title:“HW 8”
author:“Victoria”
date:“2025-11-22”
output:html_document

Problem 1

#Observed counts
observed <- c(R = 244, X = 192)

# Null values
theoritical_prop <- c(0.5,0.5)

Hypothesis:

\(H_0\):\(p_R\) = \(p_X\)= 0.5 \(H_a\):\(p_R\) different from \(p_X\)

# Expected values
expected_values <- theoritical_prop*sum(observed) 
expected_values
## [1] 218 218
# Perform chi-squared goodness-of-fit test
chisq.test(observed)
## 
##  Chi-squared test for given probabilities
## 
## data:  observed
## X-squared = 6.2018, df = 1, p-value = 0.01276

Results: p-value = 0.01276

Conclusion: Because the p-value is less than the standard significance level of 0.05, we reject the null hypothesis. There is significant evidence that R and X are not equally likely in the population.

Problem 2

library(tidyverse)
## Warning: package 'readr' was built under R version 4.5.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.6
## ✔ forcats   1.0.1     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
NutritionStudy <- read_csv("NutritionStudy.csv")
## Rows: 315 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (3): Smoke, Sex, VitaminUse
## dbl (14): ID, Age, Quetelet, Vitamin, Calories, Fat, Fiber, Alcohol, Cholest...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(NutritionStudy)
##        ID             Age           Smoke              Quetelet    
##  Min.   :  1.0   Min.   :19.00   Length:315         Min.   :16.33  
##  1st Qu.: 79.5   1st Qu.:39.00   Class :character   1st Qu.:21.80  
##  Median :158.0   Median :48.00   Mode  :character   Median :24.74  
##  Mean   :158.0   Mean   :50.15                      Mean   :26.16  
##  3rd Qu.:236.5   3rd Qu.:62.50                      3rd Qu.:28.85  
##  Max.   :315.0   Max.   :83.00                      Max.   :50.40  
##     Vitamin         Calories           Fat             Fiber      
##  Min.   :1.000   Min.   : 445.2   Min.   : 14.40   Min.   : 3.10  
##  1st Qu.:1.000   1st Qu.:1338.0   1st Qu.: 53.95   1st Qu.: 9.15  
##  Median :2.000   Median :1666.8   Median : 72.90   Median :12.10  
##  Mean   :1.965   Mean   :1796.7   Mean   : 77.03   Mean   :12.79  
##  3rd Qu.:3.000   3rd Qu.:2100.4   3rd Qu.: 95.25   3rd Qu.:15.60  
##  Max.   :3.000   Max.   :6662.2   Max.   :235.90   Max.   :36.80  
##     Alcohol         Cholesterol       BetaDiet     RetinolDiet    
##  Min.   :  0.000   Min.   : 37.7   Min.   : 214   Min.   :  30.0  
##  1st Qu.:  0.000   1st Qu.:155.0   1st Qu.:1116   1st Qu.: 480.0  
##  Median :  0.300   Median :206.3   Median :1802   Median : 707.0  
##  Mean   :  3.279   Mean   :242.5   Mean   :2186   Mean   : 832.7  
##  3rd Qu.:  3.200   3rd Qu.:308.9   3rd Qu.:2836   3rd Qu.:1037.0  
##  Max.   :203.000   Max.   :900.7   Max.   :9642   Max.   :6901.0  
##    BetaPlasma     RetinolPlasma        Sex             VitaminUse       
##  Min.   :   0.0   Min.   : 179.0   Length:315         Length:315        
##  1st Qu.:  90.0   1st Qu.: 466.0   Class :character   Class :character  
##  Median : 140.0   Median : 566.0   Mode  :character   Mode  :character  
##  Mean   : 189.9   Mean   : 602.8                                        
##  3rd Qu.: 230.0   3rd Qu.: 716.0                                        
##  Max.   :1415.0   Max.   :1727.0                                        
##    PriorSmoke   
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :1.638  
##  3rd Qu.:2.000  
##  Max.   :3.000

Hypothesis: Ho: Vitamin use is associated with sex Ha: Vitamin use is not associated with sex

observed_dataset<- table(NutritionStudy$VitaminUse, NutritionStudy$Sex)
observed_dataset
##             
##              Female Male
##   No             87   24
##   Occasional     77    5
##   Regular       109   13
chisq.test(observed_dataset)
## 
##  Pearson's Chi-squared test
## 
## data:  observed_dataset
## X-squared = 11.071, df = 2, p-value = 0.003944

Results: p-value = 0.003944 Conclusion: Because the p-value is less than the standard significance value of 0.05 we reject the null hypothesis and there is significant evidence that there is an association between Vitamin use and sex.

Problem 3

library(tidyverse)

FishGills3<- read_csv("FishGills3.csv")
## Rows: 90 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Calcium
## dbl (1): GillRate
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(FishGills3)
## # A tibble: 6 × 2
##   Calcium GillRate
##   <chr>      <dbl>
## 1 Low           55
## 2 Low           63
## 3 Low           78
## 4 Low           85
## 5 Low           65
## 6 Low           98

Hypothesis: \(H_0\): \(\mu_low\) = \(\mu_medium\) = \(\mu_high\) \(H_a\): at least one calcium level has a mean gill beat rate that differs from the others

# Perform ANOVA
anova_result <- aov(GillRate ~ Calcium, data = FishGills3)

anova_result
## Call:
##    aov(formula = GillRate ~ Calcium, data = FishGills3)
## 
## Terms:
##                   Calcium Residuals
## Sum of Squares   2037.222 19064.333
## Deg. of Freedom         2        87
## 
## Residual standard error: 14.80305
## Estimated effects may be unbalanced
summary(anova_result)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Calcium      2   2037  1018.6   4.648 0.0121 *
## Residuals   87  19064   219.1                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Results: p-value = 0.121 Conclusion: The p-value is small, indicating strong evidence against the null hypothesis. Overall, this test suggests thatat least one calcium level has a mean gill beat rate that differs from the others.