25_11.20-UncivPrej4IJ

Design

Participants read an email exchange where a man (Paul) said something [sexist/generally rude]: “No idea, but it’s a leadership position so I doubt very many women will apply. And the women who do apply probably won’t be very strong.” And then another man (Jeff) responded: “Shut up, Paul. No one wants to hear what you have to say.”

Manipulations

Over the course of an email exchange, a coworker (Paul) says something rude about:
- Sexism: the other women in your workplace.
- General: the other analysts in your workplace.

Items

Status

To what extent do you agree with the following statements?

Item label Item text - 3 0 3
posstat1 After his response back to Paul, I think Jeff is worthy of…: -3. A lot of disrespect 0. Neither disrespect nor respect 3. A lot of respect
posstat2 After his response back to Paul, I hold Jeff… -3. In very low regard 0. In neither low regard nor high regard 3. In very high regard
posstat3 After his response back to Paul, in terms of being like Jeff…: -3. I want to be very different from him -3. A lot of disrespect 0. I don’t want to be like him, or different from him

Rewards

Do you think that Jeff should experience any of the following changes after his response to Paul?

Item label Item text - 3 0 3
reward1 change in his salary: -3. should definitely be decreased 0. would keep the same 3. should definitely be increased
reward2 change in his job rank: -3. should definitely be demoted 0. would keep the same 3. should definitely be promoted
reward3 change in visibility of his project assignments: -3. Should be assigned to projects with very low visibility 0. Should remain on projects with the same visibility as before 3. Should be assigned to projects with high visibility
reward4 change in his public recognition: -3. Should definitely be decreased 0. Should be kept the same 3. Should definitely be increased

Social Rewards

Do you think that Jeff should experience any of the following changes after his response to Paul?

Item label Item text - 3 0 3
socreward1 at the next work event: -3. I would avoid Jeff 0. I would neither avoid nor approach Jeff 3. I would approach Jeff
socreward2 how much closer did you feel to Jeff?: -3. I felt much more distant from him 0. The amount of closeness I felt towards him did not change 3. I felt much closer to him
socreward3 how would the amount of time that you want to spend with Jeff change?: -3. I would want to spend much less time with him 0. I would not want to change the amount of time I spend with him 3. I would want to spend much more time with him

Need for significance

When Jeff responded to Paul, I felt…

My coding Text
nfs1 like I am respected in this group
nfs2 like I am valued in this group
nfs3 like I am appreciated in this group
nfs4 like I am accepted in this group
nfs5 like I am cared for in this group
nfs6 like I am significant in this group
nfs7 like I have a place in this group
nfs8 like I am granted dignity in this group
nfs9 like my rights are respected in this group
nfs10 like my needs are considered in this group

Procedural/Distributive justice

My coding Text
justice1 the rewards I receive in this group will be quite fair
justice2 decisions in this group are fair
justice3 fairness is an important objective for this group

Team functioning

My coding Text
disruptive this will be disruptive to your team’s functioning
harder this will make it harder for you and your teammates to get along
badvibes there will be bad vibes in your team

deter/learn uncivil

When Jeff responded to Paul, did you think that Paul… (1 = not at all, 4 = somewhat, 7 = very much so)

  • learnuncivil1: would be uncivil in the future?
  • learnuncivil2: feel intimidated?
  • learnuncivil3: learned his lesson?

Data Information

Need for significance

Alpha

EFA

##  [1] 8.873236 0.257905 0.220680 0.138069 0.127133 0.103743 0.086512 0.071862 0.062742 0.058118

## Parallel analysis suggests that the number of factors =  1  and the number of components =  NA

1 factor

## 
## Call:
## factanal(x = nfsefa, factors = 1, rotiation = "promax")
## 
## Uniquenesses:
##  nfs1  nfs2  nfs3  nfs4  nfs5  nfs6  nfs7  nfs8  nfs9 nfs10 
## 0.155 0.104 0.101 0.146 0.102 0.137 0.101 0.168 0.116 0.119 
## 
## Loadings:
##       Factor1
## nfs1  0.919  
## nfs2  0.946  
## nfs3  0.948  
## nfs4  0.924  
## nfs5  0.948  
## nfs6  0.929  
## nfs7  0.948  
## nfs8  0.912  
## nfs9  0.940  
## nfs10 0.939  
## 
##                Factor1
## SS loadings      8.750
## Proportion Var   0.875
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 198.61 on 35 degrees of freedom.
## The p-value is 0.000000000000000000000000928

2 factor

## 
## Call:
## factanal(x = nfsefa, factors = 2, rotiation = "promax")
## 
## Uniquenesses:
##  nfs1  nfs2  nfs3  nfs4  nfs5  nfs6  nfs7  nfs8  nfs9 nfs10 
## 0.131 0.072 0.079 0.150 0.103 0.142 0.095 0.103 0.086 0.111 
## 
## Loadings:
##       Factor1 Factor2
## nfs1  0.768   0.528  
## nfs2  0.805   0.529  
## nfs3  0.786   0.550  
## nfs4  0.691   0.610  
## nfs5  0.722   0.613  
## nfs6  0.665   0.645  
## nfs7  0.624   0.718  
## nfs8  0.508   0.799  
## nfs9  0.585   0.756  
## nfs10 0.644   0.689  
## 
##                Factor1 Factor2
## SS loadings      4.702   4.225
## Proportion Var   0.470   0.422
## Cumulative Var   0.470   0.893
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 110.2 on 26 degrees of freedom.
## The p-value is 0.00000000000244

3 factor

## 
## Call:
## factanal(x = nfsefa, factors = 3, rotiation = "promax")
## 
## Uniquenesses:
##  nfs1  nfs2  nfs3  nfs4  nfs5  nfs6  nfs7  nfs8  nfs9 nfs10 
## 0.125 0.062 0.082 0.123 0.100 0.104 0.061 0.106 0.070 0.099 
## 
## Loadings:
##       Factor1 Factor2 Factor3
## nfs1  0.696   0.468   0.414  
## nfs2  0.735   0.452   0.440  
## nfs3  0.690   0.464   0.476  
## nfs4  0.536   0.447   0.624  
## nfs5  0.605   0.487   0.545  
## nfs6  0.504   0.466   0.652  
## nfs7  0.456   0.561   0.645  
## nfs8  0.430   0.714   0.446  
## nfs9  0.500   0.703   0.431  
## nfs10 0.574   0.631   0.417  
## 
##                Factor1 Factor2 Factor3
## SS loadings      3.381   3.011   2.678
## Proportion Var   0.338   0.301   0.268
## Cumulative Var   0.338   0.639   0.907
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 43.77 on 18 degrees of freedom.
## The p-value is 0.000623

CFA

Lavaan

0-factor model

## lavaan 0.6-20 ended normally after 9 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        20
## 
##   Number of observations                           200
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.000
##   Tucker-Lewis Index (TLI)                       0.000
##                                                       
##   Robust Comparative Fit Index (CFI)             0.000
##   Robust Tucker-Lewis Index (TLI)                0.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3868.921
##   Loglikelihood unrestricted model (H1)      -2100.320
##                                                       
##   Akaike (AIC)                                7777.842
##   Bayesian (BIC)                              7843.808
##   Sample-size adjusted Bayesian (SABIC)       7780.446
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.623
##   90 Percent confidence interval - lower         0.606
##   90 Percent confidence interval - upper         0.640
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.623
##   90 Percent confidence interval - lower         0.606
##   90 Percent confidence interval - upper         0.640
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.728
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     nfs1              3.585    0.114   31.547    0.000    3.585    2.231
##     nfs2              3.595    0.117   30.709    0.000    3.595    2.171
##     nfs3              3.610    0.117   30.967    0.000    3.610    2.190
##     nfs4              3.755    0.119   31.539    0.000    3.755    2.230
##     nfs5              3.570    0.120   29.827    0.000    3.570    2.109
##     nfs6              3.605    0.117   30.918    0.000    3.605    2.186
##     nfs7              3.650    0.116   31.546    0.000    3.650    2.231
##     nfs8              3.380    0.122   27.664    0.000    3.380    1.956
##     nfs9              3.520    0.121   29.084    0.000    3.520    2.057
##     nfs10             3.530    0.123   28.731    0.000    3.530    2.032
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     nfs1              2.583    0.258   10.000    0.000    2.583    1.000
##     nfs2              2.741    0.274   10.000    0.000    2.741    1.000
##     nfs3              2.718    0.272   10.000    0.000    2.718    1.000
##     nfs4              2.835    0.283   10.000    0.000    2.835    1.000
##     nfs5              2.865    0.287   10.000    0.000    2.865    1.000
##     nfs6              2.719    0.272   10.000    0.000    2.719    1.000
##     nfs7              2.677    0.268   10.000    0.000    2.677    1.000
##     nfs8              2.986    0.299   10.000    0.000    2.986    1.000
##     nfs9              2.930    0.293   10.000    0.000    2.930    1.000
##     nfs10             3.019    0.302   10.000    0.000    3.019    1.000

1-factor model

## lavaan 0.6-20 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                           200
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                               204.576
##   Degrees of freedom                                35
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.951
##   Tucker-Lewis Index (TLI)                       0.938
##                                                       
##   Robust Comparative Fit Index (CFI)             0.951
##   Robust Tucker-Lewis Index (TLI)                0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2202.608
##   Loglikelihood unrestricted model (H1)      -2100.320
##                                                       
##   Akaike (AIC)                                4465.216
##   Bayesian (BIC)                              4564.165
##   Sample-size adjusted Bayesian (SABIC)       4469.122
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.156
##   90 Percent confidence interval - lower         0.135
##   90 Percent confidence interval - upper         0.177
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.156
##   90 Percent confidence interval - lower         0.135
##   90 Percent confidence interval - upper         0.177
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   onecommon =~                                                          
##     nfs1              1.477    0.087   17.060    0.000    1.477    0.919
##     nfs2              1.567    0.087   17.978    0.000    1.567    0.946
##     nfs3              1.563    0.087   18.041    0.000    1.563    0.948
##     nfs4              1.556    0.090   17.232    0.000    1.556    0.924
##     nfs5              1.604    0.089   18.022    0.000    1.604    0.948
##     nfs6              1.532    0.088   17.389    0.000    1.532    0.929
##     nfs7              1.551    0.086   18.037    0.000    1.551    0.948
##     nfs8              1.576    0.094   16.832    0.000    1.576    0.912
##     nfs9              1.609    0.091   17.760    0.000    1.609    0.940
##     nfs10             1.631    0.092   17.720    0.000    1.631    0.939
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .nfs1              3.585    0.114   31.547    0.000    3.585    2.231
##    .nfs2              3.595    0.117   30.709    0.000    3.595    2.171
##    .nfs3              3.610    0.117   30.967    0.000    3.610    2.190
##    .nfs4              3.755    0.119   31.539    0.000    3.755    2.230
##    .nfs5              3.570    0.120   29.827    0.000    3.570    2.109
##    .nfs6              3.605    0.117   30.918    0.000    3.605    2.186
##    .nfs7              3.650    0.116   31.546    0.000    3.650    2.231
##    .nfs8              3.380    0.122   27.664    0.000    3.380    1.956
##    .nfs9              3.520    0.121   29.084    0.000    3.520    2.057
##    .nfs10             3.530    0.123   28.731    0.000    3.530    2.032
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     onecommon         1.000                               1.000    1.000
##    .nfs1              0.401    0.044    9.183    0.000    0.401    0.155
##    .nfs2              0.286    0.033    8.682    0.000    0.286    0.104
##    .nfs3              0.275    0.032    8.650    0.000    0.275    0.101
##    .nfs4              0.413    0.045    9.145    0.000    0.413    0.146
##    .nfs5              0.293    0.033    8.759    0.000    0.293    0.102
##    .nfs6              0.372    0.041    9.069    0.000    0.372    0.137
##    .nfs7              0.271    0.031    8.638    0.000    0.271    0.101
##    .nfs8              0.502    0.054    9.232    0.000    0.502    0.168
##    .nfs9              0.341    0.039    8.854    0.000    0.341    0.116
##    .nfs10             0.358    0.040    8.919    0.000    0.358    0.119

2-factor model

## lavaan 0.6-20 ended normally after 57 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        31
## 
##   Number of observations                           200
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                               149.386
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.967
##   Tucker-Lewis Index (TLI)                       0.956
##                                                       
##   Robust Comparative Fit Index (CFI)             0.967
##   Robust Tucker-Lewis Index (TLI)                0.956
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2175.013
##   Loglikelihood unrestricted model (H1)      -2100.320
##                                                       
##   Akaike (AIC)                                4412.026
##   Bayesian (BIC)                              4514.274
##   Sample-size adjusted Bayesian (SABIC)       4416.062
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.130
##   90 Percent confidence interval - lower         0.109
##   90 Percent confidence interval - upper         0.152
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.130
##   90 Percent confidence interval - lower         0.109
##   90 Percent confidence interval - upper         0.152
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f1 =~                                                                 
##     nfs1              1.487    0.086   17.258    0.000    1.487    0.925
##     nfs2              1.579    0.087   18.224    0.000    1.579    0.954
##     nfs3              1.577    0.086   18.333    0.000    1.577    0.957
##     nfs4              1.558    0.090   17.252    0.000    1.558    0.925
##     nfs5              1.608    0.089   18.105    0.000    1.608    0.950
##     nfs6              1.528    0.088   17.307    0.000    1.528    0.927
##   f2 =~                                                                 
##     nfs7              1.554    0.086   18.071    0.000    1.554    0.950
##     nfs8              1.609    0.092   17.434    0.000    1.609    0.931
##     nfs9              1.637    0.089   18.306    0.000    1.637    0.956
##     nfs10             1.647    0.091   18.018    0.000    1.647    0.948
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f1 ~~                                                                 
##     f2                0.972    0.006  158.188    0.000    0.972    0.972
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .nfs1              3.585    0.114   31.547    0.000    3.585    2.231
##    .nfs2              3.595    0.117   30.709    0.000    3.595    2.171
##    .nfs3              3.610    0.117   30.967    0.000    3.610    2.190
##    .nfs4              3.755    0.119   31.539    0.000    3.755    2.230
##    .nfs5              3.570    0.120   29.827    0.000    3.570    2.109
##    .nfs6              3.605    0.117   30.918    0.000    3.605    2.186
##    .nfs7              3.650    0.116   31.546    0.000    3.650    2.231
##    .nfs8              3.380    0.122   27.664    0.000    3.380    1.956
##    .nfs9              3.520    0.121   29.084    0.000    3.520    2.057
##    .nfs10             3.530    0.123   28.731    0.000    3.530    2.032
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     f1                1.000                               1.000    1.000
##     f2                1.000                               1.000    1.000
##    .nfs1              0.371    0.042    8.906    0.000    0.371    0.144
##    .nfs2              0.249    0.030    8.183    0.000    0.249    0.091
##    .nfs3              0.231    0.029    8.047    0.000    0.231    0.085
##    .nfs4              0.409    0.046    8.933    0.000    0.409    0.144
##    .nfs5              0.279    0.033    8.379    0.000    0.279    0.097
##    .nfs6              0.383    0.043    8.873    0.000    0.383    0.141
##    .nfs7              0.263    0.033    7.898    0.000    0.263    0.098
##    .nfs8              0.397    0.047    8.471    0.000    0.397    0.133
##    .nfs9              0.250    0.033    7.519    0.000    0.250    0.085
##    .nfs10             0.306    0.038    8.056    0.000    0.306    0.101

Lavaan CFA

## lavaan 0.6-20 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        20
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                               204.576
##   Degrees of freedom                                35
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.951
##   Tucker-Lewis Index (TLI)                       0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2202.608
##   Loglikelihood unrestricted model (H1)      -2100.320
##                                                       
##   Akaike (AIC)                                4445.216
##   Bayesian (BIC)                              4511.182
##   Sample-size adjusted Bayesian (SABIC)       4447.820
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.156
##   90 Percent confidence interval - lower         0.135
##   90 Percent confidence interval - upper         0.177
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   factor1 =~                                                            
##     nfs1              1.000                               1.477    0.919
##     nfs2              1.061    0.041   25.579    0.000    1.567    0.946
##     nfs3              1.058    0.041   25.759    0.000    1.563    0.948
##     nfs4              1.054    0.045   23.555    0.000    1.556    0.924
##     nfs5              1.086    0.042   25.696    0.000    1.604    0.948
##     nfs6              1.037    0.043   23.961    0.000    1.532    0.929
##     nfs7              1.050    0.041   25.749    0.000    1.551    0.948
##     nfs8              1.067    0.047   22.571    0.000    1.576    0.912
##     nfs9              1.089    0.044   24.961    0.000    1.609    0.940
##     nfs10             1.104    0.044   24.847    0.000    1.631    0.939
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .nfs1              0.401    0.043    9.249    0.000    0.401    0.155
##    .nfs2              0.286    0.032    8.812    0.000    0.286    0.104
##    .nfs3              0.275    0.031    8.767    0.000    0.275    0.101
##    .nfs4              0.413    0.045    9.190    0.000    0.413    0.146
##    .nfs5              0.293    0.033    8.783    0.000    0.293    0.102
##    .nfs6              0.372    0.041    9.129    0.000    0.372    0.137
##    .nfs7              0.271    0.031    8.770    0.000    0.271    0.101
##    .nfs8              0.502    0.054    9.317    0.000    0.502    0.168
##    .nfs9              0.341    0.038    8.949    0.000    0.341    0.116
##    .nfs10             0.358    0.040    8.972    0.000    0.358    0.119
##     factor1           2.181    0.256    8.532    0.000    1.000    1.000
## lavaan 0.6-20 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                               153.618
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3537.202
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.966
##   Tucker-Lewis Index (TLI)                       0.955
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2177.129
##   Loglikelihood unrestricted model (H1)      -2100.320
##                                                       
##   Akaike (AIC)                                4396.258
##   Bayesian (BIC)                              4465.523
##   Sample-size adjusted Bayesian (SABIC)       4398.992
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.133
##   90 Percent confidence interval - lower         0.112
##   90 Percent confidence interval - upper         0.154
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   factor1 =~                                                            
##     nfs1              1.000                               1.490    0.927
##     nfs2              1.062    0.039   27.551    0.000    1.583    0.956
##     nfs3              1.061    0.038   27.993    0.000    1.582    0.959
##     nfs4              1.043    0.043   24.158    0.000    1.555    0.924
##     nfs5              1.077    0.040   26.691    0.000    1.606    0.949
##   factor2 =~                                                            
##     nfs6              1.000                               1.529    0.927
##     nfs7              1.022    0.037   27.402    0.000    1.562    0.955
##     nfs8              1.047    0.043   24.459    0.000    1.602    0.927
##     nfs9              1.063    0.040   26.847    0.000    1.626    0.950
##     nfs10             1.072    0.041   26.143    0.000    1.640    0.944
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   factor1 ~~                                                            
##     factor2           2.220    0.243    9.150    0.000    0.974    0.974
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .nfs1              0.361    0.041    8.879    0.000    0.361    0.140
##    .nfs2              0.236    0.029    8.051    0.000    0.236    0.086
##    .nfs3              0.216    0.027    7.864    0.000    0.216    0.079
##    .nfs4              0.417    0.047    8.943    0.000    0.417    0.147
##    .nfs5              0.287    0.034    8.354    0.000    0.287    0.100
##    .nfs6              0.380    0.043    8.817    0.000    0.380    0.140
##    .nfs7              0.236    0.030    7.999    0.000    0.236    0.088
##    .nfs8              0.420    0.048    8.827    0.000    0.420    0.141
##    .nfs9              0.285    0.035    8.206    0.000    0.285    0.097
##    .nfs10             0.330    0.039    8.427    0.000    0.330    0.109
##     factor1           2.222    0.256    8.664    0.000    1.000    1.000
##     factor2           2.339    0.270    8.663    0.000    1.000    1.000

Analyses

Midpoint analyses

Main effects

Binary

Reprimanded

## 
## Call:
## glm(formula = reprimanded ~ instigation_type, family = "binomial", 
##     data = uncivprej4_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -0.995      0.225   -4.42  0.00001 ***
## instigation_typetraditional    1.115      0.301    3.70  0.00022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 269.20  on 199  degrees of freedom
## Residual deviance: 254.92  on 198  degrees of freedom
## AIC: 258.9
## 
## Number of Fisher Scoring iterations: 4

Stay on team

## 
## Call:
## glm(formula = stayonteam ~ instigation_type, family = "binomial", 
##     data = uncivprej4_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    0.364      0.203    1.79    0.073 .
## instigation_typetraditional   -0.244      0.285   -0.85    0.393  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 274.37  on 199  degrees of freedom
## Residual deviance: 273.64  on 198  degrees of freedom
## AIC: 277.6
## 
## Number of Fisher Scoring iterations: 4

Voice

## 
## Call:
## glm(formula = voice ~ instigation_type, family = "binomial", 
##     data = uncivprej4_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)                   0.2819     0.2020    1.40     0.16
## instigation_typetraditional  -0.0812     0.2850   -0.28     0.78
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 274.37  on 199  degrees of freedom
## Residual deviance: 274.29  on 198  degrees of freedom
## AIC: 278.3
## 
## Number of Fisher Scoring iterations: 3

Jeff uncivil

## 
## Call:
## glm(formula = jeffuncivil ~ instigation_type, family = "binomial", 
##     data = uncivprej4_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)                   -1.046      0.228   -4.59 0.0000045 ***
## instigation_typetraditional    0.764      0.305    2.51     0.012 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 257.72  on 199  degrees of freedom
## Residual deviance: 251.27  on 198  degrees of freedom
## AIC: 255.3
## 
## Number of Fisher Scoring iterations: 4

Paul uncivil

## 
## Call:
## glm(formula = pauluncivil ~ instigation_type, family = "binomial", 
##     data = uncivprej4_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    0.995      0.225    4.42  0.00001 ***
## instigation_typetraditional   -0.505      0.305   -1.65    0.098 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 252.23  on 199  degrees of freedom
## Residual deviance: 249.46  on 198  degrees of freedom
## AIC: 253.5
## 
## Number of Fisher Scoring iterations: 4

Moderation

an asterix means that it reached p > .10 level. Used this benchmark because we are otherwise underpowered for moderation.

Mediation

Binary

Reprimanded

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = reprimanded ~ instigation_type + (nfs), data = uncivprej4_clean, 
##     plot = FALSE)
## 
## The DV (Y) was  reprimanded . The IV (X) was  instigation_type . The mediating variable(s) =  nfs .
## 
## Total effect(c) of  instigation_type  on  reprimanded  =  0.26   S.E. =  0.07  t  =  3.87  df=  198   with p =  0.00015
## Direct effect (c') of  instigation_type  on  reprimanded  removing  nfs  =  0.18   S.E. =  0.06  t  =  2.72  df=  197   with p =  0.0071
## Indirect effect (ab) of  instigation_type  on  reprimanded  through  nfs   =  0.08 
## Mean bootstrapped indirect effect =  0.08  with standard error =  0.03  Lower CI =  0.03    Upper CI =  0.15
## R = 0.44 R2 = 0.19   F = 23.07 on 2 and 197 DF   p-value:  0.000000000000763 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Stay on team

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = stayonteam ~ instigation_type + (nfs), data = uncivprej4_clean, 
##     plot = FALSE)
## 
## The DV (Y) was  stayonteam . The IV (X) was  instigation_type . The mediating variable(s) =  nfs .
## 
## Total effect(c) of  instigation_type  on  stayonteam  =  -0.06   S.E. =  0.07  t  =  -0.85  df=  198   with p =  0.4
## Direct effect (c') of  instigation_type  on  stayonteam  removing  nfs  =  0.05   S.E. =  0.07  t  =  0.74  df=  197   with p =  0.46
## Indirect effect (ab) of  instigation_type  on  stayonteam  through  nfs   =  -0.11 
## Mean bootstrapped indirect effect =  -0.11  with standard error =  0.03  Lower CI =  -0.18    Upper CI =  -0.05
## R = 0.44 R2 = 0.2   F = 24.26 on 2 and 197 DF   p-value:  0.000000000000209 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Voice

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = voice ~ instigation_type + (nfs), data = uncivprej4_clean, 
##     plot = FALSE)
## 
## The DV (Y) was  voice . The IV (X) was  instigation_type . The mediating variable(s) =  nfs .
## 
## Total effect(c) of  instigation_type  on  voice  =  -0.02   S.E. =  0.07  t  =  -0.28  df=  198   with p =  0.78
## Direct effect (c') of  instigation_type  on  voice  removing  nfs  =  0.05   S.E. =  0.07  t  =  0.76  df=  197   with p =  0.45
## Indirect effect (ab) of  instigation_type  on  voice  through  nfs   =  -0.07 
## Mean bootstrapped indirect effect =  -0.07  with standard error =  0.03  Lower CI =  -0.13    Upper CI =  -0.03
## R = 0.3 R2 = 0.09   F = 9.59 on 2 and 197 DF   p-value:  0.00000612 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Jeff Uncivil

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = jeffuncivil ~ instigation_type + (nfs), data = uncivprej4_clean, 
##     plot = FALSE)
## 
## The DV (Y) was  jeffuncivil . The IV (X) was  instigation_type . The mediating variable(s) =  nfs .
## 
## Total effect(c) of  instigation_type  on  jeffuncivil  =  0.17   S.E. =  0.07  t  =  2.56  df=  198   with p =  0.011
## Direct effect (c') of  instigation_type  on  jeffuncivil  removing  nfs  =  0.08   S.E. =  0.06  t  =  1.26  df=  197   with p =  0.21
## Indirect effect (ab) of  instigation_type  on  jeffuncivil  through  nfs   =  0.09 
## Mean bootstrapped indirect effect =  0.09  with standard error =  0.03  Lower CI =  0.04    Upper CI =  0.15
## R = 0.42 R2 = 0.18   F = 21.59 on 2 and 197 DF   p-value:  0.00000000000393 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Paul Uncivil

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = pauluncivil ~ instigation_type + (nfs), data = uncivprej4_clean, 
##     plot = FALSE)
## 
## The DV (Y) was  pauluncivil . The IV (X) was  instigation_type . The mediating variable(s) =  nfs .
## 
## Total effect(c) of  instigation_type  on  pauluncivil  =  -0.11   S.E. =  0.07  t  =  -1.66  df=  198   with p =  0.098
## Direct effect (c') of  instigation_type  on  pauluncivil  removing  nfs  =  -0.09   S.E. =  0.07  t  =  -1.35  df=  197   with p =  0.18
## Indirect effect (ab) of  instigation_type  on  pauluncivil  through  nfs   =  -0.02 
## Mean bootstrapped indirect effect =  -0.02  with standard error =  0.02  Lower CI =  -0.06    Upper CI =  0.02
## R = 0.14 R2 = 0.02   F = 1.99 on 2 and 197 DF   p-value:  0.117 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Controls

Binary

Reprimanded

## 
## Call:
## glm(formula = reprimanded ~ instigation_type + rudeness_1 + rudeness_2 + 
##     genderid_1 + genderid_2 + genderid_3 + learn_1 + learn_2 + 
##     learn_3, family = "binomial", data = data)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -1.988      1.290   -1.54    0.123    
## instigation_typetraditional    0.761      0.338    2.25    0.024 *  
## rudeness_1                     0.387      0.181    2.14    0.032 *  
## rudeness_2                    -0.613      0.145   -4.23 0.000023 ***
## genderid_1                    -0.185      0.215   -0.86    0.391    
## genderid_2                     0.310      0.194    1.60    0.109    
## genderid_3                     0.174      0.143    1.21    0.225    
## learn_1                       -0.036      0.116   -0.31    0.756    
## learn_2                        0.102      0.125    0.81    0.416    
## learn_3                       -0.052      0.133   -0.39    0.696    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 269.20  on 199  degrees of freedom
## Residual deviance: 222.74  on 190  degrees of freedom
## AIC: 242.7
## 
## Number of Fisher Scoring iterations: 4

Stay on team

## 
## Call:
## glm(formula = stayonteam ~ instigation_type + rudeness_1 + rudeness_2 + 
##     genderid_1 + genderid_2 + genderid_3 + learn_1 + learn_2 + 
##     learn_3, family = "binomial", data = data)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  0.812283   1.218985    0.67  0.50518    
## instigation_typetraditional  0.100466   0.327105    0.31  0.75874    
## rudeness_1                  -0.040637   0.164795   -0.25  0.80523    
## rudeness_2                   0.519312   0.134359    3.87  0.00011 ***
## genderid_1                   0.045916   0.203622    0.23  0.82159    
## genderid_2                   0.013044   0.178590    0.07  0.94178    
## genderid_3                   0.062618   0.132778    0.47  0.63721    
## learn_1                     -0.199624   0.110758   -1.80  0.07149 .  
## learn_2                      0.000587   0.118926    0.00  0.99606    
## learn_3                      0.157424   0.126247    1.25  0.21241    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 274.37  on 199  degrees of freedom
## Residual deviance: 244.57  on 190  degrees of freedom
## AIC: 264.6
## 
## Number of Fisher Scoring iterations: 4

Voice

## 
## Call:
## glm(formula = voice ~ instigation_type + rudeness_1 + rudeness_2 + 
##     genderid_1 + genderid_2 + genderid_3 + learn_1 + learn_2 + 
##     learn_3, family = "binomial", data = data)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                  -2.2910     1.2589   -1.82   0.0688 . 
## instigation_typetraditional   0.1259     0.3246    0.39   0.6982   
## rudeness_1                    0.0814     0.1638    0.50   0.6193   
## rudeness_2                    0.3705     0.1275    2.91   0.0037 **
## genderid_1                    0.3751     0.2162    1.74   0.0827 . 
## genderid_2                    0.1874     0.1811    1.04   0.3006   
## genderid_3                   -0.0463     0.1328   -0.35   0.7274   
## learn_1                      -0.0109     0.1094   -0.10   0.9205   
## learn_2                       0.0160     0.1190    0.13   0.8929   
## learn_3                       0.2841     0.1295    2.19   0.0283 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 274.37  on 199  degrees of freedom
## Residual deviance: 247.03  on 190  degrees of freedom
## AIC: 267
## 
## Number of Fisher Scoring iterations: 3

Jeff uncivil

## 
## Call:
## glm(formula = jeffuncivil ~ instigation_type + rudeness_1 + rudeness_2 + 
##     genderid_1 + genderid_2 + genderid_3 + learn_1 + learn_2 + 
##     learn_3, family = "binomial", data = data)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -0.1212     1.3004   -0.09  0.92577    
## instigation_typetraditional   0.3180     0.3498    0.91  0.36340    
## rudeness_1                    0.6176     0.1857    3.33  0.00088 ***
## rudeness_2                   -0.4134     0.1456   -2.84  0.00453 ** 
## genderid_1                   -0.4667     0.2184   -2.14  0.03264 *  
## genderid_2                    0.1283     0.1940    0.66  0.50852    
## genderid_3                    0.0275     0.1471    0.19  0.85182    
## learn_1                       0.2144     0.1220    1.76  0.07896 .  
## learn_2                       0.3424     0.1353    2.53  0.01141 *  
## learn_3                      -0.2854     0.1449   -1.97  0.04891 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 257.72  on 199  degrees of freedom
## Residual deviance: 213.33  on 190  degrees of freedom
## AIC: 233.3
## 
## Number of Fisher Scoring iterations: 4

Paul uncivil

## 
## Call:
## glm(formula = pauluncivil ~ instigation_type + rudeness_1 + rudeness_2 + 
##     genderid_1 + genderid_2 + genderid_3 + learn_1 + learn_2 + 
##     learn_3, family = "binomial", data = data)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -2.1657     1.4633   -1.48  0.13887    
## instigation_typetraditional  -0.5128     0.3675   -1.40  0.16291    
## rudeness_1                   -0.7184     0.1859   -3.86  0.00011 ***
## rudeness_2                   -0.0471     0.1318   -0.36  0.72083    
## genderid_1                   -0.6063     0.2834   -2.14  0.03239 *  
## genderid_2                    0.1232     0.2177    0.57  0.57146    
## genderid_3                    0.3332     0.1517    2.20  0.02806 *  
## learn_1                       0.4820     0.1280    3.77  0.00017 ***
## learn_2                       0.2144     0.1419    1.51  0.13073    
## learn_3                      -0.0690     0.1414   -0.49  0.62556    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 252.23  on 199  degrees of freedom
## Residual deviance: 202.15  on 190  degrees of freedom
## AIC: 222.2
## 
## Number of Fisher Scoring iterations: 5

Multicolinearity

## instigation_type              nfs 
##           1.0612           1.0612
## instigation_type              nfs 
##           1.0612           1.0612
## instigation_type              nfs 
##           1.0612           1.0612

Correlations