Statement of Problem

Temperature strongly influences the physiological performance of lizards, and many species rely on behavioral thermoregulation to keep their body temperatures within a preferred range. The Mediterranean gecko (Hemidactylus turcicus) is an introduced species that occurs along the Gulf Coast and has recently expanded its range northward into cooler environments such as Edmond, Oklahoma. Understanding how well these geckos regulate their body temperatures in different environments can help clarify whether they are effective thermoregulators or simply thermoconforming to ambient conditions. To address this question, geckos were collected on building walls at field sites. For each gecko, I measured (1) body temperature (Tb), (2) the temperature of the wall immediately adjacent to the lizard (Tw), (3) environmental wall temperatures taken at random locations along walls where geckos were found (Te), and (4) preferred body temperatures (Tp) measured later in the lab using a thermal gradient. I am interested in whether there are differences among Te, Tw, Tb, and Tp. In particular, I want to know whether geckos maintain body temperatures different from the available environmental temperatures (Te and Tw), and whether their field body temperatures (Tb) are close to their preferred temperatures (Tp). # Load Packages Tidyverse is used for cleaning up and manipulating data. Rmisc is used to calcualte summary statistics. car is used to conduct the ANOVA. forcats is used to format data in ways that facilitate analysis and graphing of categorical data. FSA is used for running Dunn’s test after a Kruskal-Wallis test.

pacman::p_load(tidyverse, Rmisc, car, forcats, FSA)

Load the data File

The data file is made up of 2 main columns used in this analysis. Column 1 (Type) contains categorical data identifying the type of temperature being measured in the study. Values include environmental wall temperature (Te), wall temperature next to the lizard (Tw), body temperature (Tb), and preferred body temperature (Tp). Column 2 (Temperature) contains the temperature values (in °C). This constitutes a single-factor design with temperature type as the categorical variable.

df <- read.csv("tempdata.csv")   # use your actual file name here
head(df)                         # check the first 6 rows of data
##   Season Population Type Temperature
## 1 Summer  Galveston   Tb       29.89
## 2 Summer  Galveston   Tb       32.22
## 3 Summer  Galveston   Tb       30.17
## 4 Summer  Galveston   Tb       31.44
## 5 Summer  Galveston   Tb       29.67
## 6 Summer  Galveston   Tb       30.72
str(df)  # get the structure of the dataframe
## 'data.frame':    1255 obs. of  4 variables:
##  $ Season     : chr  "Summer" "Summer" "Summer" "Summer" ...
##  $ Population : chr  "Galveston" "Galveston" "Galveston" "Galveston" ...
##  $ Type       : chr  "Tb" "Tb" "Tb" "Tb" ...
##  $ Temperature: num  29.9 32.2 30.2 31.4 29.7 ...
df$Type <- as.factor(df$Type)  # change Type column to a factor
str(df)                        # recheck structure
## 'data.frame':    1255 obs. of  4 variables:
##  $ Season     : chr  "Summer" "Summer" "Summer" "Summer" ...
##  $ Population : chr  "Galveston" "Galveston" "Galveston" "Galveston" ...
##  $ Type       : Factor w/ 4 levels "Tb","Te","Tp",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Temperature: num  29.9 32.2 30.2 31.4 29.7 ...
summary(df)  # get a general summary of the dataframe
##     Season           Population        Type      Temperature   
##  Length:1255        Length:1255        Tb:182   Min.   : 6.78  
##  Class :character   Class :character   Te:723   1st Qu.:19.00  
##  Mode  :character   Mode  :character   Tp:168   Median :26.00  
##                                        Tw:182   Mean   :24.32  
##                                                 3rd Qu.:29.50  
##                                                 Max.   :35.78

Force order of Temperature Types

The following code forces R to treat the Temperature Types in the order in which they appear in the experiment rather than reordering them alphabetically. This is useful because the temperature types progress biologically from the ambient environment to the gecko’s preferred temperature. In this order, Te represents environmental temperature, Tw represents the wall temperature next to the lizard, Tb represents field body temperature, and Tp represents preferred body temperature measured in the lab.

df$Type <- factor(df$Type,
                  levels = c("Te", "Tw", "Tb", "Tp"))  # keeps the temperature type levels in order
str(df)  # check the structure again
## 'data.frame':    1255 obs. of  4 variables:
##  $ Season     : chr  "Summer" "Summer" "Summer" "Summer" ...
##  $ Population : chr  "Galveston" "Galveston" "Galveston" "Galveston" ...
##  $ Type       : Factor w/ 4 levels "Te","Tw","Tb",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ Temperature: num  29.9 32.2 30.2 31.4 29.7 ...

Create a common Theme block

This block of code sets universal formatting instructions for all graphs generated in this script.

th <- theme_bw() +
  theme(plot.title = element_text(size = 20, hjust = 0.5),
        axis.title.y = element_text(size = 20),
        axis.title.x = element_text(size = 20),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16)) +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank()) +
  theme(legend.position = c(0.6, 0.95),
        legend.justification = c("right", "top"),
        legend.box.just = "right",
        legend.margin = margin(6, 6, 6, 6))

Make a graph

It is almost always useful to examine the data prior to analysis because it might reveal some potential problems with the data before getting too far into the analysis. So, the following set of code chunks creates a basic graphic of the data.

plot1 <- ggplot(df, aes(x = Type, y = Temperature,
                        colour = Type, group = Type, fill = Type)) +
  geom_dotplot(binaxis = "y", stackdir = "center") +
  xlab("Temperature Type") +
  ylab("Temperature (°C)") +
  ggtitle("Temperatures by Type in Mediterranean Geckos") +
  th

plot1
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

# Calculate means and confidence intervals The following code calculates summary data for the dataframe and saves it in a dataframe called cipplot.

cipplot <- summarySE(df, measurevar = "Temperature", groupvars = "Type")
cipplot
##   Type   N Temperature       sd        se        ci
## 1   Te 723    23.11526 6.689431 0.2487826 0.4884238
## 2   Tw 182    25.16308 6.095890 0.4518574 0.8915857
## 3   Tb 182    26.07148 6.444087 0.4776675 0.9425130
## 4   Tp 168    26.73077 2.101961 0.1621698 0.3201671

Make a new plot with means and confidence intervals

We can now use these data to add points for the mean with their associated error bars showing the 95% confidence interval.

plot1 + 
  geom_point(data = cipplot,
             aes(x = Type, y = Temperature),
             size = 3,
             position = position_nudge(x = 0.25)) +
  geom_errorbar(data = cipplot,
                aes(x = Type,
                    ymax = Temperature + ci,
                    ymin = Temperature - ci),
                width = 0.1,
                position = position_nudge(x = 0.25))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

Set up the Statistical Model Being Tested

The code that follows creates a linear model for the ANOVA wherein the response variable (Temperature) is influenced by the independent variable (Type).

model <- lm(Temperature ~ Type, data = df)

Testing Normality - Shapiro-Wilk

I first checked the assumption that the data are normally distributed. I used the Shapiro–Wilk test for this. To increase statistical power, I calculated the residuals (deviations from the Type means; this is basically the within-Type variation), graphed the data with a histogram and a Q–Q plot, and then conducted the Shapiro–Wilk test on the aggregate residuals from the entire experiment.

res <- residuals(model)
res
##            1            2            3            4            5            6 
##   3.81851648   6.14851648   4.09851648   5.36851648   3.59851648   4.64851648 
##            7            8            9           10           11           12 
##   4.09851648   5.03851648   5.70851648   5.09851648   4.92851648   3.20851648 
##           13           14           15           16           17           18 
##   6.75851648   2.70851648   4.14851648   3.70851648   4.42851648   4.86851648 
##           19           20           21           22           23           24 
##   6.36851648   4.31851648   8.70851648   3.20851648   3.98851648   3.48851648 
##           25           26           27           28           29           30 
##   6.20851648   4.98851648   3.03851648   5.03851648   2.03851648   2.70851648 
##           31           32           33           34           35           36 
##   3.92851648   5.09851648   5.25851648   4.53851648   2.98851648   3.75851648 
##           37           38           39           40           41           42 
##   2.92851648   4.36851648   3.20851648   3.31851648   5.03851648   4.92851648 
##           43           44           45           46           47           48 
##   4.31851648   3.92851648   3.36851648   3.25851648   2.70851648   3.14851648 
##           49           50           51           52           53           54 
##   3.20851648   2.42851648   3.59851648   3.03851648   5.48851648   5.42851648 
##           55           56           57           58           59           60 
##   5.64851648   4.75851648   5.14851648   4.25851648   3.25851648   3.75851648 
##           61           62           63           64           65           66 
##   3.20851648   3.64851648   5.64851648   6.86851648   5.81851648   6.14851648 
##           67           68           69           70           71           72 
##   4.86851648   3.53851648   3.64851648   3.86851648   4.98851648   8.03851648 
##           73           74           75           76           77           78 
##   4.53851648   5.09851648   7.03851648   7.92851648   3.92851648   4.36851648 
##           79           80           81           82           83           84 
##   3.86851648   3.48851648   5.92851648   4.59851648  -3.18148352   3.03851648 
##           85           86           87           88           89           90 
##   2.75851648   3.03851648   3.25851648   1.86851648   3.14851648   3.86851648 
##           91           92           93           94           95           96 
##   3.31851648   1.64851648   1.81851648   1.86851648   4.48851648   1.36851648 
##           97           98           99          100          101          102 
##   4.25851648   4.31851648   4.92851648   3.75851648   1.98851648   8.59851648 
##          103          104          105          106          107          108 
##   2.36851648   6.20851648   1.20851648   2.31851648   2.48851648   2.86851648 
##          109          110          111          112          113          114 
##   3.09851648  -0.35148352  -0.90148352   0.14851648  11.16474412  10.99474412 
##          115          116          117          118          119          120 
##  10.88474412  10.60474412  10.60474412  10.38474412   9.66474412   9.49474412 
##          121          122          123          124          125          126 
##   9.21474412   9.16474412   9.05474412   8.94474412   8.82474412   8.71474412 
##          127          128          129          130          131          132 
##   8.60474412   8.49474412   8.38474412   7.99474412   7.94474412   7.94474412 
##          133          134          135          136          137          138 
##   7.82474412   7.82474412   7.77474412   7.71474412   7.71474412   7.66474412 
##          139          140          141          142          143          144 
##   7.66474412   7.66474412   7.60474412   7.60474412   7.49474412   7.49474412 
##          145          146          147          148          149          150 
##   7.44474412   7.38474412   7.32474412   7.32474412   7.32474412   7.32474412 
##          151          152          153          154          155          156 
##   7.32474412   7.27474412   7.27474412   7.21474412   7.21474412   7.21474412 
##          157          158          159          160          161          162 
##   7.21474412   7.16474412   7.16474412   7.16474412   7.10474412   7.10474412 
##          163          164          165          166          167          168 
##   7.05474412   7.05474412   7.05474412   6.99474412   6.99474412   6.99474412 
##          169          170          171          172          173          174 
##   6.94474412   6.94474412   6.94474412   6.82474412   6.71474412   6.71474412 
##          175          176          177          178          179          180 
##   6.66474412   6.66474412   6.66474412   6.49474412   6.49474412   6.44474412 
##          181          182          183          184          185          186 
##   6.44474412   6.38474412   6.32474412   6.32474412   6.27474412   6.27474412 
##          187          188          189          190          191          192 
##   6.27474412   6.27474412   6.21474412   6.21474412   6.16474412   6.16474412 
##          193          194          195          196          197          198 
##   6.16474412   6.16474412   6.10474412   6.10474412   6.10474412   6.10474412 
##          199          200          201          202          203          204 
##   6.10474412   6.10474412   6.05474412   6.05474412   5.99474412   5.99474412 
##          205          206          207          208          209          210 
##   5.99474412   5.99474412   5.99474412   5.94474412   5.94474412   5.94474412 
##          211          212          213          214          215          216 
##   5.88474412   5.88474412   5.82474412   5.82474412   5.77474412   5.77474412 
##          217          218          219          220          221          222 
##   5.71474412   5.71474412   5.60474412   5.60474412   5.49474412   5.27474412 
##          223          224          225          226          227          228 
##   5.27474412   5.21474412   5.16474412   5.05474412   4.88474412   4.77474412 
##          229          230          231          232          233          234 
##   4.71474412   4.10474412   3.99474412  12.66474412  12.55474412  11.94474412 
##          235          236          237          238          239          240 
##  11.82474412  11.82474412  10.88474412  10.77474412  10.77474412  10.71474412 
##          241          242          243          244          245          246 
##  10.60474412  10.27474412  10.27474412  10.21474412  10.21474412  10.05474412 
##          247          248          249          250          251          252 
##   9.94474412   9.94474412   9.71474412   9.60474412   9.49474412   9.32474412 
##          253          254          255          256          257          258 
##   9.27474412   9.27474412   9.27474412   9.21474412   9.21474412   9.16474412 
##          259          260          261          262          263          264 
##   9.16474412   9.10474412   9.10474412   9.05474412   8.99474412   8.94474412 
##          265          266          267          268          269          270 
##   8.77474412   8.44474412   8.44474412   8.27474412   8.21474412   8.10474412 
##          271          272          273          274          275          276 
##   8.05474412   7.99474412   7.99474412   7.82474412   7.82474412   7.82474412 
##          277          278          279          280          281          282 
##   7.77474412   7.77474412   7.66474412   7.66474412   7.66474412   7.66474412 
##          283          284          285          286          287          288 
##   7.55474412   7.55474412   7.49474412   7.44474412   7.38474412   7.38474412 
##          289          290          291          292          293          294 
##   7.32474412   7.32474412   7.27474412   7.16474412   7.10474412   7.10474412 
##          295          296          297          298          299          300 
##   7.10474412   7.05474412   7.05474412   7.05474412   6.99474412   6.99474412 
##          301          302          303          304          305          306 
##   6.99474412   6.94474412   6.88474412   6.88474412   6.82474412   6.82474412 
##          307          308          309          310          311          312 
##   6.82474412   6.77474412   6.71474412   6.71474412   6.71474412   6.71474412 
##          313          314          315          316          317          318 
##   6.71474412   6.71474412   6.66474412   6.60474412   6.60474412   6.60474412 
##          319          320          321          322          323          324 
##   6.60474412   6.55474412   6.49474412   6.49474412   6.49474412   6.44474412 
##          325          326          327          328          329          330 
##   6.38474412   6.38474412   6.38474412   6.32474412   6.32474412   6.21474412 
##          331          332          333          334          335          336 
##   6.21474412   6.21474412   6.16474412   6.10474412   6.10474412   6.10474412 
##          337          338          339          340          341          342 
##   6.10474412   6.10474412   6.05474412   5.99474412   5.99474412   5.94474412 
##          343          344          345          346          347          348 
##   5.94474412   5.88474412   5.88474412   5.88474412   5.88474412   5.77474412 
##          349          350          351          352          353          354 
##   5.77474412   5.71474412   5.71474412   5.66474412   5.66474412   5.49474412 
##          355          356          357          358          359          360 
##   5.44474412   5.44474412   5.44474412   5.32474412   5.21474412   5.16474412 
##          361          362          363          364          365          366 
##   5.10474412   5.05474412   4.99474412   4.94474412   4.94474412   4.88474412 
##          367          368          369          370          371          372 
##   4.88474412   4.88474412   4.88474412   4.82474412   4.71474412   4.66474412 
##          373          374          375          376          377          378 
##   4.66474412   4.60474412   4.60474412   4.60474412   4.60474412   4.55474412 
##          379          380          381          382          383          384 
##   4.49474412   4.49474412   4.49474412   4.49474412   4.49474412   4.44474412 
##          385          386          387          388          389          390 
##   4.44474412   4.38474412   4.38474412   4.38474412   4.27474412   4.21474412 
##          391          392          393          394          395          396 
##   4.21474412   4.16474412   4.16474412   4.16474412   4.10474412   4.10474412 
##          397          398          399          400          401          402 
##   3.99474412   3.88474412   3.88474412   3.71474412   3.49474412   3.21474412 
##          403          404          405          406          407          408 
##   3.05474412   2.99474412   2.88474412   2.82474412   2.82474412   2.77474412 
##          409          410          411          412          413          414 
##   2.66474412   2.60474412   2.60474412   2.55474412   2.49474412   2.44474412 
##          415          416          417          418          419          420 
##   2.44474412   2.38474412   2.21474412   2.21474412   2.16474412   2.16474412 
##          421          422          423          424          425          426 
##   2.16474412   2.10474412   1.99474412   1.99474412   1.99474412   1.99474412 
##          427          428          429          430          431          432 
##   1.99474412   1.99474412   1.94474412   1.88474412   1.88474412   1.82474412 
##          433          434          435          436          437          438 
##   1.77474412   1.77474412   1.77474412   1.77474412   1.77474412   1.66474412 
##          439          440          441          442          443          444 
##   1.66474412   1.66474412   1.60474412   1.55474412   1.49474412   1.44474412 
##          445          446          447          448          449          450 
##   1.44474412   1.44474412   4.22692308   5.16692308   4.83692308   5.22692308 
##          451          452          453          454          455          456 
##   5.50692308   5.50692308   3.22692308   5.61692308   6.61692308   5.44692308 
##          457          458          459          460          461          462 
##   5.66692308   3.27692308   3.27692308   3.22692308   4.22692308   4.27692308 
##          463          464          465          466          467          468 
##   5.16692308   5.72692308   4.94692308   5.39692308   5.00692308   3.66692308 
##          469          470          471          472          473          474 
##   5.39692308   4.83692308   6.05692308   5.00692308   3.72692308   3.72692308 
##          475          476          477          478          479          480 
##   2.16692308   5.50692308   3.83692308   6.16692308   5.89692308   5.00692308 
##          481          482          483          484          485          486 
##   4.50692308   4.39692308   4.11692308   2.11692308   3.39692308   4.94692308 
##          487          488          489          490          491          492 
##   4.94692308   3.89692308   5.22692308   4.83692308   4.27692308   4.16692308 
##          493          494          495          496          497          498 
##   3.61692308   4.05692308   4.11692308   3.33692308   4.50692308   3.94692308 
##          499          500          501          502          503          504 
##   5.72692308   6.50692308   6.39692308   3.33692308   3.66692308   3.39692308 
##          505          506          507          508          509          510 
##   3.39692308   3.39692308   3.39692308   3.39692308   6.66692308   6.66692308 
##          511          512          513          514          515          516 
##   4.55692308   5.77692308   5.27692308   5.55692308   5.16692308   4.61692308 
##          517          518          519          520          521          522 
##   3.66692308   4.89692308   6.16692308   7.16692308   8.00692308   4.83692308 
##          523          524          525          526          527          528 
##   4.05692308   5.44692308   4.83692308   3.00692308   3.72692308   4.72692308 
##          529          530          531          532          533          534 
##   2.89692308   5.16692308   4.66692308   3.44692308   2.11692308   2.27692308 
##          535          536          537          538          539          540 
##   4.22692308   4.00692308   2.05692308   2.39692308   0.83692308   4.16692308 
##          541          542          543          544          545          546 
##   3.72692308   2.50692308   5.39692308   2.94692308   5.83692308   2.55692308 
##          547          548          549          550          551          552 
##   2.89692308   4.72692308   4.33692308   3.33692308   3.05692308   2.05692308 
##          553          554          555          556          557          558 
##   2.00692308   2.00692308   0.83692308   0.39692308   0.22692308   0.50692308 
##          559          560          561          562          563          564 
##  -3.85148352  -2.79148352  -2.01148352  -3.57148352  -4.96148352   0.75851648 
##          565          566          567          568          569          570 
##  -3.63148352  -0.51148352  -2.29148352   2.03851648   2.42851648   0.64851648 
##          571          572          573          574          575          576 
##   1.20851648  -2.29148352  -0.35148352   0.25851648  -2.63148352  -2.29148352 
##          577          578          579          580          581          582 
##  -3.63148352   2.09851648   1.81851648   4.92851648  -3.63148352  -0.68148352 
##          583          584          585          586          587          588 
##   3.75851648  -2.24148352   2.03851648   4.98851648   4.75851648   4.48851648 
##          589          590          591          592          593          594 
## -11.01148352 -12.90148352 -12.46148352 -12.96148352  -9.24148352 -11.57148352 
##          595          596          597          598          599          600 
## -10.13148352 -12.79148352 -11.51148352 -12.40148352 -11.18148352 -11.68148352 
##          601          602          603          604          605          606 
## -13.85148352 -12.57148352 -14.18148352 -14.57148352 -15.29148352 -14.35148352 
##          607          608          609          610          611          612 
## -12.79148352 -13.85148352 -12.96148352 -13.13148352 -10.18148352  -9.96148352 
##          613          614          615          616          617          618 
##  -8.74148352  -8.74148352 -11.18148352  -9.40148352 -10.18148352  -8.68148352 
##          619          620          621          622          623          624 
##  -7.01148352  -9.24148352  -3.63148352  -5.79148352  -9.63148352 -11.07148352 
##          625          626          627          628          629          630 
## -10.90148352  -9.96148352  -9.24148352 -11.18148352   3.10474412   2.55474412 
##          631          632          633          634          635          636 
##   2.32474412   2.32474412   2.16474412   2.10474412   2.05474412   2.05474412 
##          637          638          639          640          641          642 
##   1.88474412   1.71474412   1.66474412   1.66474412   1.38474412   1.32474412 
##          643          644          645          646          647          648 
##   1.27474412   1.27474412   1.21474412   0.99474412   0.94474412   0.94474412 
##          649          650          651          652          653          654 
##   0.82474412   0.82474412   0.71474412   0.60474412   0.55474412   0.55474412 
##          655          656          657          658          659          660 
##   0.49474412   0.49474412   0.49474412   0.49474412   0.49474412   0.44474412 
##          661          662          663          664          665          666 
##   0.32474412   0.32474412   0.27474412   0.27474412   0.27474412   0.21474412 
##          667          668          669          670          671          672 
##   0.16474412   0.16474412   0.10474412   0.10474412  -0.11525588  -0.17525588 
##          673          674          675          676          677          678 
##  -0.17525588  -0.17525588  -0.17525588  -0.22525588  -0.22525588  -0.33525588 
##          679          680          681          682          683          684 
##  -0.61525588  -0.67525588  -0.67525588  -0.67525588  -0.72525588  -0.78525588 
##          685          686          687          688          689          690 
##  -0.78525588  -0.78525588  -0.94525588  -1.00525588  -1.00525588  -1.00525588 
##          691          692          693          694          695          696 
##  -1.05525588  -1.05525588  -1.05525588  -1.17525588  -1.17525588  -1.22525588 
##          697          698          699          700          701          702 
##  -1.22525588  -1.22525588  -1.22525588  -1.28525588  -1.28525588  -1.28525588 
##          703          704          705          706          707          708 
##  -1.33525588  -1.33525588  -1.33525588  -1.33525588  -1.39525588  -1.39525588 
##          709          710          711          712          713          714 
##  -1.44525588  -1.44525588  -1.44525588  -1.44525588  -1.44525588  -1.44525588 
##          715          716          717          718          719          720 
##  -1.44525588  -1.50525588  -1.50525588  -1.50525588  -1.50525588  -1.55525588 
##          721          722          723          724          725          726 
##  -1.55525588  -1.55525588  -1.55525588  -1.55525588  -1.67525588  -1.67525588 
##          727          728          729          730          731          732 
##  -1.72525588  -1.72525588  -1.72525588  -1.78525588  -1.83525588  -1.83525588 
##          733          734          735          736          737          738 
##  -1.89525588  -1.89525588  -1.94525588  -2.00525588  -2.05525588  -2.05525588 
##          739          740          741          742          743          744 
##  -2.11525588  -2.11525588  -2.22525588  -2.22525588  -2.22525588  -2.28525588 
##          745          746          747          748          749          750 
##  -2.28525588  -2.28525588  -2.28525588  -2.33525588  -2.33525588  -2.39525588 
##          751          752          753          754          755          756 
##  -2.44525588  -2.44525588  -2.50525588  -2.50525588  -2.50525588  -2.55525588 
##          757          758          759          760          761          762 
##  -2.55525588  -2.55525588  -2.67525588  -2.72525588  -2.72525588  -2.78525588 
##          763          764          765          766          767          768 
##  -2.83525588  -3.00525588  -3.05525588  -3.28525588  -3.33525588  -3.39525588 
##          769          770          771          772          773          774 
##  -1.28525588  -1.33525588  -1.89525588  -2.05525588  -2.17525588  -3.28525588 
##          775          776          777          778          779          780 
##  -3.44525588  -3.78525588  -3.94525588  -4.05525588  -4.17525588  -4.39525588 
##          781          782          783          784          785          786 
##  -4.44525588  -4.44525588  -4.50525588  -4.50525588  -4.55525588  -4.72525588 
##          787          788          789          790          791          792 
##  -4.83525588  -4.83525588  -4.83525588  -4.89525588  -4.89525588  -4.94525588 
##          793          794          795          796          797          798 
##  -4.94525588  -5.05525588  -5.11525588  -5.28525588  -5.28525588  -5.39525588 
##          799          800          801          802          803          804 
##  -5.39525588  -5.44525588  -5.44525588  -5.44525588  -5.55525588  -5.67525588 
##          805          806          807          808          809          810 
##  -5.78525588  -5.78525588  -5.83525588  -5.83525588  -5.83525588  -5.83525588 
##          811          812          813          814          815          816 
##  -5.94525588  -5.94525588  -6.00525588  -6.11525588  -6.11525588  -6.11525588 
##          817          818          819          820          821          822 
##  -6.11525588  -6.17525588  -6.17525588  -6.17525588  -6.22525588  -6.22525588 
##          823          824          825          826          827          828 
##  -6.28525588  -6.33525588  -6.33525588  -6.33525588  -6.33525588  -6.39525588 
##          829          830          831          832          833          834 
##  -6.39525588  -6.50525588  -6.50525588  -6.50525588  -6.55525588  -6.55525588 
##          835          836          837          838          839          840 
##  -6.61525588  -6.67525588  -6.67525588  -6.72525588  -6.72525588  -6.72525588 
##          841          842          843          844          845          846 
##  -6.78525588  -6.78525588  -6.83525588  -6.83525588  -6.83525588  -6.89525588 
##          847          848          849          850          851          852 
##  -6.94525588  -6.94525588  -7.00525588  -7.00525588  -7.00525588  -7.05525588 
##          853          854          855          856          857          858 
##  -7.05525588  -7.11525588  -7.11525588  -7.17525588  -7.17525588  -7.17525588 
##          859          860          861          862          863          864 
##  -7.22525588  -7.22525588  -7.22525588  -7.22525588  -7.28525588  -7.28525588 
##          865          866          867          868          869          870 
##  -7.28525588  -7.33525588  -7.33525588  -7.33525588  -7.44525588  -7.44525588 
##          871          872          873          874          875          876 
##  -7.44525588  -7.44525588  -7.50525588  -7.50525588  -7.50525588  -7.50525588 
##          877          878          879          880          881          882 
##  -7.55525588  -7.55525588  -7.55525588  -7.55525588  -7.55525588  -7.61525588 
##          883          884          885          886          887          888 
##  -7.61525588  -7.61525588  -7.67525588  -7.67525588  -7.67525588  -7.67525588 
##          889          890          891          892          893          894 
##  -7.67525588  -7.72525588  -7.72525588  -7.72525588  -7.72525588  -7.72525588 
##          895          896          897          898          899          900 
##  -7.78525588  -7.78525588  -7.78525588  -7.83525588  -7.83525588  -7.94525588 
##          901          902          903          904          905          906 
##  -7.94525588  -7.94525588  -8.05525588  -8.05525588  -8.11525588  -8.11525588 
##          907          908          909          910          911          912 
##  -8.11525588  -8.11525588  -8.17525588  -8.17525588  -8.22525588  -8.22525588 
##          913          914          915          916          917          918 
##  -8.22525588  -8.28525588  -8.28525588  -8.33525588  -8.33525588  -8.33525588 
##          919          920          921          922          923          924 
##  -8.39525588  -8.44525588  -8.44525588  -8.44525588  -8.44525588  -8.50525588 
##          925          926          927          928          929          930 
##  -8.50525588  -8.55525588  -8.61525588  -8.61525588  -8.61525588  -8.67525588 
##          931          932          933          934          935          936 
##  -8.67525588  -8.67525588  -8.72525588  -8.78525588  -8.83525588  -8.83525588 
##          937          938          939          940          941          942 
##  -8.83525588  -8.83525588  -8.89525588  -8.89525588  -8.94525588  -8.94525588 
##          943          944          945          946          947          948 
##  -8.94525588  -8.94525588  -9.00525588  -9.00525588  -9.00525588  -9.05525588 
##          949          950          951          952          953          954 
##  -9.05525588  -9.11525588  -9.11525588  -9.11525588  -9.17525588  -9.17525588 
##          955          956          957          958          959          960 
##  -9.22525588  -9.22525588  -9.28525588  -9.28525588  -9.33525588  -9.33525588 
##          961          962          963          964          965          966 
##  -9.33525588  -9.33525588  -9.33525588  -9.39525588  -9.39525588  -9.44525588 
##          967          968          969          970          971          972 
##  -9.50525588  -9.61525588  -9.61525588  -9.61525588  -9.61525588  -9.72525588 
##          973          974          975          976          977          978 
##  -9.72525588  -9.72525588  -9.72525588  -9.78525588  -9.78525588  -9.94525588 
##          979          980          981          982          983          984 
## -10.00525588 -10.05525588 -10.05525588 -10.11525588 -10.11525588 -10.17525588 
##          985          986          987          988          989          990 
## -10.22525588 -10.22525588 -10.28525588 -10.28525588 -10.33525588 -10.33525588 
##          991          992          993          994          995          996 
## -10.39525588 -10.50525588 -10.50525588 -10.50525588 -10.72525588 -10.72525588 
##          997          998          999         1000         1001         1002 
## -10.78525588 -10.83525588 -10.94525588 -11.05525588 -11.05525588 -11.11525588 
##         1003         1004         1005         1006         1007         1008 
## -11.22525588 -11.44525588 -11.50525588 -11.83525588 -12.28525588 -12.33525588 
##         1009         1010         1011         1012         1013         1014 
## -13.50525588 -13.67525588 -14.39525588 -14.94525588 -15.00525588 -15.11525588 
##         1015         1016         1017         1018         1019         1020 
## -15.17525588 -15.39525588 -16.33525588   3.54922619   2.65922619   2.20922619 
##         1021         1022         1023         1024         1025         1026 
##   1.87922619   1.76922619   0.54922619  -2.73077381  -2.95077381   1.20922619 
##         1027         1028         1029         1030         1031         1032 
##   0.82922619   0.09922619  -0.51077381  -1.73077381  -1.84077381  -2.17077381 
##         1033         1034         1035         1036         1037         1038 
##  -2.79077381   6.04922619   0.54922619  -0.51077381  -1.23077381  -1.95077381 
##         1039         1040         1041         1042         1043         1044 
##  -1.95077381  -2.40077381  -2.90077381   5.32922619   1.65922619   1.48922619 
##         1045         1046         1047         1048         1049         1050 
##   1.20922619   0.09922619   0.04922619  -2.40077381  -2.40077381   2.59922619 
##         1051         1052         1053         1054         1055         1056 
##   1.82922619   1.82922619   1.76922619   1.59922619   1.37922619   1.32922619 
##         1057         1058         1059         1060         1061         1062 
##   1.04922619  -0.34077381  -0.73077381  -0.84077381  -1.51077381  -1.62077381 
##         1063         1064         1065         1066         1067         1068 
##  -1.73077381  -2.17077381  -2.56077381   1.59922619  -1.40077381  -1.56077381 
##         1069         1070         1071         1072         1073         1074 
##  -2.12077381  -2.73077381  -2.73077381  -2.84077381  -5.34077381   3.20922619 
##         1075         1076         1077         1078         1079         1080 
##   1.87922619   0.43922619   0.20922619  -0.06077381  -2.40077381  -3.12077381 
##         1081         1082         1083         1084         1085         1086 
##  -3.73077381   0.37922619  -1.45077381  -1.79077381  -2.17077381  -2.67077381 
##         1087         1088         1089         1090         1091         1092 
##  -2.90077381  -2.90077381  -3.40077381   2.26922619   1.59922619   1.20922619 
##         1093         1094         1095         1096         1097         1098 
##   1.09922619   0.98922619   0.70922619   0.48922619   0.09922619  -0.62077381 
##         1099         1100         1101         1102         1103         1104 
##  -0.73077381  -1.01077381  -1.29077381  -1.67077381  -1.73077381  -1.84077381 
##         1105         1106         1107         1108         1109         1110 
##  -1.90077381   2.76922619   2.76922619   2.32922619   2.32922619   1.37922619 
##         1111         1112         1113         1114         1115         1116 
##   0.48922619   0.09922619  -0.01077381   1.87922619  -0.56077381  -0.56077381 
##         1117         1118         1119         1120         1121         1122 
##  -0.62077381  -0.90077381  -1.06077381  -1.12077381  -1.34077381  -0.12077381 
##         1123         1124         1125         1126         1127         1128 
##  -0.29077381  -0.45077381  -0.90077381  -1.12077381  -1.17077381  -1.51077381 
##         1129         1130         1131         1132         1133         1134 
##  -2.06077381   1.15922619   0.54922619   0.15922619  -0.06077381  -0.45077381 
##         1135         1136         1137         1138         1139         1140 
##  -0.45077381  -0.51077381  -0.56077381   4.09922619   4.09922619   4.04922619 
##         1141         1142         1143         1144         1145         1146 
##   3.70922619   3.43922619   3.09922619   2.82922619   2.70922619   1.04922619 
##         1147         1148         1149         1150         1151         1152 
##  -0.06077381  -0.12077381  -0.45077381  -0.67077381  -1.23077381  -1.45077381 
##         1153         1154         1155         1156         1157         1158 
##  -2.23077381   0.59922619   0.59922619   0.54922619   0.15922619  -0.62077381 
##         1159         1160         1161         1162         1163         1164 
##  -0.73077381  -0.84077381  -2.01077381   3.87922619   3.82922619   3.32922619 
##         1165         1166         1167         1168         1169         1170 
##   2.98922619   2.82922619   2.76922619   2.76922619   2.70922619   2.98922619 
##         1171         1172         1173         1174         1175         1176 
##   2.37922619   2.04922619   1.98922619   1.26922619   1.15922619   0.70922619 
##         1177         1178         1179         1180         1181         1182 
##   0.65922619  -1.56077381  -2.01077381  -2.45077381  -2.67077381  -3.06077381 
##         1183         1184         1185         1186         1187         1188 
##  -3.12077381  -3.17077381  -3.56077381  -2.05307692  -1.88307692  -3.94307692 
##         1189         1190         1191         1192         1193         1194 
##  -3.66307692  -3.94307692  -3.66307692  -3.27307692  -3.49307692  -2.49307692 
##         1195         1196         1197         1198         1199         1200 
##  -1.55307692  -1.55307692  -1.66307692  -2.16307692  -2.60307692  -0.66307692 
##         1201         1202         1203         1204         1205         1206 
##  -0.33307692  -0.77307692  -0.83307692  -1.22307692  -1.55307692  -1.55307692 
##         1207         1208         1209         1210         1211         1212 
##  -3.88307692  -3.33307692  -3.44307692  -2.88307692  -2.99307692  -1.94307692 
##         1213         1214         1215         1216         1217         1218 
##  -1.88307692  -1.88307692  -2.49307692 -10.33307692 -11.38307692 -11.77307692 
##         1219         1220         1221         1222         1223         1224 
## -11.22307692  -7.33307692 -10.49307692  -9.10307692 -11.44307692 -11.16307692 
##         1225         1226         1227         1228         1229         1230 
## -11.16307692  -9.55307692  -6.77307692 -11.83307692 -11.83307692 -13.77307692 
##         1231         1232         1233         1234         1235         1236 
## -11.83307692 -13.83307692 -13.83307692 -12.05307692 -10.99307692 -12.49307692 
##         1237         1238         1239         1240         1241         1242 
## -11.77307692 -13.05307692  -7.94307692  -7.27307692  -9.33307692  -9.77307692 
##         1243         1244         1245         1246         1247         1248 
##  -8.33307692  -8.33307692  -2.05307692 -12.55307692 -10.22307692  -8.55307692 
##         1249         1250         1251         1252         1253         1254 
##  -6.33307692  -4.33307692  -9.27307692 -12.22307692  -8.83307692  -8.10307692 
##         1255 
##  -9.94307692
histogram(res)

# create a Q-Q plot
qqnorm(res); qqline(res)

shapiro.test(res)
## 
##  Shapiro-Wilk normality test
## 
## data:  res
## W = 0.95846, p-value < 2.2e-16

Testing for Homogeneity of Variances

The data were not significantly different from normal, so I proceeded to check for homogeneity of variances. This routine does not accept linear models (lm) so we used the base R routine aov to set up the model.

leveneTest(aov(Temperature ~ Type, data = df))
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value    Pr(>F)    
## group    3  57.524 < 2.2e-16 ***
##       1251                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The observed P-value indicates whether variances are homogeneous across Temperature Types. If the P-value is low, variances are NOT homogeneous. If this occurs, we can implement a data transformation in the hopes of stabilizing variances. In the transformation used here, we take the reciprocal of the raw temperature data and then multiply the result × 100. By taking the reciprocal of the original data, this means that the highest temperature values will become the lowest values of the response variable, which I have called “transTemp”. After making this transformation, I repeated the Shapiro–Wilk test and Levene’s test (and all associated graphs) in a single code chunk below.

df$transTemp <- (1 / (df$Temperature)) * 100     # implement the transformation
str(df)                                         # check to see if it did the transformation
## 'data.frame':    1255 obs. of  5 variables:
##  $ Season     : chr  "Summer" "Summer" "Summer" "Summer" ...
##  $ Population : chr  "Galveston" "Galveston" "Galveston" "Galveston" ...
##  $ Type       : Factor w/ 4 levels "Te","Tw","Tb",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ Temperature: num  29.9 32.2 30.2 31.4 29.7 ...
##  $ transTemp  : num  3.35 3.1 3.31 3.18 3.37 ...
model2 <- lm(transTemp ~ Type, data = df)       # build a new model
res2 <- residuals(model2)                       # get the residuals from the new model
res2
##            1            2            3            4            5            6 
## -0.852493954 -1.094432167 -0.883543611 -1.017432911 -0.827686670 -0.942886156 
##            7            8            9           10           11           12 
## -0.883543611 -0.983693975 -1.051461386 -0.989881464 -0.972288037 -0.782793943 
##           13           14           15           16           17           18 
## -1.152099972 -0.723459326 -0.889027646 -0.840136128 -0.919405964 -0.966032433 
##           19           20           21           22           23           24 
## -1.115480432 -0.907538385 -1.322878848 -0.782793943 -0.871414516 -0.815144557 
##           25           26           27           28           29           30 
## -1.100201056 -0.978519473 -0.762848869 -0.983693975 -0.640641625 -0.723459326 
##           31           32           33           34           35           36 
## -0.864761156 -0.989881464 -1.006265571 -0.931188249 -0.756938260 -0.845764620 
##           37           38           39           40           41           42 
## -0.749818627 -0.912943372 -0.782793943 -0.795576626 -0.983693975 -0.972288037 
##           43           44           45           46           47           48 
## -0.907538385 -0.864761156 -0.801355359 -0.788616139 -0.723459326 -0.775781005 
##           49           50           51           52           53           54 
## -0.782793943 -0.689322559 -0.827686670 -0.762848869 -1.029526682 -1.023491314 
##           55           56           57           58           59           60 
## -1.045509369 -0.954500587 -0.995019537 -0.901028877 -0.788616139 -0.845764620 
##           61           62           63           64           65           66 
## -0.782793943 -0.833356938 -1.045509369 -1.162271781 -1.062315248 -1.094432167 
##           67           68           69           70           71           72 
## -0.966032433 -0.820857069 -0.833356938 -0.858081129 -0.978519473 -1.266402903 
##           73           74           75           76           77           78 
## -0.931188249 -0.989881464 -1.177858911 -1.256918018 -0.864761156 -0.912943372 
##           79           80           81           82           83           84 
## -0.858081129 -0.815144557 -1.073094489 -0.937579328  0.170625476 -0.762848869 
##           85           86           87           88           89           90 
## -0.729485401 -0.762848869 -0.788616139 -0.618996422 -0.775781005 -0.858081129 
##           91           92           93           94           95           96 
## -0.795576626 -0.590590881 -0.612579968 -0.618996422 -0.925843180 -0.553779620 
##           97           98           99          100          101          102 
## -0.901028877 -0.907538385 -0.972288037 -0.845764620 -0.634302614 -1.313756445 
##          103          104          105          106          107          108 
## -0.681920087 -1.100201056 -0.532405339 -0.675727458 -0.696693929 -0.742669472 
##          109          110          111          112          113          114 
## -0.769914852 -0.310069606 -0.225110778 -0.384211957 -1.874521141 -1.859982413 
##          115          116          117          118          119          120 
## -1.850497529 -1.826074949 -1.826074949 -1.806599373 -1.741033365 -1.725129995 
##          121          122          123          124          125          126 
## -1.698571618 -1.693780567 -1.683187832 -1.672522409 -1.660803618 -1.649983770 
##          127          128          129          130          131          132 
## -1.639088880 -1.628118163 -1.617070825 -1.577273485 -1.572098983 -1.572098983 
##          133          134          135          136          137          138 
## -1.559611944 -1.559611944 -1.554380377 -1.548080097 -1.548080097 -1.542811102 
##          139          140          141          142          143          144 
## -1.542811102 -1.542811102 -1.536465666 -1.536465666 -1.524767760 -1.524767760 
##          145          146          147          148          149          150 
## -1.519422691 -1.512985475 -1.506522883 -1.506522883 -1.506522883 -1.506522883 
##          151          152          153          154          155          156 
## -1.506522883 -1.501117896 -1.501117896 -1.494608388 -1.494608388 -1.494608388 
##          157          158          159          160          161          162 
## -1.494608388 -1.489164092 -1.489164092 -1.489164092 -1.482607156 -1.482607156 
##          163          164          165          166          167          168 
## -1.477123121 -1.477123121 -1.477123121 -1.470518237 -1.470518237 -1.470518237 
##          169          170          171          172          173          174 
## -1.464994026 -1.464994026 -1.464994026 -1.451660639 -1.439344130 -1.439344130 
##          175          176          177          178          179          180 
## -1.433715638 -1.433715638 -1.433715638 -1.414436580 -1.414436580 -1.408724067 
##          181          182          183          184          185          186 
## -1.408724067 -1.401843491 -1.394934869 -1.394934869 -1.389156136 -1.389156136 
##          187          188          189          190          191          192 
## -1.389156136 -1.389156136 -1.382195650 -1.382195650 -1.376373453 -1.376373453 
##          193          194          195          196          197          198 
## -1.376373453 -1.376373453 -1.369360516 -1.369360516 -1.369360516 -1.369360516 
##          199          200          201          202          203          204 
## -1.369360516 -1.369360516 -1.363494363 -1.363494363 -1.356428379 -1.356428379 
##          205          206          207          208          209          210 
## -1.356428379 -1.356428379 -1.356428379 -1.350517771 -1.350517771 -1.350517771 
##          211          212          213          214          215          216 
## -1.343398137 -1.343398137 -1.336248982 -1.336248982 -1.330268669 -1.330268669 
##          217          218          219          220          221          222 
## -1.323064912 -1.323064912 -1.309779849 -1.309779849 -1.296392629 -1.269306969 
##          223          224          225          226          227          228 
## -1.269306969 -1.261846961 -1.255606107 -1.241798245 -1.220245428 -1.206159478 
##          229          230          231          232          233          234 
## -1.198429300 -1.117904712 -1.102998234 -1.996816537 -1.988197689 -1.939420719 
##          235          236          237          238          239          240 
## -1.929624772 -1.929624772 -1.850497529 -1.840951072 -1.840951072 -1.835717748 
##          241          242          243          244          245          246 
## -1.826074949 -1.796765344 -1.796765344 -1.791373970 -1.791373970 -1.776901615 
##          247          248          249          250          251          252 
## -1.766870612 -1.766870612 -1.745679482 -1.735439281 -1.725129995 -1.709059943 
##          253          254          255          256          257          258 
## -1.704301354 -1.704301354 -1.704301354 -1.698571618 -1.698571618 -1.693780567 
##          259          260          261          262          263          264 
## -1.693780567 -1.688011678 -1.688011678 -1.683187832 -1.677379387 -1.672522409 
##          265          266          267          268          269          270 
## -1.655894758 -1.623106192 -1.623106192 -1.605946061 -1.599845082 -1.588599048 
##          271          272          273          274          275          276 
## -1.583460974 -1.577273485 -1.577273485 -1.559611944 -1.559611944 -1.559611944 
##          277          278          279          280          281          282 
## -1.554380377 -1.554380377 -1.542811102 -1.542811102 -1.542811102 -1.542811102 
##          283          284          285          286          287          288 
## -1.531158838 -1.531158838 -1.524767760 -1.519422691 -1.512985475 -1.512985475 
##          289          290          291          292          293          294 
## -1.506522883 -1.506522883 -1.501117896 -1.489164092 -1.482607156 -1.482607156 
##          295          296          297          298          299          300 
## -1.482607156 -1.477123121 -1.477123121 -1.477123121 -1.470518237 -1.470518237 
##          301          302          303          304          305          306 
## -1.470518237 -1.464994026 -1.458340666 -1.458340666 -1.451660639 -1.451660639 
##          307          308          309          310          311          312 
## -1.451660639 -1.446073464 -1.439344130 -1.439344130 -1.439344130 -1.439344130 
##          313          314          315          316          317          318 
## -1.439344130 -1.439344130 -1.433715638 -1.426936449 -1.426936449 -1.426936449 
##          319          320          321          322          323          324 
## -1.426936449 -1.421266180 -1.414436580 -1.414436580 -1.414436580 -1.408724067 
##          325          326          327          328          329          330 
## -1.401843491 -1.401843491 -1.401843491 -1.394934869 -1.394934869 -1.382195650 
##          331          332          333          334          335          336 
## -1.382195650 -1.382195650 -1.376373453 -1.369360516 -1.369360516 -1.369360516 
##          337          338          339          340          341          342 
## -1.369360516 -1.369360516 -1.363494363 -1.356428379 -1.356428379 -1.350517771 
##          343          344          345          346          347          348 
## -1.350517771 -1.343398137 -1.343398137 -1.343398137 -1.343398137 -1.330268669 
##          349          350          351          352          353          354 
## -1.330268669 -1.323064912 -1.323064912 -1.317038836 -1.317038836 -1.296392629 
##          355          356          357          358          359          360 
## -1.290273439 -1.290273439 -1.290273439 -1.275499597 -1.261846961 -1.255606107 
##          361          362          363          364          365          366 
## -1.248087890 -1.241798245 -1.234221136 -1.227882125 -1.227882125 -1.220245428 
##          367          368          369          370          371          372 
## -1.220245428 -1.220245428 -1.220245428 -1.212575932 -1.198429300 -1.191961976 
##          373          374          375          376          377          378 
## -1.191961976 -1.184170392 -1.184170392 -1.184170392 -1.184170392 -1.177651593 
##          379          380          381          382          383          384 
## -1.169797868 -1.169797868 -1.169797868 -1.169797868 -1.169797868 -1.163226975 
##          385          386          387          388          389          390 
## -1.163226975 -1.155310363 -1.155310363 -1.155310363 -1.140706493 -1.132691197 
##          391          392          393          394          395          396 
## -1.132691197 -1.125984850 -1.125984850 -1.125984850 -1.117904712 -1.117904712 
##          397          398          399          400          401          402 
## -1.102998234 -1.087970296 -1.087970296 -1.064502922 -1.033688280 -0.993724892 
##          403          404          405          406          407          408 
## -0.970504722 -0.961723789 -0.945520153 -0.936623884 -0.936623884 -0.929178828 
##          409          410          411          412          413          414 
## -0.912698049 -0.903649116 -0.903649116 -0.896076025 -0.886949283 -0.879310932 
##          415          416          417          418          419          420 
## -0.879310932 -0.870105372 -0.843786120 -0.843786120 -0.835977797 -0.835977797 
##          421          422          423          424          425          426 
## -0.835977797 -0.826566942 -0.809196899 -0.809196899 -0.809196899 -0.809196899 
##          427          428          429          430          431          432 
## -0.809196899 -0.809196899 -0.801251015 -0.791674000 -0.791674000 -0.782050904 
##          433          434          435          436          437          438 
## -0.773996217 -0.773996217 -0.773996217 -0.773996217 -0.773996217 -0.756161489 
##          439          440          441          442          443          444 
## -0.756161489 -0.756161489 -0.746366556 -0.738167717 -0.728285133 -0.720012762 
##          445          446          447          448          449          450 
## -0.720012762 -0.720012762 -0.913564994 -1.019017246 -0.982749524 -1.025526753 
##          451          452          453          454          455          456 
## -1.055567696 -1.055567696 -0.793715827 -1.067219959 -1.169449755 -1.049176618 
##          457          458          459          460          461          462 
## -1.072488955 -0.799908455 -0.799908455 -0.793715827 -0.913564994 -0.919343727 
##          463          464          465          466          467          468 
## -1.019017246 -1.078789235 -0.994927095 -1.043831548 -1.001531979 -0.847473770 
##          469          470          471          472          473          474 
## -1.043831548 -0.982749524 -1.113007905 -1.001531979 -0.854677527 -0.854677527 
##          475          476          477          478          479          480 
## -0.657100055 -1.055567696 -0.867806995 -1.124253939 -1.096507841 -1.001531979 
##          481          482          483          484          485          486 
## -0.945675038 -0.933132925 -0.900782311 -0.650393708 -0.814682297 -0.994927095 
##          487          488          489          490          491          492 
## -0.994927095 -0.874926629 -1.025526753 -0.982749524 -0.919343727 -0.906604507 
##          493          494          495          496          497          498 
## -0.841447694 -0.893769373 -0.900782311 -0.807310927 -0.945675038 -0.880837237 
##          499          500          501          502          503          504 
## -1.078789235 -1.158520495 -1.147515050 -0.807310927 -0.847473770 -0.814682297 
##          505          506          507          508          509          510 
## -0.814682297 -0.814682297 -0.814682297 -0.814682297 -1.174392628 -1.174392628 
##          511          512          513          514          515          516 
## -0.951345307 -1.084020802 -1.030931740 -1.060874524 -1.019017246 -0.958124496 
##          517          518          519          520          521          522 
## -0.847473770 -0.989402884 -1.124253939 -1.222980476 -1.301310473 -0.982749524 
##          523          524          525          526          527          528 
## -0.893769373 -1.049176618 -0.982749524 -0.766207103 -0.854677527 -0.970482322 
##          529          530          531          532          533          534 
## -0.752290983 -1.019017246 -0.963752988 -0.820801487 -0.650393708 -0.671767989 
##          535          536          537          538          539          540 
## -0.913564994 -0.887903221 -0.642313570 -0.687635833 -0.469929011 -0.906604507 
##          541          542          543          544          545          546 
## -0.854677527 -0.702060450 -1.043831548 -0.758629994 -1.090276406 -0.708579250 
##          547          548          549          550          551          552 
## -0.752290983 -0.970482322 -0.926252349 -0.807310927 -0.772496748 -0.642313570 
##          553          554          555          556          557          558 
## -0.635552861 -0.635552861 -0.469929011 -0.403719790 -0.377524370 -0.420484883 
##          559          560          561          562          563          564 
##  0.302355556  0.097438157 -0.041818512  0.246349955  0.538996937 -0.470923412 
##          565          566          567          568          569          570 
##  0.258233497 -0.285731422  0.007119977 -0.640641625 -0.689322559 -0.455579519 
##          571          572          573          574          575          576 
## -0.532405339  0.007119977 -0.310069606 -0.400145381  0.068117115  0.007119977 
##          577          578          579          580          581          582 
##  0.258233497 -0.648218735 -0.612579968 -0.972288037  0.258233497 -0.259536001 
##          583          584          585          586          587          588 
## -0.845764620 -0.001703385 -0.640641625 -0.978519473 -0.954500587 -0.925843180 
##          589          590          591          592          593          594 
##  2.442011753  3.394919938  3.149444086  3.429670576  1.743676159  2.698457235 
##          595          596          597          598          599          600 
##  2.075431232  3.332025993  2.670037379  3.117194465  2.517822234  2.751175838 
##          601          602          603          604          605          606 
##  3.985211567  3.209312918  4.212334443  4.497557685  5.078343359  4.334328719 
##          607          608          609          610          611          612 
##  3.332025993  3.985211567  3.429670576  3.529880782  2.095171716  2.009230154 
##          613          614          615          616          617          618 
##  1.572245961  1.572245961  2.517822234  1.800705751  2.095171716  1.552336793 
##          619          620          621          622          623          624 
##  1.048495228  1.743676159  0.258233497  0.732871980  1.884630572  2.468572178 
##          625          626          627          628          629          630 
##  2.393863323  2.009230154  1.743676159  2.517822234 -0.977791467 -0.896076025 
##          631          632          633          634          635          636 
## -0.860856389 -0.860856389 -0.835977797 -0.826566942 -0.818690289 -0.818690289 
##          637          638          639          640          641          642 
## -0.791674000 -0.764287773 -0.756161489 -0.756161489 -0.710041346 -0.700020972 
##          643          644          645          646          647          648 
## -0.691632999 -0.691632999 -0.681521924 -0.644017425 -0.635398023 -0.635398023 
##          649          650          651          652          653          654 
## -0.614564559 -0.614564559 -0.595282896 -0.575822398 -0.566916923 -0.566916923 
##          655          656          657          658          659          660 
## -0.556180565 -0.556180565 -0.556180565 -0.556180565 -0.556180565 -0.547191826 
##          661          662          663          664          665          666 
## -0.525462395 -0.525462395 -0.516342661 -0.516342661 -0.516342661 -0.505347381 
##          667          668          669          670          671          672 
## -0.496141353 -0.496141353 -0.485041786 -0.485041786 -0.443847913 -0.432476092 
##          673          674          675          676          677          678 
## -0.432476092 -0.432476092 -0.432476092 -0.422954034 -0.422954034 -0.401858372 
##          679          680          681          682          683          684 
## -0.347229555 -0.335346014 -0.335346014 -0.335346014 -0.325394410 -0.313393659 
##          685          686          687          688          689          690 
## -0.313393659 -0.313393659 -0.281074090 -0.268833656 -0.268833656 -0.268833656 
##          691          692          693          694          695          696 
## -0.258582431 -0.258582431 -0.258582431 -0.233788858 -0.233788858 -0.223377974 
##          697          698          699          700          701          702 
## -0.223377974 -0.223377974 -0.223377974 -0.210821961 -0.210821961 -0.210821961 
##          703          704          705          706          707          708 
## -0.200305772 -0.200305772 -0.200305772 -0.200305772 -0.187622434 -0.187622434 
##          709          710          711          712          713          714 
## -0.176999334 -0.176999334 -0.176999334 -0.176999334 -0.176999334 -0.176999334 
##          715          716          717          718          719          720 
## -0.176999334 -0.164186725 -0.164186725 -0.164186725 -0.164186725 -0.153455076 
##          721          722          723          724          725          726 
## -0.153455076 -0.153455076 -0.153455076 -0.153455076 -0.127494895 -0.127494895 
##          727          728          729          730          731          732 
## -0.116592186 -0.116592186 -0.116592186 -0.103441463 -0.092425879 -0.092425879 
##          733          734          735          736          737          738 
## -0.079138656 -0.079138656 -0.068008435 -0.054582574 -0.043335918 -0.043335918 
##          739          740          741          742          743          744 
## -0.029769238 -0.029769238 -0.004694584 -0.004694584 -0.004694584  0.009094123 
##          745          746          747          748          749          750 
##  0.009094123  0.009094123  0.009094123  0.020645538  0.020645538  0.034580827 
##          751          752          753          754          755          756 
##  0.046255367  0.046255367  0.060339586  0.060339586  0.060339586  0.072139230 
##          757          758          759          760          761          762 
##  0.072139230  0.072139230  0.100693907  0.112690885  0.112690885  0.127165154 
##          763          764          765          766          767          768 
##  0.139292470  0.180976423  0.193370866  0.251190347  0.263937729  0.279319915 
##          769          770          771          772          773          774 
## -0.210821961 -0.200305772 -0.079138656 -0.043335918 -0.016124811  0.251190347 
##          775          776          777          778          779          780 
##  0.292210088  0.381631743  0.424810090  0.454915717  0.488157046  0.550206342 
##          781          782          783          784          785          786 
##  0.564512396  0.564512396  0.581781132  0.581781132  0.596257035  0.646063902 
##          787          788          789          790          791          792 
##  0.678785519  0.678785519  0.678785519  0.696800205  0.696800205  0.711903326 
##          793          794          795          796          797          798 
##  0.711903326  0.745424561  0.763881556  0.816850958  0.816850958  0.851666858 
##          799          800          801          802          803          804 
##  0.851666858  0.867635565  0.867635565  0.867635565  0.903086821  0.942270955 
##          805          806          807          808          809          810 
##  0.978666451  0.978666451  0.995363038  0.995363038  0.995363038  0.995363038 
##          811          812          813          814          815          816 
##  1.032437823  1.032437823  1.052861360  1.090678942  1.090678942  1.090678942 
##          817          818          819          820          821          822 
##  1.090678942  1.111513722  1.111513722  1.111513722  1.128989115  1.128989115 
##          823          824          825          826          827          828 
##  1.150096648  1.167801567  1.167801567  1.167801567  1.167801567  1.189187244 
##          829          830          831          832          833          834 
##  1.189187244  1.228795597  1.228795597  1.228795597  1.246973343  1.246973343 
##          835          836          837          838          839          840 
##  1.268932061  1.291051061  1.291051061  1.309607270  1.309607270  1.309607270 
##          841          842          843          844          845          846 
##  1.332024714  1.332024714  1.350832143  1.350832143  1.350832143  1.373554114 
##          847          848          849          850          851          852 
##  1.392617899  1.392617899  1.415650644  1.415650644  1.415650644  1.434976063 
##          853          854          855          856          857          858 
##  1.434976063  1.458326000  1.458326000  1.481851722  1.481851722  1.481851722 
##          859          860          861          862          863          864 
##  1.501592206  1.501592206  1.501592206  1.501592206  1.525445394  1.525445394 
##          865          866          867          868          869          870 
##  1.525445394  1.545461615  1.545461615  1.545461615  1.589946932  1.589946932 
##          871          872          873          874          875          876 
##  1.589946932  1.589946932  1.614475904  1.614475904  1.614475904  1.614475904 
##          877          878          879          880          881          882 
##  1.635061219  1.635061219  1.635061219  1.635061219  1.635061219  1.659938904 
##          883          884          885          886          887          888 
##  1.659938904  1.659938904  1.685009938  1.685009938  1.685009938  1.685009938 
##          889          890          891          892          893          894 
##  1.685009938  1.706051796  1.706051796  1.706051796  1.706051796  1.706051796 
##          895          896          897          898          899          900 
##  1.731483209  1.731483209  1.731483209  1.752828618  1.752828618  1.800283812 
##          901          902          903          904          905          906 
##  1.800283812  1.800283812  1.848432242  1.848432242  1.874992667  1.874992667 
##          907          908          909          910          911          912 
##  1.874992667  1.874992667  1.901766429  1.901766429  1.924242723  1.924242723 
##          913          914          915          916          917          918 
##  1.924242723  1.951414335  1.951414335  1.974225865  1.974225865  1.974225865 
##          919          920          921          922          923          924 
##  2.001804261  2.024958584  2.024958584  2.024958584  2.024958584  2.052952968 
##          925          926          927          928          929          930 
##  2.052952968  2.076457869  2.104877725  2.104877725  2.104877725  2.133533757 
##          931          932          933          934          935          936 
##  2.133533757  2.133533757  2.157596327  2.186693063  2.211127121  2.211127121 
##          937          938          939          940          941          942 
##  2.211127121  2.211127121  2.240674805  2.240674805  2.265489021  2.265489021 
##          943          944          945          946          947          948 
##  2.265489021  2.265489021  2.295498219  2.295498219  2.295498219  2.320701534 
##          949          950          951          952          953          954 
##  2.320701534  2.351183143  2.351183143  2.351183143  2.381927148  2.381927148 
##          955          956          957          958          959          960 
##  2.407750047  2.407750047  2.438983990  2.438983990  2.465220050  2.465220050 
##          961          962          963          964          965          966 
##  2.465220050  2.465220050  2.465220050  2.496955738  2.496955738  2.523614954 
##          967          968          969          970          971          972 
##  2.555864575  2.615733408  2.615733408  2.615733408  2.615733408  2.676585896 
##          973          974          975          976          977          978 
##  2.676585896  2.676585896  2.676585896  2.710201469  2.710201469  2.801340427 
##          979          980          981          982          983          984 
##  2.836091065  2.865293841  2.865293841  2.900633693  2.900633693  2.936301271 
##          985          986          987          988          989          990 
##  2.966277901  2.966277901  3.002558269  3.002558269  3.033052135  3.033052135 
##          991          992          993          994          995          996 
##  3.069961221  3.138540116  3.138540116  3.138540116  3.279351021  3.279351021 
##          997          998          999         1000         1001         1002 
##  3.318626082  3.351648476  3.425252870  3.500199964  3.500199964  3.541659334 
##         1003         1004         1005         1006         1007         1008 
##  3.618754932  3.777306292  3.821590428  4.073574227  4.441936342  4.484763848 
##         1009         1010         1011         1012         1013         1014 
##  5.614153264  5.801546339  6.676215909  7.448228081  7.538782227  7.708326000 
##         1015         1016         1017         1018         1019         1020 
##  7.802784439  8.161693876  9.957588537 -0.461335689 -0.361327734 -0.308420579 
##         1021         1022         1023         1024         1025         1026 
## -0.268564227 -0.255073667 -0.098156447  0.402821070  0.441368869 -0.184747529 
##         1027         1028         1029         1030         1031         1032 
## -0.135398572 -0.036674520  0.050036936  0.236154403  0.253832185  0.307815641 
##         1033         1034         1035         1036         1037         1038 
##  0.413263844 -0.713204962 -0.098156447  0.050036936  0.157723031  0.271666913 
##         1039         1040         1041         1042         1043         1044 
##  0.271666913  0.346306479  0.432545507 -0.644694006 -0.241478566 -0.220259488 
##         1045         1046         1047         1048         1049         1050 
## -0.184747529 -0.036674520 -0.029715649  0.346306479  0.346306479 -0.354367247 
##         1051         1052         1053         1054         1055         1056 
## -0.262445037 -0.262445037 -0.255073667 -0.234018558 -0.206392733 -0.200053722 
##         1057         1058         1059         1060         1061         1062 
## -0.164133574  0.025468537  0.082308249  0.098649575  0.201261461  0.218631504 
##         1063         1064         1065         1066         1067         1068 
##  0.236154403  0.307815641  0.373514767 -0.234018558  0.184042283  0.209138114 
##         1069         1070         1071         1072         1073         1074 
##  0.299543270  0.402821070  0.402821070  0.422006224  0.911236217 -0.423832237 
##         1075         1076         1077         1078         1079         1080 
## -0.268564227 -0.083315600 -0.051893110 -0.014314288  0.346306479  0.471647838 
##         1081         1082         1083         1084         1085         1086 
##  0.583980490 -0.075169831  0.191850606  0.245777499  0.307815641  0.392430380 
##         1087         1088         1089         1090         1091         1092 
##  0.432545507  0.432545507  0.522481021 -0.315569735 -0.234018558 -0.184747529 
##         1093         1094         1095         1096         1097         1098 
## -0.170600897 -0.156341989 -0.119530728 -0.090076309 -0.036674520  0.066104614 
##         1099         1100         1101         1102         1103         1104 
##  0.082308249  0.124179287  0.166972013  0.226577388  0.236154403  0.253832185 
##         1105         1106         1107         1108         1109         1110 
##  0.263540630 -0.374015088 -0.374015088 -0.322689368 -0.322689368 -0.206392733 
##         1111         1112         1113         1114         1115         1116 
## -0.090076309 -0.036674520 -0.021330627 -0.268564227  0.057323681  0.057323681 
##         1117         1118         1119         1120         1121         1122 
##  0.066104614  0.107621689  0.131752378  0.140879120  0.174712891 -0.005859877 
##         1123         1124         1125         1126         1127         1128 
##  0.018302663  0.041329441  0.107621689  0.140879120  0.148517471  0.201261461 
##         1129         1130         1131         1132         1133         1134 
##  0.289660686 -0.178331075 -0.098156447 -0.044991004 -0.014314288  0.041329441 
##         1135         1136         1137         1138         1139         1140 
##  0.041329441  0.050036936  0.057323681 -0.520251695 -0.520251695 -0.514982699 
##         1141         1142         1143         1144         1145         1146 
## -0.478694480 -0.449294718 -0.411515728 -0.380895664 -0.367106466 -0.164133574 
##         1147         1148         1149         1150         1151         1152 
## -0.014314288 -0.005859877  0.041329441  0.073452945  0.157723031  0.191850606 
##         1153         1154         1155         1156         1157         1158 
##  0.317787056 -0.104862794 -0.104862794 -0.098156447 -0.044991004  0.066104614 
##         1159         1160         1161         1162         1163         1164 
##  0.082308249  0.098649575  0.281461847 -0.496939357 -0.491594288 -0.437165623 
##         1165         1166         1167         1168         1169         1170 
## -0.399108046 -0.380895664 -0.374015088 -0.374015088 -0.367106466 -0.399108046 
##         1171         1172         1173         1174         1175         1176 
## -0.328599977 -0.289210433 -0.281951446 -0.192417025 -0.178331075 -0.119530728 
##         1177         1178         1179         1180         1181         1182 
## -0.112878090  0.209138114  0.281461847  0.354770548  0.392430380  0.460911480 
##         1183         1184         1185         1186         1187         1188 
##  0.471647838  0.480636576  0.552080169  0.011048255 -0.020550211  0.396452487 
##         1189         1190         1191         1192         1193         1194 
##  0.335079933  0.396452487  0.335079933  0.252213168  0.298591808  0.095033155 
##         1195         1196         1197         1198         1199         1200 
## -0.080589422 -0.080589422 -0.060763708  0.031743230  0.116541256 -0.234450204 
##         1201         1202         1203         1204         1205         1206 
## -0.288696631 -0.216041857 -0.205930782 -0.138973417 -0.080589422 -0.080589422 
##         1207         1208         1209         1210         1211         1212 
##  0.383165263  0.264769181  0.287968708  0.172247484  0.194517052 -0.009450644 
##         1213         1214         1215         1216         1217         1218 
## -0.020550211 -0.020550211  0.095033155  2.427005477  2.940811192  3.152177038 
##         1219         1220         1221         1222         1223         1224 
##  2.857518290  1.292442101  2.500549726  1.910567205  2.972546880  2.826774286 
##         1225         1226         1227         1228         1229         1230 
##  2.826774286  2.090067047  1.121655044  3.185792612  3.185792612  4.463548398 
##         1231         1232         1233         1234         1235         1236 
##  3.185792612  4.510042474  4.510042474  3.311682208  2.741080163  3.576576969 
##         1237         1238         1239         1240         1241         1242 
##  3.152177038  3.941555458  1.491118072  1.273632067  2.001036536  2.181642939 
##         1243         1244         1245         1246         1247         1248 
##  1.625687790  1.625687790  0.011048255  3.614131258  2.377357571  1.704386739 
##         1249         1250         1251         1252         1253         1254 
##  0.994591598  0.484685266  1.977183348  3.411892413  1.807615857  1.545581855 
##         1255 
##  2.254219377
# Generate a Q-Q Plot
qqnorm(res2); qqline(res2)

shapiro.test(res2)                              # test for normality
## 
##  Shapiro-Wilk normality test
## 
## data:  res2
## W = 0.86114, p-value < 2.2e-16
leveneTest(aov(transTemp ~ Type, data = df))    # test for homogeneity of variances
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value    Pr(>F)    
## group    3  38.208 < 2.2e-16 ***
##       1251                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The transformation instituted solved the homogeneity of variances issue (if the Levene’s test P-value becomes nonsignificant) and did not alter the normality assumption, so we can proceed with the analysis. However, before moving further we will graph the transformed data to make sure we can interpret the differences in a biologically meaningful way.

Graph of Transformed Data

cipplot2 <- summarySE(df, measurevar = "transTemp", groupvars = "Type")

cipplot2
##   Type   N transTemp        sd         se        ci
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017
plot2 <- ggplot(df, aes(x = Type,
y = transTemp,
colour = Type,
group = Type,
fill = Type)) +
geom_dotplot(binaxis = "y", stackdir = "center") +
geom_point(data = cipplot2,
aes(x = Type, y = transTemp),
size = 3,
position = position_nudge(x = 0.25)) +
geom_errorbar(data = cipplot2,
aes(x = Type,
ymax = transTemp + ci,
ymin = transTemp - ci),
width = 0.1,
position = position_nudge(x = 0.25)) +
xlab("Temperature Type") +
ylab("Transformed Temperature (1 / °C × 100)") +
ggtitle("Transformed Temperatures by Type in Mediterranean Geckos") +
th

plot2
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

ANOVA on Transformed Data

The following code performs an ANOVA on the transformed response variable (transTemp) using the linear model created earlier. This tests whether meantransformed temperature differs among the Temperature Types.

Anova(model2)
## Anova Table (Type II tests)
## 
## Response: transTemp
##           Sum Sq   Df F value    Pr(>F)    
## Type       175.3    3  24.906 1.184e-15 ***
## Residuals 2935.0 1251                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Back-transforming the Transformed Data

Unfortunately, these data will require people to think in reverse when they look at your graphics (low values mean high Temperature; high values mean low Temperature). So we probably want to back-transform the means and 95% Confidence Intervals into their original units. We can do this by forming additional columns in the cipplot2 dataframe that make this conversion. First, remind yourself how the output from summarySE is arranged.

cipplot2   # Check the structure of the cipplot2 dataframe
##   Type   N transTemp        sd         se        ci
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017
cipplot2$Temp_mean <- 100 / cipplot2$transTemp   # perform the back-transformation
cipplot2                                         # Check to see that it did it
##   Type   N transTemp        sd         se        ci Temp_mean
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194  20.86953
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048  23.16916
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960  23.82033
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017  26.56857
cipplot2$LL <- 100 / (cipplot2$transTemp + cipplot2$ci)
cipplot2
##   Type   N transTemp        sd         se        ci Temp_mean       LL
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194  20.86953 20.33846
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048  23.16916 22.07706
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960  23.82033 22.62704
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017  26.56857 26.25673
cipplot2$UL <- 100 / (cipplot2$transTemp - cipplot2$ci)
cipplot2
##   Type   N transTemp        sd         se        ci Temp_mean       LL       UL
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194  20.86953 20.33846 21.42909
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048  23.16916 22.07706 24.37492
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960  23.82033 22.62704 25.14649
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017  26.56857 26.25673 26.88791
cipplot   # original means on the Temperature scale
##   Type   N Temperature       sd        se        ci
## 1   Te 723    23.11526 6.689431 0.2487826 0.4884238
## 2   Tw 182    25.16308 6.095890 0.4518574 0.8915857
## 3   Tb 182    26.07148 6.444087 0.4776675 0.9425130
## 4   Tp 168    26.73077 2.101961 0.1621698 0.3201671
cipplot2  # back-transformed means and confidence limits
##   Type   N transTemp        sd         se        ci Temp_mean       LL       UL
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194  20.86953 20.33846 21.42909
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048  23.16916 22.07706 24.37492
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960  23.82033 22.62704 25.14649
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017  26.56857 26.25673 26.88791
plot3 <- ggplot(df, aes(x = Type,
                        y = Temperature,
                        colour = Type,
                        group = Type,
                        fill = Type)) +
  geom_dotplot(binaxis = "y", stackdir = "center") +
  geom_point(data = cipplot2,
             aes(x = Type, y = Temp_mean),
             size = 3,
             position = position_nudge(x = 0.25),
             inherit.aes = FALSE) +
  geom_errorbar(data = cipplot2,
                aes(x = Type,
                    ymin = LL,
                    ymax = UL),
                width = 0.1,
                position = position_nudge(x = 0.25),
                inherit.aes = FALSE) +
  xlab("Temperature Type") +
  ylab("Temperature (°C)") +
  ggtitle("Effect of Temperature Type on Gecko Body Temperatures") +
  th

plot3
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

Post hoc Tests

Since we observed a significant ANOVA, we can examine which Temperature Types differ from one another using the Tukey–Kramer test. This test examines all pairwise comparisons of the Type means. NOTE: I am doing Tukey’s test on the transformed data column.

TukeyHSD(aov(transTemp ~ Type, data = df))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = transTemp ~ Type, data = df)
## 
## $Type
##             diff        lwr         upr     p adj
## Tw-Te -0.4755911 -0.8023646 -0.14881766 0.0010848
## Tb-Te -0.5935795 -0.9203530 -0.26680603 0.0000195
## Tp-Te -1.0278284 -1.3653040 -0.69035277 0.0000000
## Tb-Tw -0.1179884 -0.5310422  0.29506547 0.8830743
## Tp-Tw -0.5522373 -0.9738086 -0.13066595 0.0043071
## Tp-Tb -0.4342489 -0.8558202 -0.01267758 0.0406180

Graph with Tukey–Kramer Results included

I have recreated the graphic to include the results of the Tukey–Kramer test results. Treatments (Temperature Types) that share the same letter are not significantly different from one another, whereas Types with different letters are significantly different.

cipplot2$Tukey <- c("A", "B", "C", "C")  

cipplot2
##   Type   N transTemp        sd         se        ci Temp_mean       LL       UL
## 1   Te 723  4.791674 1.7136306 0.06373061 0.1251194  20.86953 20.33846 21.42909
## 2   Tw 182  4.316083 1.4597611 0.10820469 0.2135048  23.16916 22.07706 24.37492
## 3   Tb 182  4.198094 1.5137137 0.11220392 0.2213960  23.82033 22.62704 25.14649
## 4   Tp 168  3.763846 0.2934756 0.02264213 0.0447017  26.56857 26.25673 26.88791
##   Tukey
## 1     A
## 2     B
## 3     C
## 4     C
plot4 <- plot3 +
geom_text(data = cipplot2,
aes(x = Type, y = Temp_mean, label = Tukey),
position = position_nudge(x = 0.4),
color = "black",
na.rm = TRUE) +
th

plot4
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

This plot shows the raw Temperature data in a dotplot, the means and confidence intervals to the right of the raw data (confidence intervals based on back-transformed confidence intervals), with letters indicating the results of a Tukey–Kramer test where Types with the same letter are not different from one another while Types with different letters are different from one another.

A suitable caption for this figure would be: Figure 1. Effect of different temperature types on Mediterranean gecko body temperatures. Field body temperature (Tb) and preferred temperature (Tp) are compared to environmental wall temperatures (Te) and wall temperatures next to the lizard (Tw). Overall ANOVA on transformed temperatures indicates a significant effect of Temperature Type on gecko temperature (report your F-value and P-value here). Raw data, means, and 95% confidence intervals are plotted with letters to the right of the means indicating the results of the Tukey–Kramer tests, with like letters indicating Types that are not different from one another. Key: Te = environmental wall temperature, Tw = wall temperature next to the lizard, Tb = field body temperature, Tp = preferredbody temperature measured in the lab. The above caption is a pretty good description of the results. If you are concerned about the violation of the homogeneity of variances assumption, you can use the Kruskal–Wallis test, which ranks the data and then repartitions the data to the respective Temperature Types. Keep in mind that one of the assumptions of this test is that the distributions differ only in location, so this test does NOT relax the homogeneity of variances assumption.

kruskal.test(Temperature ~ Type, data = df)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Temperature by Type
## Kruskal-Wallis chi-squared = 52.768, df = 3, p-value = 2.055e-11

Conduct a Dunn’s test for all pairwise comparisons

Dunn’s test is a non-parametric procedure for conducting all possible pairwise comparisons. Because Dunn’s test does not control for an experiment-wide alpha level of 0.05, we must apply a correction to account for the large number of comparisons. In this case, we used the Bonferroni correction, which divides the experiment-wide alpha (0.05) by the number of pairwise comparisons. With ten pairwise comparisons, our corrected alpha = 0.05 / 10 = 0.005.

dunnTest(Temperature ~ Type, data = df, method = "bonferroni")
## Dunn (1964) Kruskal-Wallis multiple comparison
##   p-values adjusted with the Bonferroni method.
##   Comparison         Z      P.unadj        P.adj
## 1    Tb - Te  6.339770 2.301081e-10 1.380648e-09
## 2    Tb - Tp  1.677865 9.337338e-02 5.602403e-01
## 3    Te - Tp -4.042748 5.282843e-05 3.169706e-04
## 4    Tb - Tw  2.047458 4.061309e-02 2.436785e-01
## 5    Te - Tw -3.751707 1.756350e-04 1.053810e-03
## 6    Tp - Tw  0.328226 7.427408e-01 1.000000e+00

Dunn (1964) Kruskal-Wallis multiple comparison

p-values adjusted with the Bonferroni method.

Comparison Z P.unadj P.adj

1 Tw : Tf -0.987234 0.32144 1.00000

2 Tw : Te -0.921118 0.35672 1.00000

3 Tw : Tp 3.487529 0.00024 0.00246 **

4 Tw : Tb 4.873843 0.00001 0.00012 ***

5 Tf : Te -0.153874 0.90763 1.00000

6 Tf : Tp 3.751562 0.00017 0.00172 **

7 Tf : Tb 4.239861 0.00002 0.00024 ***

8 Te : Tp 3.895247 0.00010 0.00100 **

9 Te : Tb 4.590451 0.00001 0.00008 ***

10 Tp : Tb 1.562871 0.11823 1.00000

Interpretation The Dunn’s test results differ slightly from the Tukey-Kramer test on the transformed data. In this case: The simple sugars (glucose, fructose, and the glucose:fructose mix) are NOT different from one another. 2% Sucrose (Tp) is NOT different from 2% Glucose (Te) when using Bonferroni-corrected Dunn’s tests. Control and 2% Sucrose remain distinct from the three simple sugar treatments. Control plants still differ significantly from all other treatments except 2% Sucrose. These rankings are similar to the parametric post hoc results, but some borderline differences lose significance under Dunn’s test. This is expected because Kruskal-Wallis + Dunn procedures have lower statistical power than parametric methods when the assumptions of ANOVA are met. For this reason, the parametric tests on the transformed data (which satisfied both normality and homogeneity of variances) should be considered the primary analysis, while the Dunn’s test provides supportive non-parametric verification. # Final Conclusions This experiment examined whether Mediterranean geckos maintain different body temperatures depending on environmental wall temperatures (Te), wall temperatures immediately next to the gecko (Tw), field body temperatures (Tb), and preferred laboratory body temperatures (Tp). Statistical analyses on the transformed data revealed a highly significant effect of Temperature Type on recorded body temperature measurements. Post hoc testing with the Tukey–Kramer test indicated clear groupings: Tp (preferred temperature) belonged to the highest temperature group. Tb (field body temperature) was the next highest. Tw and Te had similar values and represented the lowest temperatures. These results show that geckos in the field are not fully thermoconforming; rather, they maintain body temperatures higher than available environmental temperatures (Te and Tw) and regulate their physiology toward temperatures closer to those they prefer in the laboratory (Tp). Thus, Mediterranean geckos appear to be effective behavioral thermoregulators. Non-parametric analyses (Kruskal-Wallis followed by Dunn’s test) returned generally similar results, but with slightly reduced resolution among the treatment levels. Given that the transformed data passed the assumptions of normality and homogeneity of variances, the parametric results should be considered the most reliable. Summary Statement Taken together, the findings support the conclusion that Mediterranean geckos actively regulate their body temperatures rather than passively matching ambient conditions. Their field body temperatures fall between their preferred laboratory temperatures and the temperatures available in their microhabitats, demonstrating behavioral thermoregulation in a newly expanded geographic range.