# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(ggplot2)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899132
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0045107597  0.0095875976 -0.0289604955  0.0128028467 -0.0192702940
##   [6] -0.0178220963  0.0003519739  0.0120731503 -0.0130037207  0.0060951938
##  [11]  0.0105693815  0.0246869873 -0.0049102783  0.0197181781  0.0379871598
##  [16]  0.0097958453 -0.0194296829  0.0006562803  0.0067162878  0.0290938313
##  [21]  0.0367915081  0.0276192889 -0.0090368697  0.0318874732 -0.0181927348
##  [26]  0.0003967506  0.0059637212  0.0316263449  0.0310266533 -0.0176656172
##  [31]  0.0148437540  0.0242409069  0.0134512803  0.0060300657  0.0255242834
##  [36]  0.0128760561  0.0019010698 -0.0261672588 -0.0219404402  0.0024521759
##  [41]  0.0011915086  0.0033500809  0.0204143060  0.0101685043 -0.0130923081
##  [46] -0.0197438712  0.0252856155  0.0187025137  0.0034812074  0.0200191423
##  [51] -0.0138099719 -0.0053415491  0.0558541777  0.0036122436  0.0186215543
##  [56] -0.0102349677  0.0166884519  0.0147180018  0.0245199534 -0.0039138914
##  [61]  0.0467063772 -0.0152115349 -0.0021307711  0.0062036832 -0.0087688654
##  [66]  0.0008705858  0.0119578373 -0.0486632928  0.0405408120  0.0181493505
##  [71] -0.0182507057  0.0111146440 -0.0103476826  0.0079610333 -0.0114744973
##  [76]  0.0147506191  0.0002615794  0.0290533178 -0.0092102416  0.0335553075
##  [81]  0.0163420179  0.0106119412  0.0373812788 -0.0164629412  0.0248325940
##  [86] -0.0198303456  0.0213915650  0.0040023676  0.0073461404 -0.0373794050
##  [91]  0.0360267281  0.0002631445 -0.0210143835  0.0068224435 -0.0165210390
##  [96]  0.0273629058 -0.0167523742  0.0257117677  0.0133780302  0.0750447618
## [101]  0.0239240410 -0.0073496849  0.0349733892  0.0191041360 -0.0157542243
## [106] -0.0212270318 -0.0072949931  0.0126314280  0.0040696209 -0.0299581201
## [111] -0.0375158138 -0.0037136514 -0.0263616905  0.0213153729  0.0205766653
## [116]  0.0136851394  0.0170761372  0.0228103852  0.0021374182 -0.0302568036
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.01 
##  4   0.971
##  5   1.01 
##  6   0.981
##  7   0.982
##  8   1.00 
##  9   1.01 
## 10   0.987
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  1.01 
##  4  0.985
##  5  0.997
##  6  0.978
##  7  0.961
##  8  0.961
##  9  0.973
## 10  0.960
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 7.103203

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {

    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)

}

simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.04
##  3   1.02
##  4   1.04
##  5   1.06
##  6   1.04
##  7   1.05
##  8   1.04
##  9   1.06
## 10   1.05
## # ℹ 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%

    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%

    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%

    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(.005, .025, .25, .5, .75, .975, .995)

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.13  1.19  1.61  1.86  2.31  3.30  3.61

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.71   1.86  1.12
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%

    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()