793 0.0010873192 0.0000000000
## [6,] 0.0016716968 0.0001881053 0.0001731534 0.0001989784 0.0008946779
## [7,] 0.0003546379 0.0001968458 0.0031051577 0.0018781417 0.0009311947
## [8,] 0.0002653675 0.0001912344 0.0023440362 0.0007910424 0.0005601702
##              [,6]         [,7]         [,8]
## [1,] 0.0016716968 0.0003546379 0.0002653675
## [2,] 0.0001881053 0.0001968458 0.0001912344
## [3,] 0.0001731534 0.0031051577 0.0023440362
## [4,] 0.0001989784 0.0018781417 0.0007910424
## [5,] 0.0008946779 0.0009311947 0.0005601702
## [6,] 0.0000000000 0.0003608645 0.0001789964
## [7,] 0.0003608645 0.0000000000 0.0010056318
## [8,] 0.0001789964 0.0010056318 0.0000000000
# Ví dụ minh họa: tạo ma trận phụ thuộc Gaussian và t copula
# Kích thước 8x8 theo cổ phiếu của bạn
stocks <- c("MBB","VCB","HPG","NKG","SSI","VND","GEX","MSN")

# Nếu bạn đã tính ma trận copula, dùng trực tiếp:
# gaussian_rho <- ma_tran_gaussian
# t_rho <- ma_tran_t

# Nếu chưa có, tạo ma trận giả để test code:
set.seed(123)
gaussian_rho <- matrix(runif(64, 0, 1), nrow=8)
t_rho <- matrix(runif(64, 0, 1), nrow=8)

colnames(gaussian_rho) <- colnames(t_rho) <- stocks
rownames(gaussian_rho) <- rownames(t_rho) <- stocks
library(ggplot2)
library(reshape2)

# Giả sử bạn đã có hai ma trận phụ thuộc (rho)
# gaussian_rho và t_rho (cùng kích thước)
# VD:
# gaussian_rho <- matrix(runif(64, 0, 1), nrow=8)
# t_rho <- matrix(runif(64, 0, 1), nrow=8)
colnames(gaussian_rho) <- colnames(t_rho) <- c("MBB","VCB","HPG","NKG","SSI","VND","GEX","MSN")
rownames(gaussian_rho) <- rownames(t_rho) <- colnames(gaussian_rho)

# Melt ma trận để ggplot
gaussian_melt <- melt(gaussian_rho)
t_melt <- melt(t_rho)

# Thêm cột loại copula
gaussian_melt$Copula <- "Gaussian"
t_melt$Copula <- "t"

# Kết hợp
df_plot <- rbind(gaussian_melt, t_melt)

# Vẽ heatmap
ggplot(df_plot, aes(Var1, Var2, fill=value)) +
  geom_tile(color="white") +
  geom_text(aes(label=round(value,2)), size=3) +
  scale_fill_gradient2(low="blue", mid="white", high="red", midpoint=0.5, limit=c(0,1), name="Rho") +
  facet_wrap(~Copula) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle=45, hjust=1)) +
  labs(x="", y="", title="So sánh ma trận phụ thuộc giữa Gaussian và t Copula")

library(VineCopula)

# Gaussian copula
fit_gauss <- fitCopula(normalCopula(dim = ncol(U)), data = U, method = "ml")

# t-copula
fit_t <- fitCopula(tCopula(dim = ncol(U), df = 4), data = U, method = "ml")  

# Joe copula (nếu muốn)
fit_joe <- fitCopula(joeCopula(dim = ncol(U)), data = U, method = "ml")
library(copula)

# Giả sử bạn đã có dữ liệu chuẩn hóa U
# Nếu nhiều cổ phiếu, bạn có thể chọn 2-3 cổ phiếu chính để nhẹ máy
U_small <- U[, 1:3]  # chọn 3 cổ phiếu đầu, ví dụ MBB, VCB, HPG

# Fit copula
fit_gauss <- fitCopula(normalCopula(dim = ncol(U_small)), data = U_small, method = "ml")
fit_t     <- fitCopula(tCopula(dim = ncol(U_small)), data = U_small, method = "ml")
fit_joe   <- fitCopula(joeCopula(dim = ncol(U_small)), data = U_small, method = "ml")

# So sánh AIC/BIC nhẹ nhàng
aic_values <- c(
  Gaussian = AIC(fit_gauss),
  t        = AIC(fit_t),
  Joe      = AIC(fit_joe)
)

bic_values <- c(
  Gaussian = BIC(fit_gauss),
  t        = BIC(fit_t),
  Joe      = BIC(fit_joe)
)

print(aic_values)
##  Gaussian         t       Joe 
## -703.4235 -701.3398 -514.2937
print(bic_values)
##  Gaussian         t       Joe 
## -697.6254 -689.7436 -508.4956
# Nếu muốn kiểm định GoF nhẹ, giảm N
gof_gauss <- gofCopula(fit_gauss@copula, x = U_small, N = 200)
gof_joe   <- gofCopula(fit_joe@copula, x = U_small, N = 200)
## Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
## possible convergence problem: optim() gave code=52
## Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
## possible convergence problem: optim() gave code=52
print(gof_gauss$p.value)
## [1] 0.002487562
print(gof_joe$p.value)
## [1] 0.002487562
# Tham số Joe copula
fit_joe@copula@parameters
## [1] 1.337895
# Hoặc lấy tau
tau(fit_joe@copula)
## [1] 0.1606729
# Giả sử muốn tạo 1000 quan sát
set.seed(123)
sim_joe <- rCopula(1000, fit_joe@copula)

# Kiểm tra dữ liệu mô phỏng
head(sim_joe)
##           [,1]       [,2]      [,3]
## [1,] 0.3646394 0.84737744 0.3839692
## [2,] 0.8352232 0.59288942 0.2940890
## [3,] 0.1446741 0.13831861 0.4325025
## [4,] 0.8493439 0.77143535 0.7485971
## [5,] 0.8686778 0.72985025 0.8488355
## [6,] 0.3318579 0.07823425 0.3693272
# CDF chung
pCopula(c(0.8, 0.9), fit_joe@copula)
## [1] 0.7497542
# Simulate VaR 5% (ngưỡng rủi ro)
quantile(sim_joe[,1], 0.05)
##         5% 
## 0.03814659
library(ggplot2)
df <- as.data.frame(sim_joe)
ggplot(df, aes(x=V1, y=V2)) +
  geom_point(alpha=0.5) +
  labs(title="Simulated Joe copula", x="U1", y="U2")

library(copula)
library(ggplot2)

# Giả sử fit_joe đã có
# fit_joe@copula@parameters

# 1. Mô phỏng 1000 quan sát từ Joe copula
set.seed(123)
sim_joe <- rCopula(1000, fit_joe@copula)

# 2. Kiểm tra dữ liệu
head(sim_joe)
##           [,1]       [,2]      [,3]
## [1,] 0.3646394 0.84737744 0.3839692
## [2,] 0.8352232 0.59288942 0.2940890
## [3,] 0.1446741 0.13831861 0.4325025
## [4,] 0.8493439 0.77143535 0.7485971
## [5,] 0.8686778 0.72985025 0.8488355
## [6,] 0.3318579 0.07823425 0.3693272
# 3. Tính CDF chung (ví dụ 3 biến cùng ≤ c(0.8,0.9,0.7))
pCopula(c(0.8, 0.9, 0.7), fit_joe@copula)
## [1] 0.5681873
# 4. Tính VaR 5% cho từng biến
VaR_5 <- apply(sim_joe, 2, function(x) quantile(x, 0.05))
VaR_5
## [1] 0.03814659 0.03739132 0.04701377
# 5. Tính VaR đa chiều (joint)
# Ví dụ xác suất 5% cho đồng thời cả 3 biến dưới VaR_5
pCopula(VaR_5, fit_joe@copula)
## [1] 0.000117543
# 6. Chuyển sang data frame để vẽ
df <- as.data.frame(sim_joe)
colnames(df) <- c("V1", "V2", "V3")

# 7. Vẽ scatter plot từng cặp
pairs(df, main="Simulated Joe Copula (3 variables)")

# Hoặc vẽ 2D scatter từng cặp riêng bằng ggplot
ggplot(df, aes(x=V1, y=V2)) +
  geom_point(alpha=0.5) +
  labs(title="V1 vs V2 - Joe Copula", x="V1", y="V2")

ggplot(df, aes(x=V1, y=V3)) +
  geom_point(alpha=0.5) +
  labs(title="V1 vs V3 - Joe Copula", x="V1", y="V3")

ggplot(df, aes(x=V2, y=V3)) +
  geom_point(alpha=0.5) +
  labs(title="V2 vs V3 - Joe Copula", x="V2", y="V3")

# Thư viện cần thiết
library(copula)
library(ggplot2)
library(GGally)

# 1. Tạo Joe copula 8 chiều
param_joe <- 1.337895  # tham số đã ước lượng từ Joe copula
joe8 <- joeCopula(param = param_joe, dim = 8)

# 2. Mô phỏng 1000 quan sát
set.seed(123)
sim_8 <- rCopula(1000, joe8)

# 3. Chuyển sang data frame
df8 <- as.data.frame(sim_8)
colnames(df8) <- paste0("V", 1:8)

# 4. Kiểm tra dữ liệu
head(df8)
V1 V2 V3 V4 V5 V6 V7 V8
0.3646394 0.8473775 0.3839692 0.0401600 0.5826657 0.1410338 0.5923582 0.2686753
0.8352232 0.5928894 0.2940890 0.7050778 0.2695275 0.2562489 0.4661646 0.2252080
0.1446741 0.1383186 0.4325025 0.1018113 0.1863881 0.6529285 0.0138164 0.1234449
0.8493440 0.7714354 0.7485971 0.3843760 0.6424492 0.6665342 0.6204969 0.7348230
0.8686778 0.7298503 0.8488355 0.7961926 0.8415360 0.9261760 0.9445370 0.9604127
0.3318579 0.0782343 0.3693272 0.9842828 0.9138341 0.0765513 0.5611360 0.6881926
# 5. Vẽ scatterplot matrix (pairs plot)
pairs(df8, main = "Scatterplot Matrix - 8 biến Joe Copula")

# 6. Hoặc dùng ggpairs cho đẹp hơn
ggpairs(df8) +
  ggtitle("Scatterplot Matrix - 8 biến Joe Copula")

library(copula)
library(GGally)
library(ggplot2)

set.seed(123)

# --- Tham số ước lượng từ trước ---
par_gauss <- 0.2  # ví dụ, điền đúng từ fit_gauss@copula@parameters
par_t     <- 0.25
df_t      <- 4
par_joe   <- 1.337895

dim_cop <- 8
n_sim <- 1000

# --- 1. Gaussian Copula ---
gauss8 <- normalCopula(param = par_gauss, dim = dim_cop)
sim_gauss <- rCopula(n_sim, gauss8)
df_gauss <- as.data.frame(sim_gauss)
colnames(df_gauss) <- paste0("V", 1:dim_cop)

# --- 2. t Copula ---
t8 <- tCopula(param = par_t, dim = dim_cop, df = df_t)
sim_t <- rCopula(n_sim, t8)
df_tcop <- as.data.frame(sim_t)
colnames(df_tcop) <- paste0("V", 1:dim_cop)

# --- 3. Joe Copula ---
joe8 <- joeCopula(param = par_joe, dim = dim_cop)
sim_joe <- rCopula(n_sim, joe8)
df_joe <- as.data.frame(sim_joe)
colnames(df_joe) <- paste0("V", 1:dim_cop)

# --- Vẽ scatterplot matrix ---
ggpairs(df_gauss) + ggtitle("Gaussian Copula - 8 biến")

ggpairs(df_tcop)  + ggtitle("t Copula - 8 biến")

ggpairs(df_joe)   + ggtitle("Joe Copula - 8 biến")

# --- Vẽ heatmap tương quan Spearman ---
library(reshape2)
cor_heatmap <- function(df, title=""){
  cor_mat <- cor(df, method="spearman")
  melted <- melt(cor_mat)
  ggplot(melted, aes(Var1, Var2, fill=value)) +
    geom_tile() +
    scale_fill_gradient2(low="blue", mid="white", high="red", midpoint=0) +
    geom_text(aes(label=round(value,2)), color="black") +
    theme_minimal() +
    ggtitle(title)
}

cor_heatmap(df_gauss, "Gaussian Copula Spearman")

cor_heatmap(df_tcop, "t Copula Spearman")

cor_heatmap(df_joe, "Joe Copula Spearman")