Pre-registration is here:
Demographic information
Raw
Age
Gender
## gender_text
## Non-binary/Other Woman
## 1 279
Race
## racef
## White Traditionally Marginalized Multiracial Asian
## 193 35 25 16
## racef
## White Traditionally Marginalized Multiracial Asian
## 0.681979 0.123675 0.088339 0.056537
Failed attention check
## filterout
## Exclude Retain
## 36 244
Clean
Age
vignsexismclean %>% ungroup() %>% dplyr::summarize(mean_age = mean(age, na.rm = TRUE), sd_age = sd(age, na.rm = TRUE))Gender
## gender_text
## Woman
## 243
Race
## racef
## White Traditionally Marginalized Multiracial Asian
## 170 29 19 14
## racef
## White Traditionally Marginalized Multiracial Asian
## 0.699588 0.119342 0.078189 0.057613
Alphas
Need for significance
Status
Rewards
##
## Pearson's product-moment correlation
##
## data: reward1 and reward2
## t = 16.6, df = 241, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.66635 0.78458
## sample estimates:
## cor
## 0.73091
Means + SDs
Analyses
Main effects
Binary
Reprimanded
##
## Call:
## glm(formula = reprimanded ~ instigation_type_rev, family = "binomial",
## data = vignsexismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.164 0.182 0.90 0.37
## instigation_type_revprejudice -1.725 0.301 -5.73 0.00000001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 317.00 on 242 degrees of freedom
## Residual deviance: 279.98 on 241 degrees of freedom
## AIC: 284
##
## Number of Fisher Scoring iterations: 3
Jeff uncivil
##
## Call:
## glm(formula = jeffuncivil ~ instigation_type_rev, family = "binomial",
## data = vignsexismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.197 0.182 1.08 0.28
## instigation_type_revprejudice -2.079 0.324 -6.41 0.00000000014 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 312.04 on 242 degrees of freedom
## Residual deviance: 262.47 on 241 degrees of freedom
## AIC: 266.5
##
## Number of Fisher Scoring iterations: 4
Paul uncivil
##
## Call:
## glm(formula = pauluncivil ~ instigation_type_rev, family = "binomial",
## data = vignsexismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.433 0.185 2.34 0.02 *
## instigation_type_revprejudice 1.248 0.311 4.01 0.000061 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 286.19 on 242 degrees of freedom
## Residual deviance: 268.74 on 241 degrees of freedom
## AIC: 272.7
##
## Number of Fisher Scoring iterations: 4
Mediation
Midpoint analyses
Tables
Means/SDs/Correlations
Means/SDs
Correlations
Main effects
Midpoints
Controls
Likert
| nfs | nfs | status | status | rewards | rewards | socreward | socreward | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 4.16 *** | 0.14 | 28.77 | 241.00 | 3.43 *** | 0.67 | 5.12 | 221.00 | 0.57 *** | 0.14 | 4.14 | 241.00 | 0.98 | 0.60 | 1.64 | 221.00 | 0.09 | 0.12 | 0.74 | 241.00 | 0.29 | 0.54 | 0.53 | 221.00 | 0.34 * | 0.14 | 2.44 | 241.00 | 0.48 | 0.64 | 0.74 | 221.00 |
| age | -0.00 | 0.01 | -0.42 | 221.00 | -0.01 * | 0.01 | -2.01 | 221.00 | -0.01 | 0.01 | -1.78 | 221.00 | -0.01 | 0.01 | -1.71 | 221.00 | ||||||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
| traditional | -1.15 *** | 0.20 | -5.64 | 241.00 | -0.67 ** | 0.21 | -3.24 | 221.00 | -1.14 *** | 0.19 | -5.89 | 241.00 | -0.56 ** | 0.19 | -3.02 | 221.00 | -0.57 *** | 0.17 | -3.45 | 241.00 | -0.20 | 0.17 | -1.18 | 221.00 | -1.08 *** | 0.20 | -5.41 | 241.00 | -0.59 ** | 0.20 | -2.94 | 221.00 |
| learn1 | -0.02 | 0.07 | -0.30 | 221.00 | 0.03 | 0.06 | 0.54 | 221.00 | 0.08 | 0.05 | 1.48 | 221.00 | 0.07 | 0.06 | 1.11 | 221.00 | ||||||||||||||||
| learn2 | -0.01 | 0.08 | -0.09 | 221.00 | -0.16 * | 0.07 | -2.37 | 221.00 | -0.14 * | 0.06 | -2.31 | 221.00 | -0.17 * | 0.07 | -2.25 | 221.00 | ||||||||||||||||
| learn3 | 0.27 ** | 0.09 | 3.17 | 221.00 | 0.21 ** | 0.08 | 2.68 | 221.00 | 0.20 ** | 0.07 | 2.80 | 221.00 | 0.26 ** | 0.08 | 3.15 | 221.00 | ||||||||||||||||
| White | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
|
Traditionally Marginalized |
0.25 | 0.30 | 0.82 | 221.00 | 0.25 | 0.27 | 0.91 | 221.00 | 0.15 | 0.25 | 0.63 | 221.00 | 0.06 | 0.29 | 0.21 | 221.00 | ||||||||||||||||
| Multiracial | 0.10 | 0.36 | 0.28 | 221.00 | 0.10 | 0.32 | 0.32 | 221.00 | 0.26 | 0.29 | 0.90 | 221.00 | 0.25 | 0.35 | 0.72 | 221.00 | ||||||||||||||||
| Asian | 0.22 | 0.41 | 0.53 | 221.00 | 0.43 | 0.37 | 1.18 | 221.00 | 0.31 | 0.34 | 0.94 | 221.00 | 0.23 | 0.40 | 0.58 | 221.00 | ||||||||||||||||
| rudeness1 | -0.20 * | 0.09 | -2.12 | 221.00 | -0.19 * | 0.08 | -2.32 | 221.00 | -0.06 | 0.07 | -0.79 | 221.00 | -0.11 | 0.09 | -1.26 | 221.00 | ||||||||||||||||
| rudeness2 | 0.35 *** | 0.07 | 5.30 | 221.00 | 0.48 *** | 0.06 | 8.11 | 221.00 | 0.32 *** | 0.05 | 5.91 | 221.00 | 0.39 *** | 0.06 | 6.08 | 221.00 | ||||||||||||||||
| Observations | 243 | 232 | 243 | 232 | 243 | 232 | 243 | 232 | ||||||||||||||||||||||||
| R2 / R2 adjusted | 0.117 / 0.113 | 0.304 / 0.273 | 0.126 / 0.122 | 0.398 / 0.371 | 0.047 / 0.043 | 0.253 / 0.219 | 0.108 / 0.105 | 0.305 / 0.274 | ||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
Binary
| reprimanded | reprimanded | jeffuncivil | jeffuncivil | pauluncivil | pauluncivil | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 0.21 *** | 0.05 | -6.50 | Inf | 0.33 | 0.38 | -0.96 | Inf | 0.15 *** | 0.04 | -7.01 | Inf | 0.05 * | 0.06 | -2.45 | Inf | 5.37 *** | 1.34 | 6.73 | Inf | 0.22 | 0.26 | -1.26 | Inf |
| age | 1.00 | 0.01 | 0.21 | Inf | 1.00 | 0.02 | 0.33 | Inf | 0.98 | 0.01 | -1.23 | Inf | ||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
| traditional | 5.61 *** | 1.69 | 5.73 | Inf | 3.00 ** | 1.07 | 3.06 | Inf | 7.99 *** | 2.59 | 6.41 | Inf | 5.04 *** | 1.91 | 4.27 | Inf | 0.29 *** | 0.09 | -4.01 | Inf | 0.29 ** | 0.11 | -3.28 | Inf |
| learn1 | 0.93 | 0.11 | -0.64 | Inf | 1.19 | 0.15 | 1.38 | Inf | 1.47 ** | 0.19 | 3.06 | Inf | ||||||||||||
| learn2 | 1.30 | 0.18 | 1.94 | Inf | 1.36 * | 0.19 | 2.18 | Inf | 1.24 | 0.17 | 1.50 | Inf | ||||||||||||
| learn3 | 0.80 | 0.12 | -1.48 | Inf | 0.69 * | 0.11 | -2.37 | Inf | 0.96 | 0.15 | -0.25 | Inf | ||||||||||||
| White | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
|
Traditionally Marginalized |
0.77 | 0.42 | -0.48 | Inf | 0.91 | 0.52 | -0.17 | Inf | 1.12 | 0.59 | 0.22 | Inf | ||||||||||||
| Multiracial | 0.18 * | 0.15 | -2.13 | Inf | 0.43 | 0.31 | -1.16 | Inf | 0.55 | 0.33 | -1.00 | Inf | ||||||||||||
| Asian | 0.70 | 0.53 | -0.47 | Inf | 0.64 | 0.54 | -0.54 | Inf | 0.42 | 0.30 | -1.23 | Inf | ||||||||||||
| rudeness1 | 1.68 ** | 0.31 | 2.85 | Inf | 1.30 | 0.22 | 1.56 | Inf | 0.49 *** | 0.08 | -4.35 | Inf | ||||||||||||
| rudeness2 | 0.52 *** | 0.08 | -4.42 | Inf | 0.57 *** | 0.08 | -3.87 | Inf | 0.87 | 0.10 | -1.22 | Inf | ||||||||||||
| Observations | 243 | 232 | 243 | 232 | 243 | 232 | ||||||||||||||||||
| R2 Tjur | 0.147 | 0.320 | 0.193 | 0.350 | 0.070 | 0.255 | ||||||||||||||||||
|
||||||||||||||||||||||||
Social Rewards