Question 1

ACTN3 is a gene that encodes alpha-actinin-3, a protein in fast-twitch muscle fibers, important for activities like sprinting and weightlifting. The gene has two main alleles: R (functional) andX (non-functional). The R allele is linked to better performance in strength, speed, and power sports, while the X allele is associated with endurance due to a greater reliance on slow-twitch fibers. However, athletic performance is influenced by various factors, including training, environment, and other genes, making the ACTN3 genotype just one contributing factor. A study examines the ACTN3 genetic alleles R and X, also associated with fast-twitch muscles. Of the 436 people in this sample, 244 were classified as R, and 192 were classified as X. Does the sample provide evidence that the two options are not equally likely? Conduct the test using a chi-square goodness-of-fit test.

observed <- c(244,192)

theoretical <- c(0.5,0.5)

Hypotheses

\(H_0\): \(p_1\) = \(p_2\)

\(H_a\): The two alleles are not equally likely

expected <- theoretical*sum(observed)

expected
## [1] 218 218
chisq.test(observed)
## 
##  Chi-squared test for given probabilities
## 
## data:  observed
## X-squared = 6.2018, df = 1, p-value = 0.01276

Interpret Results

Because the p value(0.01276) is less than 0.05, we reject the null hypothesis. There is significant evidence that the ACTN3 alleles R and X are not equally likely in this sample.

Question 2

Who Is More Likely to Take Vitamins: Males or Females? The dataset NutritionStudy contains, among other things, information about vitamin use and the gender of the participants. Is there a significant association between these two variables? Use the variables VitaminUse and Gender to conduct a chi-square analysis and give the results. (Test for Association)

setwd("C:/Users/Mulut/Desktop/Classes/Data101/HW8")

Nutrition_study <- read.csv("NutritionStudy.csv")

summary(Nutrition_study)
##        ID             Age           Smoke              Quetelet    
##  Min.   :  1.0   Min.   :19.00   Length:315         Min.   :16.33  
##  1st Qu.: 79.5   1st Qu.:39.00   Class :character   1st Qu.:21.80  
##  Median :158.0   Median :48.00   Mode  :character   Median :24.74  
##  Mean   :158.0   Mean   :50.15                      Mean   :26.16  
##  3rd Qu.:236.5   3rd Qu.:62.50                      3rd Qu.:28.85  
##  Max.   :315.0   Max.   :83.00                      Max.   :50.40  
##     Vitamin         Calories           Fat             Fiber      
##  Min.   :1.000   Min.   : 445.2   Min.   : 14.40   Min.   : 3.10  
##  1st Qu.:1.000   1st Qu.:1338.0   1st Qu.: 53.95   1st Qu.: 9.15  
##  Median :2.000   Median :1666.8   Median : 72.90   Median :12.10  
##  Mean   :1.965   Mean   :1796.7   Mean   : 77.03   Mean   :12.79  
##  3rd Qu.:3.000   3rd Qu.:2100.4   3rd Qu.: 95.25   3rd Qu.:15.60  
##  Max.   :3.000   Max.   :6662.2   Max.   :235.90   Max.   :36.80  
##     Alcohol         Cholesterol       BetaDiet     RetinolDiet    
##  Min.   :  0.000   Min.   : 37.7   Min.   : 214   Min.   :  30.0  
##  1st Qu.:  0.000   1st Qu.:155.0   1st Qu.:1116   1st Qu.: 480.0  
##  Median :  0.300   Median :206.3   Median :1802   Median : 707.0  
##  Mean   :  3.279   Mean   :242.5   Mean   :2186   Mean   : 832.7  
##  3rd Qu.:  3.200   3rd Qu.:308.9   3rd Qu.:2836   3rd Qu.:1037.0  
##  Max.   :203.000   Max.   :900.7   Max.   :9642   Max.   :6901.0  
##    BetaPlasma     RetinolPlasma        Sex             VitaminUse       
##  Min.   :   0.0   Min.   : 179.0   Length:315         Length:315        
##  1st Qu.:  90.0   1st Qu.: 466.0   Class :character   Class :character  
##  Median : 140.0   Median : 566.0   Mode  :character   Mode  :character  
##  Mean   : 189.9   Mean   : 602.8                                        
##  3rd Qu.: 230.0   3rd Qu.: 716.0                                        
##  Max.   :1415.0   Max.   :1727.0                                        
##    PriorSmoke   
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :1.638  
##  3rd Qu.:2.000  
##  Max.   :3.000
observed_dataset <- table(Nutrition_study$VitaminUse, Nutrition_study$Sex)

observed_dataset
##             
##              Female Male
##   No             87   24
##   Occasional     77    5
##   Regular       109   13

Hypotheses

\(H_0\): Vitamin use and gender are not associated

\(H_a\): Vitamin use and gender are associated

chisq.test(observed_dataset)
## 
##  Pearson's Chi-squared test
## 
## data:  observed_dataset
## X-squared = 11.071, df = 2, p-value = 0.003944

Interpret Results

Because the p value(0.003944) is less than 0.05, we reject the null hypothesis. There is significant evidence that vitamin use is associated with gender.

Question 3

Most fish use gills for respiration in water, and researchers can observe how fast a fish’s gill cover beats to study ventilation, much like we might observe a person’s breathing rate. Professor Brad Baldwin is interested in how water chemistry might affect gill beat rates. In one experiment, he randomly assigned fish to tanks with different calcium levels. One tank was low in calcium (0.71 mg/L), the second tank had a medium amount (5.24 mg/L), and the third tank had water with a high calcium level (18.24 mg/L). His research team counted gill rates (beats per minute) for samples of 30 fish in each tank. The results are stored in FishGills3. Perform ANOVA test to see if the mean gill rate differs depending on the calcium level of the water.

setwd("C:/Users/Mulut/Desktop/Classes/Data101/HW8")

FishGills3 <- read.csv("FishGills3.csv")

head(FishGills3)
##   Calcium GillRate
## 1     Low       55
## 2     Low       63
## 3     Low       78
## 4     Low       85
## 5     Low       65
## 6     Low       98

Hypotheses

\(H_0\): \(\mu_1\) = \(\mu_2\) = \(\mu_3\)

\(H_a\): At least one mean is different

anova_result <- aov(GillRate ~ Calcium, data = FishGills3)

anova_result
## Call:
##    aov(formula = GillRate ~ Calcium, data = FishGills3)
## 
## Terms:
##                   Calcium Residuals
## Sum of Squares   2037.222 19064.333
## Deg. of Freedom         2        87
## 
## Residual standard error: 14.80305
## Estimated effects may be unbalanced
summary(anova_result)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Calcium      2   2037  1018.6   4.648 0.0121 *
## Residuals   87  19064   219.1                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpret Results

Since the p-value (0.0121) is below 0.05, we reject the null hypothesis and conclude that mean gill beat rates differ significantly across the three calcium levels.