When to use ANOVA for model comparison

(Use ANOVA when models are nested)

Two linear models are nested if one model is a special case of the other, meaning the smaller model can be obtained by removing terms from the larger one.

Example:

modelA <- lm(y ~ x)
modelB <- lm(y ~ x + z)
anova(modelA, modelB)

ANOVA (F-test) answers:

Is the larger model significantly better? i.e., does adding extra predictors reduce residual variance enough to be statistically meaningful?

We should use ANOVA when:

Models differ only by added or removed predictors

We want a hypothesis test

We assume:

Cannot use ANOVA when models are not nested. - Do not use by the BCox-Box transformation of the explained variable

Example of non-nested:

model1 <- lm(y ~ x1 + x2)
model2 <- lm(y ~ log(x1) + I(x2^2))

These cannot be compared with ANOVA.

When to use AIC (Akaike Information Criterion) for model comparison

AIC is based on information theory, not hypothesis testing.

AIC can compare:

Example:

AIC(model1,model2)

AIC answers:

AIC does NOT give:

It gives a relative measure, not a hypothesis test.

Is not the Adjusted R-squared enough to compare 2 models?

AIC is the standard when comparing models, if:

Adjusted R-squared, if:

LS0tCnRpdGxlOiAiUG91xb7DrXZhbmllIEFub3ZhIGEgQUlDIGtyaXTDqXJpw60gbmEgcG9yb3ZuYW5pZSBkdm9jaCBtb2RlbG92IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKYXV0aG9yOiBWLiBHYXpkYSB1c2luZyBDaGF0R1BUCi0tLQoKIyMgV2hlbiB0byB1c2UgQU5PVkEgZm9yIG1vZGVsIGNvbXBhcmlzb24KKFVzZSBBTk9WQSB3aGVuIG1vZGVscyBhcmUgbmVzdGVkKQoKVHdvIGxpbmVhciBtb2RlbHMgYXJlIG5lc3RlZCBpZiBvbmUgbW9kZWwgaXMgYSBzcGVjaWFsIGNhc2Ugb2YgdGhlIG90aGVyLCBtZWFuaW5nIHRoZSBzbWFsbGVyIG1vZGVsIGNhbiBiZSBvYnRhaW5lZCBieSByZW1vdmluZyB0ZXJtcyBmcm9tIHRoZSBsYXJnZXIgb25lLgoKRXhhbXBsZToKCj4gYGBgCj4gbW9kZWxBIDwtIGxtKHkgfiB4KQo+IG1vZGVsQiA8LSBsbSh5IH4geCArIHopCj4gYW5vdmEobW9kZWxBLCBtb2RlbEIpCj4gYGBgCgoKKipBTk9WQSAoRi10ZXN0KSBhbnN3ZXJzOioqCgpJcyB0aGUgbGFyZ2VyIG1vZGVsIHNpZ25pZmljYW50bHkgYmV0dGVyPyBpLmUuLCBkb2VzIGFkZGluZyBleHRyYSBwcmVkaWN0b3JzIHJlZHVjZSByZXNpZHVhbCB2YXJpYW5jZSBlbm91Z2ggdG8gYmUgc3RhdGlzdGljYWxseSBtZWFuaW5nZnVsPwoKV2Ugc2hvdWxkIHVzZSBBTk9WQSB3aGVuOgoKTW9kZWxzIGRpZmZlciBvbmx5IGJ5IGFkZGVkIG9yIHJlbW92ZWQgcHJlZGljdG9ycwoKV2Ugd2FudCBhIGh5cG90aGVzaXMgdGVzdAoKKipXZSBhc3N1bWU6KioKCi0gTm9ybWFsIGVycm9ycwotIEhvbW9za2VkYXN0aWNpdHkKLSBNb2RlbHMgaGF2ZSB0aGUgc2FtZSBkZXBlbmRlbnQgdmFyaWFibGUKLSBNb2RlbHMgYXJlIGZpdCB1c2luZyBvcmRpbmFyeSBsZWFzdCBzcXVhcmVzCgpDYW5ub3QgdXNlIEFOT1ZBIHdoZW4gbW9kZWxzIGFyZSBub3QgbmVzdGVkLiAtICoqRG8gbm90IHVzZSBieSB0aGUgQkNveC1Cb3ggdHJhbnNmb3JtYXRpb24gb2YgdGhlIGV4cGxhaW5lZCB2YXJpYWJsZSoqCgoqKkV4YW1wbGUgb2Ygbm9uLW5lc3RlZDoqKgoKPiBgYGAKPiBtb2RlbDEgPC0gbG0oeSB+IHgxICsgeDIpCj4gbW9kZWwyIDwtIGxtKHkgfiBsb2coeDEpICsgSSh4Ml4yKSkKPiBgYGAKClRoZXNlIGNhbm5vdCBiZSBjb21wYXJlZCB3aXRoIEFOT1ZBLgoKIyMgV2hlbiB0byB1c2UgQUlDIChBa2Fpa2UgSW5mb3JtYXRpb24gQ3JpdGVyaW9uKSBmb3IgbW9kZWwgY29tcGFyaXNvbgoKQUlDIGlzIGJhc2VkIG9uIGluZm9ybWF0aW9uIHRoZW9yeSwgbm90IGh5cG90aGVzaXMgdGVzdGluZy4KCkFJQyBjYW4gY29tcGFyZToKCi0gbmVzdGVkIG1vZGVscywKLSBub24tbmVzdGVkIG1vZGVscywKLSBtb2RlbHMgd2l0aCBkaWZmZXJlbnQgZnVuY3Rpb25hbCBmb3JtcywKLSBtb2RlbHMgZXN0aW1hdGVkIGJ5IG1heGltdW0gbGlrZWxpaG9vZCAoR0xNLCBQb2lzc29uLCBsb2dpc3RpYyByZWdyZXNzaW9uLCBldGMuKQoKKipFeGFtcGxlOioqCgo+IGBgYAo+IEFJQyhtb2RlbDEsbW9kZWwyKQo+IGBgYAoKCioqQUlDIGFuc3dlcnM6KioKCi0gV2hpY2ggbW9kZWwgaGFzIHRoZSBiZXN0IHRyYWRlLW9mZiBiZXR3ZWVuIGZpdCBhbmQgY29tcGxleGl0eT8KLSBMb3dlciBBSUMgPSBiZXR0ZXIgbW9kZWwuCgpBSUMgZG9lcyBOT1QgZ2l2ZToKCi0gcC12YWx1ZXMKLSBzaWduaWZpY2FuY2UgdGVzdHMKCkl0IGdpdmVzIGEgcmVsYXRpdmUgbWVhc3VyZSwgbm90IGEgaHlwb3RoZXNpcyB0ZXN0LgoKIyMgSXMgbm90IHRoZSBBZGp1c3RlZCBSLXNxdWFyZWQgZW5vdWdoIHRvIGNvbXBhcmUgMiBtb2RlbHM/CgpBSUMgaXMgdGhlIHN0YW5kYXJkIHdoZW4gY29tcGFyaW5nIG1vZGVscywgaWY6CgotIHRlc3RpbmcgdHJhbnNmb3JtYXRpb25zIChsaWtlIGxvZyhZKSwgQm944oCTQ294LCBldGMuKSwgb3IKLSB0aGUgbW9kZWxzIGhhdmUgZGlmZmVyZW50IHNldHMgb2YgcmVncmVzc29ycy4KLSB1c2luZyB0aGUgTGVhc3Qgc3F1YXJlcyBtZXRob2Qgb2YgdGhlIGVzdGltYXRpb24sIGJ1dCBhbHNvIG90aGVyIG1ldGhvZHMgKGUuZy4sIE1heGltdW0gTGlrZWxpaG9vZCkKCkFkanVzdGVkIFItc3F1YXJlZCwgaWY6CgotIG9ubHkgbGluZWFyIG1vZGVscyB3aXRoIHNhbWUgZGVwZW5kZW50IHZhcmlhYmxlIFkKLSBzaW1wbGUgT0xTCg==