1 1. Introduction

In this project, I build a spam vs ham (non-spam) email classifier using the SpamAssassin public corpus.

Because Posit Cloud has limited memory, I use a smaller sample of emails and a reduced vocabulary (only frequent words) to keep the document–term matrix compact and avoid crashing.

Main steps:

  1. Load labeled emails (spam and ham).
  2. Take a manageable sample of emails from each class.
  3. Clean and tokenize the text.
  4. Build a reduced document–term matrix using only frequent words.
  5. Train a Naive Bayes classifier.
  6. Evaluate performance on a test set.
  7. Classify a few new messages.

2 2. Load the SpamAssassin Data

From the SpamAssassin public corpus I downloaded:

In this Posit project I extracted them into a Data/ folder so the structure is:

Each folder contains many raw email files.

# Folders that contain the unzipped emails
ham_dir  <- "Data/easy_ham"
spam_dir <- "Data/spam"

# Quick check: how many files do we have in each folder?
length(list.files(ham_dir))
## [1] 2501
length(list.files(spam_dir))
## [1] 501
# Helper function to read all files from a folder into a data frame
read_email_folder <- function(path, label) {
  files <- list.files(path, full.names = TRUE)

  texts <- lapply(files, function(f) {
    # Some files may fail to read; use tryCatch to avoid stopping
    tryCatch(
      paste(readLines(f, warn = FALSE, encoding = "latin1"), collapse = " "),
      error = function(e) NA_character_
    )
  })

  tibble(
    text  = unlist(texts),
    label = label
  ) %>%
    dplyr::filter(!is.na(text))
}

ham_df  <- read_email_folder(ham_dir,  "ham")
spam_df <- read_email_folder(spam_dir, "spam")

emails_raw <- dplyr::bind_rows(ham_df, spam_df)

dim(emails_raw)
## [1] 3002    2
head(emails_raw)
## # A tibble: 6 × 2
##   text                                                                     label
##   <chr>                                                                    <chr>
## 1 "From exmh-workers-admin@redhat.com  Thu Aug 22 12:36:23 2002 Return-Pa… ham  
## 2 "From Steve_Burt@cursor-system.com  Thu Aug 22 12:46:39 2002 Return-Pat… ham  
## 3 "From timc@2ubh.com  Thu Aug 22 13:52:59 2002 Return-Path: <timc@2ubh.c… ham  
## 4 "From irregulars-admin@tb.tf  Thu Aug 22 14:23:39 2002 Return-Path: <ir… ham  
## 5 "From Stewart.Smith@ee.ed.ac.uk  Thu Aug 22 14:44:26 2002 Return-Path: … ham  
## 6 "From martin@srv0.ems.ed.ac.uk  Thu Aug 22 14:54:39 2002 Return-Path: <… ham
table(emails_raw$label)
## 
##  ham spam 
## 2501  501

3 3. Take a Smaller Sample to Save Memory

Using all emails can make the term matrix huge. For this assignment, a sample of a few hundred emails per class is enough to demonstrate the classifier.

Here I sample up to 300 ham and 300 spam using base R; this avoids any tricky dplyr evaluation issues and keeps memory use low.

set.seed(123)

max_n <- 300

# Sample ham
if (nrow(ham_df) > max_n) {
  ham_small <- ham_df[sample(nrow(ham_df), max_n), ]
} else {
  ham_small <- ham_df
}

# Sample spam
if (nrow(spam_df) > max_n) {
  spam_small <- spam_df[sample(nrow(spam_df), max_n), ]
} else {
  spam_small <- spam_df
}

emails_small <- dplyr::bind_rows(ham_small, spam_small)

dim(emails_small)
## [1] 600   2
table(emails_small$label)
## 
##  ham spam 
##  300  300

All subsequent analysis uses emails_small, which is much lighter in memory than the full corpus.

4 4. Create a Corpus and Clean the Text

Next, I convert the sampled emails into a tm corpus and apply basic pre-processing:

I keep stopwords (common words like “the” and “and”) to ensure short messages still have some tokens.

if (nrow(emails_small) == 0) {
  stop("No emails are available after sampling.")
}

corpus <- VCorpus(VectorSource(emails_small$text))

clean_corpus <- corpus %>%
  tm_map(content_transformer(tolower)) %>%
  tm_map(removeNumbers) %>%
  tm_map(removePunctuation) %>%
  tm_map(stripWhitespace)

length(clean_corpus)
## [1] 600

5 5. Build a Reduced Document–Term Matrix

First, I build a full DocumentTermMatrix just to compute term frequencies. Then I keep only frequent terms (words that appear in at least 15 emails). This dramatically reduces the number of columns and saves memory.

# Full DTM (used only to find frequent terms)
dtm_full <- DocumentTermMatrix(clean_corpus)

dtm_full
## <<DocumentTermMatrix (documents: 600, terms: 32820)>>
## Non-/sparse entries: 117817/19574183
## Sparsity           : 99%
## Maximal term length: 245
## Weighting          : term frequency (tf)
# Keep only terms that appear in at least 15 emails
freq_terms <- findFreqTerms(dtm_full, lowfreq = 15)
length(freq_terms)  # number of terms we keep
## [1] 1621
# If, for some reason, there are no frequent terms (very tiny sample),
# fall back to using all terms.
if (length(freq_terms) == 0) {
  freq_terms <- Terms(dtm_full)
}
head(freq_terms)
## [1] "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
## [2] "ability"                                                                     
## [3] "able"                                                                        
## [4] "about"                                                                       
## [5] "above"                                                                       
## [6] "absolutely"
# Build a smaller DTM using only the frequent terms
dtm <- DocumentTermMatrix(
  clean_corpus,
  control = list(dictionary = freq_terms)
)

dtm
## <<DocumentTermMatrix (documents: 600, terms: 1621)>>
## Non-/sparse entries: 67992/904608
## Sparsity           : 93%
## Maximal term length: 76
## Weighting          : term frequency (tf)

6 6. Convert the DTM to a Data Frame

Now I convert the reduced DTM to a matrix and then a data frame, and add the label column.

dtm_mat <- as.matrix(dtm)
dtm_df  <- as.data.frame(dtm_mat)

# Attach labels (one per email)
dtm_df$label <- emails_small$label

# Check class balance in the reduced data
table(dtm_df$label)
## 
##  ham spam 
##  300  300

7 7. Train/Test Split

I randomly split the data into 70% training and 30% test sets.

set.seed(123)

n <- nrow(dtm_df)
train_idx <- sample(seq_len(n), size = floor(0.7 * n))

train_df <- dtm_df[train_idx, ]
test_df  <- dtm_df[-train_idx, ]

# Separate predictors and labels
train_x <- train_df %>% dplyr::select(-label)
train_y <- train_df$label

test_x  <- test_df %>% dplyr::select(-label)
test_y  <- test_df$label

dim(train_x)
## [1]  420 1621
dim(test_x)
## [1]  180 1621

8 8. Train Naive Bayes Classifier

I train a Naive Bayes classifier using the naiveBayes() function from the e1071 package.

nb_model <- naiveBayes(x = train_x, y = train_y, laplace = 1)

nb_model
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = train_x, y = train_y, laplace = 1)
## 
## A-priori probabilities:
## train_y
##       ham      spam 
## 0.5190476 0.4809524 
## 
## Conditional probabilities:
##        aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        ability
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.03465347 0.1833549
## 
##        able
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.04950495 0.2951090
## 
##        about
## train_y      [,1]     [,2]
##    ham  0.4862385 0.975409
##    spam 0.4356436 1.001649
## 
##        above
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2213120
##    spam 0.1188119 0.3675149
## 
##        absolutely
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.113861386 0.59173910
## 
##        abuse
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2426356
##    spam 0.01980198 0.1396654
## 
##        accept
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.054455446 0.22747795
## 
##        access
## train_y       [,1]      [,2]
##    ham  0.07798165 0.5416918
##    spam 0.16831683 0.6397964
## 
##        according
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3150692
##    spam 0.02475248 0.1557559
## 
##        account
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.23762376 1.1254497
## 
##        accounts
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.04950495 0.2392458
## 
##        across
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2498044
##    spam 0.01980198 0.1396654
## 
##        act
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.118811881 0.44132610
## 
##        actiondhttpresponseresponseasp
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        actually
## train_y       [,1]      [,2]
##    ham  0.13302752 0.5220581
##    spam 0.04950495 0.2174588
## 
##        adam
## train_y       [,1]      [,2]
##    ham  0.06880734 0.4893704
##    spam 0.00000000 0.0000000
## 
##        add
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3602683
##    spam 0.07920792 0.3052825
## 
##        added
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.03960396 0.2793308
## 
##        additional
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.049504950 0.2392458
## 
##        address
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3728402
##    spam 0.54950495 1.7816156
## 
##        addresses
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.38118812 3.0351576
## 
##        adult
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.4880978
## 
##        advantage
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04950495 0.2777392
## 
##        advertisement
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.03960396 0.219488
## 
##        advertising
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.173267327 0.8549989
## 
##        africa
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.064356436 0.52860168
## 
##        african
## train_y       [,1]      [,2]
##    ham  0.01834862 0.2709142
##    spam 0.05940594 0.3945344
## 
##        after
## train_y      [,1]      [,2]
##    ham  0.1330275 0.4458834
##    spam 0.2178218 0.8476360
## 
##        again
## train_y      [,1]      [,2]
##    ham  0.1100917 0.4036572
##    spam 0.1485149 0.7776241
## 
##        against
## train_y       [,1]      [,2]
##    ham  0.07339450 0.3243262
##    spam 0.07920792 0.2885258
## 
##        age
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.10891089 0.8684748
## 
##        agent
## train_y       [,1]      [,2]
##    ham  0.01834862 0.2138802
##    spam 0.01980198 0.1985118
## 
##        agents
## train_y       [,1]      [,2]
##    ham  0.01376147 0.2031856
##    spam 0.03465347 0.2519321
## 
##        ago
## train_y        [,1]       [,2]
##    ham  0.055045872 0.24793571
##    spam 0.004950495 0.07035975
## 
##        air
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.05445545 0.2274780
## 
##        aligncenter
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.4059406 1.28658
## 
##        aligncenterfont
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3217822 1.995124
## 
##        aligncenterspan
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        aligndcenter
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3514851 1.407239
## 
##        aligndcenterbfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.5405574
## 
##        aligndcenterfont
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1485149 0.5622651
## 
##        aligndcenterimg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.3711162
## 
##        aligndright
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.6083827
## 
##        aligndrightbfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.6967205
## 
##        aligndrightfont
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.6230234
## 
##        aligndrightnbsptd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1972672
## 
##        alignleft
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2920792 2.136822
## 
##        alignleftfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.2777392
## 
##        alignmiddle
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1485149 1.635344
## 
##        alignright
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1237624 0.7258755
## 
##        all
## train_y      [,1]     [,2]
##    ham  0.5229358 1.021396
##    spam 1.1930693 2.280646
## 
##        allow
## train_y      [,1]      [,2]
##    ham  0.0412844 0.1994051
##    spam 0.1336634 0.3691532
## 
##        almost
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.03960396 0.2194880
## 
##        alone
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.01980198 0.1396654
## 
##        along
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.04455446 0.2503630
## 
##        already
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.08910891 0.3025270
## 
##        alsa
## train_y       [,1]      [,2]
##    ham  0.06422018 0.6959425
##    spam 0.00000000 0.0000000
## 
##        also
## train_y      [,1]      [,2]
##    ham  0.2431193 0.6992909
##    spam 0.3316832 0.9639709
## 
##        alt
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2673267 2.640636
## 
##        altd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02475248 0.1557559
## 
##        although
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2213120
##    spam 0.06930693 0.3929079
## 
##        alttd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1188119 1.688634
## 
##        always
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4408054
##    spam 0.07920792 0.3211660
## 
##        amavisdmilter
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.049504950 0.23924581
## 
##        america
## train_y       [,1]      [,2]
##    ham  0.07339450 0.4839626
##    spam 0.08415842 0.9238932
## 
##        american
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.05445545 0.3889071
## 
##        amount
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.099009901 0.42332375
## 
##        amp
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1089109 0.4438858
## 
##        and
## train_y     [,1]      [,2]
##    ham  3.981651  9.053331
##    spam 6.727723 13.593609
## 
##        annuity
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.4925183
## 
##        another
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3195990
##    spam 0.08910891 0.3888754
## 
##        answer
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2498044
##    spam 0.04950495 0.2777392
## 
##        any
## train_y      [,1]      [,2]
##    ham  0.2981651 0.7728673
##    spam 0.7178218 1.7319299
## 
##        anyone
## train_y      [,1]      [,2]
##    ham  0.1376147 0.4597713
##    spam 0.1435644 0.5029101
## 
##        anything
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2877522
##    spam 0.05940594 0.2757814
## 
##        anyway
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.00000000 0.0000000
## 
##        anywhere
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.054455446 0.24838774
## 
##        appears
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2322642
##    spam 0.03465347 0.2709613
## 
##        application
## train_y       [,1]      [,2]
##    ham  0.07339450 0.6103021
##    spam 0.05940594 0.4307065
## 
##        applications
## train_y        [,1]       [,2]
##    ham  0.082568807 0.73275492
##    spam 0.004950495 0.07035975
## 
##        approved
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.084158416 0.29565096
## 
##        aptget
## train_y      [,1]      [,2]
##    ham  0.1100917 0.8296293
##    spam 0.0000000 0.0000000
## 
##        aqueous
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07425743 1.055396
## 
##        archive
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.01980198 0.1396654
## 
##        are
## train_y      [,1]     [,2]
##    ham  0.9036697 1.718666
##    spam 1.8910891 3.330549
## 
##        area
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.08910891 0.6779984
## 
##        arial
## train_y    [,1]     [,2]
##    ham  0.00000 0.000000
##    spam 1.09901 4.019863
## 
##        around
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3160405
##    spam 0.07425743 0.2628408
## 
##        ask
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.06930693 0.2910754
## 
##        asmtp
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.21745876
## 
##        assist
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.31672584
## 
##        assistance
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1435644 0.4827195
## 
##        association
## train_y       [,1]      [,2]
##    ham  0.03211009 0.3641493
##    spam 0.03465347 0.1833549
## 
##        assume
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2228350
##    spam 0.03465347 0.2887391
## 
##        attained
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.4053725
## 
##        aug
## train_y     [,1]     [,2]
##    ham  1.903670 3.984403
##    spam 2.509901 3.172080
## 
##        august
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.02475248 0.1557559
## 
##        authnlegwnnet
## train_y      [,1]      [,2]
##    ham  0.2201835 0.8298331
##    spam 0.0000000 0.0000000
## 
##        auto
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.3588687
## 
##        aux
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.04455446 0.566911
## 
##        available
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3590046
##    spam 0.19306931 0.5530121
## 
##        average
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2228350
##    spam 0.05940594 0.5148884
## 
##        away
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.10891089 0.4967755
## 
##        back
## train_y      [,1]     [,2]
##    ham  0.1055046 0.362870
##    spam 0.2475248 1.333875
## 
##        background
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.02475248 0.2897609
## 
##        backgroundattachment
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        backgroundcolor
## train_y       [,1]       [,2]
##    ham  0.00000000 0.00000000
##    spam 0.00990099 0.09925589
## 
##        backgroundposition
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        backgroundrepeat
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        backup
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.28357496
## 
##        bad
## train_y       [,1]      [,2]
##    ham  0.07339450 0.2945409
##    spam 0.02475248 0.2326169
## 
##        bank
## train_y       [,1]      [,2]
##    ham  0.04587156 0.4581132
##    spam 0.17821782 0.6895963
## 
##        base
## train_y       [,1]      [,2]
##    ham  0.04587156 0.4268699
##    spam 0.11386139 0.3336903
## 
##        based
## train_y       [,1]      [,2]
##    ham  0.07798165 0.4166705
##    spam 0.10891089 0.5259626
## 
##        beat
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.03960396 0.1955114
## 
##        because
## train_y      [,1]      [,2]
##    ham  0.3165138 0.8510242
##    spam 0.3217822 0.8525180
## 
##        become
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3749885
##    spam 0.09405941 0.5335177
## 
##        been
## train_y      [,1]      [,2]
##    ham  0.3577982 0.8853434
##    spam 0.3910891 1.0368915
## 
##        before
## train_y      [,1]      [,2]
##    ham  0.1238532 0.4274884
##    spam 0.1831683 0.7061308
## 
##        begin
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3753548
##    spam 0.01485149 0.1212589
## 
##        behind
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2915472
##    spam 0.01980198 0.1716295
## 
##        being
## train_y      [,1]      [,2]
##    ham  0.1376147 0.4065793
##    spam 0.1633663 0.7905188
## 
##        believe
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.12871287 0.5020033
## 
##        below
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.376237624 0.85053668
## 
##        ben
## train_y        [,1]       [,2]
##    ham  0.036697248 0.42776033
##    spam 0.004950495 0.07035975
## 
##        benefit
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.06930693 0.3234585
## 
##        bengreenmindupmerchantscom
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.01980198 0.281439
## 
##        best
## train_y      [,1]      [,2]
##    ham  0.1422018 0.6671756
##    spam 0.3910891 0.9977686
## 
##        better
## train_y      [,1]      [,2]
##    ham  0.1146789 0.4191995
##    spam 0.1188119 0.4843240
## 
##        between
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4612403
##    spam 0.04455446 0.3637766
## 
##        bfont
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2277228 1.068604
## 
##        bgcolor
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1089109 0.465763
## 
##        bgcolord
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1584158 0.6423321
## 
##        bgcolordcccccc
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06435644 0.3743211
## 
##        bgcolordcfab
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 1.125756
## 
##        bgcolordddnbsptd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.7940471
## 
##        bgcolordffffff
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1584158 0.6186597
## 
##        bgcolorffffff
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2920792 1.592531
## 
##        big
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3853586
##    spam 0.03465347 0.2087326
## 
##        biggest
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.02970297 0.1701884
## 
##        bill
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3800282
##    spam 0.06435644 0.2835750
## 
##        billion
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.04455446 0.2695030
## 
##        bills
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.049504950 0.35621665
## 
##        bit
## train_y      [,1]      [,2]
##    ham  0.4633028 0.6302893
##    spam 0.5247525 0.6401812
## 
##        black
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.262376238 2.61748242
## 
##        blockquotefont
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3910891 5.558421
## 
##        blue
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.02970297 0.2425177
## 
##        bmn
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        body
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.66831683 0.9994457
## 
##        boingboing
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.00000000 0.0000000
## 
##        bonus
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.5496841
## 
##        book
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.03465347 0.3213577
## 
##        border
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.9455446 2.979533
## 
##        bordera
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02475248 0.1849598
## 
##        borderatd
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1485149 0.8796894
## 
##        borderbottom
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        bordercolor
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1039604 0.4279817
## 
##        bordercolord
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1237624 0.5367395
## 
##        borderd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.6287129 1.925417
## 
##        borderdtd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.2110793
## 
##        borderleft
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        bordertd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2376238 2.609392
## 
##        bordertop
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        botanical
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1287129 1.829354
## 
##        both
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3439692
##    spam 0.09405941 0.3248641
## 
##        bottle
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.079207921 0.74223232
## 
##        bottom
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.074257426 0.49818646
## 
##        box
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.09900990 0.5554784
## 
##        brbr
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1237624 0.9513173
## 
##        bug
## train_y       [,1]      [,2]
##    ham  0.09633028 0.9623729
##    spam 0.00000000 0.0000000
## 
##        build
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3365137
##    spam 0.09405941 0.3541711
## 
##        built
## train_y        [,1]       [,2]
##    ham  0.055045872 0.31358966
##    spam 0.004950495 0.07035975
## 
##        bulk
## train_y      [,1]      [,2]
##    ham  0.7064220 0.4951889
##    spam 0.2326733 0.6311340
## 
##        bush
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.000000000 0.00000000
## 
##        business
## train_y      [,1]     [,2]
##    ham  0.1009174 0.394547
##    spam 0.7029703 3.369588
## 
##        but
## train_y      [,1]     [,2]
##    ham  0.8165138 1.395616
##    spam 0.3861386 1.392734
## 
##        buy
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.24257426 0.7826281
## 
##        bythinkgeek
## train_y        [,1]       [,2]
##    ham  0.050458716 0.23947864
##    spam 0.004950495 0.07035975
## 
##        cable
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.4925183
## 
##        california
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2322642
##    spam 0.04455446 0.2068360
## 
##        call
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.22772277 0.6523008
## 
##        called
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3033446
##    spam 0.02970297 0.2425177
## 
##        came
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2412376
##    spam 0.07425743 0.4454644
## 
##        can
## train_y      [,1]     [,2]
##    ham  0.5550459 1.123358
##    spam 0.9950495 2.126585
## 
##        canada
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.47923740
## 
##        cannot
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.08910891 0.3185480
## 
##        cant
## train_y       [,1]      [,2]
##    ham  0.14220183 0.4325029
##    spam 0.05445545 0.2676690
## 
##        capital
## train_y       [,1]      [,2]
##    ham  0.11009174 1.4261511
##    spam 0.03960396 0.3842882
## 
##        car
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.108910891 0.62931678
## 
##        card
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.18316832 0.9930674
## 
##        care
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2322642
##    spam 0.04950495 0.2951090
## 
##        career
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.04455446 0.2296332
## 
##        case
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2479357
##    spam 0.11881188 0.6807536
## 
##        cash
## train_y       [,1]      [,2]
##    ham  0.03669725 0.4168481
##    spam 0.25247525 1.1199764
## 
##        cause
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.044554455 0.32012909
## 
##        cbyi
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1237624 0.7787793
## 
##        cdo
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.2174588
## 
##        cdrom
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.029702970 0.1972672
## 
##        cds
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.054455446 0.49071473
## 
##        cdt
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4127968
##    spam 0.11386139 0.5480912
## 
##        cell
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.01980198 0.1396654
## 
##        cellpadding
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.5841584 1.872914
## 
##        cellpaddingd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3069307 1.019634
## 
##        cellspacing
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.5940594 1.937728
## 
##        cellspacingd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.4009901 1.331815
## 
##        center
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.39603960 1.3462992
## 
##        central
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.04455446 0.2503630
## 
##        cest
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2676169
##    spam 0.01485149 0.2110793
## 
##        change
## train_y      [,1]      [,2]
##    ham  0.1467890 0.5485748
##    spam 0.1287129 0.6094344
## 
##        changed
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.01485149 0.1570158
## 
##        charge
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.074257426 0.3145410
## 
##        charsetdiso
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.2174588
## 
##        charsetiso
## train_y       [,1]      [,2]
##    ham  0.09174312 0.2893273
##    spam 0.56435644 0.5356141
## 
##        charsetusascii
## train_y      [,1]      [,2]
##    ham  0.5183486 0.5008132
##    spam 0.1584158 0.3660376
## 
##        charsetwindows
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.14356436 0.3515186
## 
##        check
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3677308
##    spam 0.13861386 0.7983777
## 
##        chicago
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.40827845
## 
##        children
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.05445545 0.3758969
## 
##        china
## train_y        [,1]       [,2]
##    ham  0.022935780 0.22397047
##    spam 0.004950495 0.07035975
## 
##        choice
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.04950495 0.5062050
## 
##        chris
## train_y      [,1]      [,2]
##    ham  0.1284404 0.6665257
##    spam 0.0000000 0.0000000
## 
##        cipher
## train_y        [,1]       [,2]
##    ham  0.045871560 0.20968799
##    spam 0.004950495 0.07035975
## 
##        city
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.08910891 0.3888754
## 
##        claim
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.10891089 0.4657630
## 
##        claimed
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.06435644 0.2459965
## 
##        class
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.014851485 0.15701579
## 
##        classarial
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        classified
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.7189203
## 
##        classmsobodytext
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.5795218
## 
##        classmsonormal
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08415842 1.006371
## 
##        clean
## train_y        [,1]       [,2]
##    ham  0.211009174 0.61581903
##    spam 0.004950495 0.07035975
## 
##        click
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.50000000 0.9370749
## 
##        client
## train_y       [,1]      [,2]
##    ham  0.03211009 0.4116687
##    spam 0.03465347 0.3213577
## 
##        clients
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.04455446 0.2503630
## 
##        cna
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        coach’invest
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.7035975
## 
##        coast
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.01980198 0.1716295
## 
##        code
## train_y      [,1]      [,2]
##    ham  0.1376147 0.5074176
##    spam 0.1237624 0.5367395
## 
##        collaboration
## train_y       [,1]      [,2]
##    ham  0.06880734 0.9503041
##    spam 0.00000000 0.0000000
## 
##        collapse
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.084158416 0.52579864
## 
##        college
## train_y       [,1]       [,2]
##    ham  0.05504587 0.49578616
##    spam 0.00990099 0.09925589
## 
##        color
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.658415842 2.16189374
## 
##        colord
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3861386 1.641928
## 
##        colordcc
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01980198 0.1716295
## 
##        colordff
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2128713 1.069353
## 
##        colordffff
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.5711527
## 
##        colordffffff
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1930693 0.8507249
## 
##        colorff
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1386139 0.8925307
## 
##        colorffffff
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.3484221
## 
##        colorfont
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08910891 1.197834
## 
##        colspan
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3415842 1.268506
## 
##        colspana
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.2887391
## 
##        colspand
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2376238 1.177302
## 
##        colspandinput
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.3353101
## 
##        colspanimg
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1287129 1.320812
## 
##        com
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.05445545 0.3758969
## 
##        come
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3160405
##    spam 0.10891089 0.5884627
## 
##        comes
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.04455446 0.3041914
## 
##        coming
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.05445545 0.3484221
## 
##        command
## train_y      [,1]      [,2]
##    ham  0.0412844 0.3632194
##    spam 0.0000000 0.0000000
## 
##        comment
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2285947
##    spam 0.00000000 0.0000000
## 
##        commercial
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.24838774
## 
##        commission
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.044554455 0.22963317
## 
##        commissions
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.4971719
## 
##        communication
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.074257426 0.35886872
## 
##        communications
## train_y        [,1]       [,2]
##    ham  0.146788991 0.92408319
##    spam 0.004950495 0.07035975
## 
##        community
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.06930693 0.5860302
## 
##        companies
## train_y       [,1]      [,2]
##    ham  0.07798165 0.7670469
##    spam 0.18811881 0.8190866
## 
##        company
## train_y       [,1]      [,2]
##    ham  0.07798165 0.5331167
##    spam 0.37623762 0.9500090
## 
##        companys
## train_y        [,1]       [,2]
##    ham  0.032110092 0.30941620
##    spam 0.004950495 0.07035975
## 
##        competitive
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.009900990 0.09925589
## 
##        complete
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.11881188 1.0816160
## 
##        completely
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04950495 0.2592080
## 
##        computer
## train_y      [,1]     [,2]
##    ham  0.1330275 1.166234
##    spam 0.2821782 0.984749
## 
##        conference
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3162746
##    spam 0.00000000 0.0000000
## 
##        confidential
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3097674
## 
##        congo
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.5871219
## 
##        contact
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3168088
##    spam 0.2574257 0.8598677
## 
##        contains
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.227722772 2.61408808
## 
##        content
## train_y       [,1]      [,2]
##    ham  0.06422018 0.4658915
##    spam 0.05445545 0.2483877
## 
##        contentclass
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.21745876
## 
##        contentdisposition
## train_y       [,1]      [,2]
##    ham  0.12385321 0.4686286
##    spam 0.01980198 0.1396654
## 
##        contentdtexthtml
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08415842 0.278315
## 
##        contenttexthtml
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.2734495
## 
##        contenttransferencoding
## train_y      [,1]      [,2]
##    ham  0.3807339 0.4960632
##    spam 0.7277228 0.5555005
## 
##        contenttype
## train_y     [,1]      [,2]
##    ham  1.036697 0.5984097
##    spam 1.123762 0.6383512
## 
##        continue
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.07425743 0.4341523
## 
##        contract
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.059405941 0.38171600
## 
##        contracts
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.074257426 0.35886872
## 
##        control
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.10891089 0.3705849
## 
##        copy
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2335349
##    spam 0.07425743 0.4105944
## 
##        copyright
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2285947
##    spam 0.01980198 0.1716295
## 
##        corporate
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.02970297 0.262231
## 
##        corporation
## train_y       [,1]      [,2]
##    ham  0.06880734 0.4182908
##    spam 0.03960396 0.2194880
## 
##        cost
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2213120
##    spam 0.1683168 0.5913019
## 
##        could
## train_y      [,1]      [,2]
##    ham  0.2293578 0.5537144
##    spam 0.1435644 0.5766460
## 
##        couldnt
## train_y       [,1]       [,2]
##    ham  0.06422018 0.29668613
##    spam 0.00990099 0.09925589
## 
##        count
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07920792 0.7877567
## 
##        country
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2322642
##    spam 0.21287129 0.8099092
## 
##        courier
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.004950495 0.07035975
## 
##        course
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3221026
##    spam 0.05940594 0.2932671
## 
##        cpuosdncom
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3279559
##    spam 0.00000000 0.0000000
## 
##        craig
## train_y       [,1]      [,2]
##    ham  0.01834862 0.2138802
##    spam 0.02475248 0.3517988
## 
##        crankslacknet
## train_y       [,1]    [,2]
##    ham  0.06880734 0.45013
##    spam 0.00000000 0.00000
## 
##        create
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3150692
##    spam 0.03465347 0.1833549
## 
##        created
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.02475248 0.2326169
## 
##        credit
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.163366337 0.80300713
## 
##        current
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3074629
##    spam 0.08415842 0.2956510
## 
##        currently
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2213120
##    spam 0.1287129 0.4270311
## 
##        custom
## train_y       [,1]      [,2]
##    ham  0.07798165 0.8249405
##    spam 0.02475248 0.1849598
## 
##        customer
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2023516
##    spam 0.07425743 0.3299792
## 
##        customers
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3562560
##    spam 0.07920792 0.4274922
## 
##        cut
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.05445545 0.2274780
## 
##        cvs
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2843157
##    spam 0.00000000 0.0000000
## 
##        cwgexmhdeepeddycom
## train_y       [,1]    [,2]
##    ham  0.06422018 0.47568
##    spam 0.00000000 0.00000
## 
##        daily
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.04455446 0.3041914
## 
##        data
## train_y       [,1]     [,2]
##    ham  0.19724771 1.172886
##    spam 0.07425743 0.314541
## 
##        database
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3069469
##    spam 0.06930693 0.3234585
## 
##        datapower
## train_y      [,1]     [,2]
##    ham  0.1513761 2.235042
##    spam 0.0000000 0.000000
## 
##        date
## train_y     [,1]      [,2]
##    ham  1.371560 0.5634966
##    spam 1.044554 0.2503630
## 
##        david
## train_y        [,1]       [,2]
##    ham  0.059633028 0.33411807
##    spam 0.004950495 0.07035975
## 
##        day
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3654242
##    spam 0.30198020 1.2549984
## 
##        days
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.23267327 0.7055725
## 
##        deal
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.11386139 0.4013732
## 
##        dear
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.133663366 0.36915319
## 
##        death
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.03465347 0.1833549
## 
##        debian
## train_y       [,1]      [,2]
##    ham  0.36238532 0.8324401
##    spam 0.04455446 0.3201291
## 
##        dec
## train_y      [,1]      [,2]
##    ham  0.1605505 1.3011529
##    spam 0.1287129 0.9374822
## 
##        decide
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.04455446 0.2296332
## 
##        decided
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.05445545 0.3025677
## 
##        deliveredto
## train_y     [,1]      [,2]
##    ham  1.435780 0.5663405
##    spam 0.970297 0.2805625
## 
##        deliverydate
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.05445545 0.2274780
## 
##        department
## train_y       [,1]      [,2]
##    ham  0.01376147 0.2031856
##    spam 0.07425743 0.4672676
## 
##        des
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1633663 2.321872
## 
##        deserve
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.02475248 0.1849598
## 
##        designed
## train_y       [,1]       [,2]
##    ham  0.05504587 0.47683408
##    spam 0.00990099 0.09925589
## 
##        details
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.04950495 0.2777392
## 
##        developers
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        development
## train_y       [,1]      [,2]
##    ham  0.06422018 0.5218759
##    spam 0.03465347 0.2087326
## 
##        device
## train_y       [,1]      [,2]
##    ham  0.06880734 0.7118739
##    spam 0.00000000 0.0000000
## 
##        did
## train_y       [,1]      [,2]
##    ham  0.11009174 0.4036572
##    spam 0.09405941 0.5047677
## 
##        didnt
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3628700
##    spam 0.05445545 0.3025677
## 
##        different
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3200286
##    spam 0.09405941 0.4528125
## 
##        digital
## train_y       [,1]      [,2]
##    ham  0.08715596 0.5316873
##    spam 0.01485149 0.1212589
## 
##        dimeboxbmccom
## train_y      [,1]      [,2]
##    ham  0.1100917 0.6344844
##    spam 0.0000000 0.0000000
## 
##        dinosaurs
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        direct
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1435644 0.5852101
## 
##        directly
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.04455446 0.2068360
## 
##        director
## train_y       [,1]      [,2]
##    ham  0.04128440 0.3083212
##    spam 0.02970297 0.1701884
## 
##        directories
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.44700978
## 
##        directory
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.02970297 0.2210534
## 
##        discover
## train_y       [,1]      [,2]
##    ham  0.01376147 0.2031856
##    spam 0.04950495 0.3959054
## 
##        discuss
## train_y       [,1]       [,2]
##    ham  0.10550459 0.36286999
##    spam 0.00990099 0.09925589
## 
##        discussion
## train_y       [,1]      [,2]
##    ham  0.20183486 0.4022933
##    spam 0.02970297 0.1701884
## 
##        display
## train_y       [,1]       [,2]
##    ham  0.02293578 0.17812802
##    spam 0.00990099 0.09925589
## 
##        div
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.5643564 2.778438
## 
##        doctype
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.2369702
## 
##        documents
## train_y       [,1]      [,2]
##    ham  0.03211009 0.3094162
##    spam 0.03465347 0.2709613
## 
##        does
## train_y      [,1]      [,2]
##    ham  0.2431193 0.5844162
##    spam 0.2277228 0.7581227
## 
##        doesnt
## train_y       [,1]      [,2]
##    ham  0.11009174 0.3418424
##    spam 0.01485149 0.1212589
## 
##        dogmaslashnullorg
## train_y      [,1]      [,2]
##    ham  1.2660550 0.4921916
##    spam 0.7772277 0.5772436
## 
##        doing
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3417496
##    spam 0.07920792 0.3052825
## 
##        dollars
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.2079208 0.9805758
## 
##        domain
## train_y      [,1]      [,2]
##    ham  0.0733945 0.4839626
##    spam 0.2029703 1.3689489
## 
##        done
## train_y       [,1]      [,2]
##    ham  0.11926606 0.6542984
##    spam 0.05445545 0.2483877
## 
##        dont
## train_y      [,1]      [,2]
##    ham  0.3348624 0.8105157
##    spam 0.3118812 0.8503774
## 
##        down
## train_y      [,1]      [,2]
##    ham  0.1146789 0.4610798
##    spam 0.1980198 0.9412578
## 
##        drive
## train_y       [,1]      [,2]
##    ham  0.09174312 0.6001733
##    spam 0.02970297 0.1972672
## 
##        drives
## train_y       [,1]     [,2]
##    ham  0.08715596 1.158706
##    spam 0.00000000 0.000000
## 
##        drops
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.069306931 0.98503656
## 
##        due
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.09405941 0.3940659
## 
##        during
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2826753
##    spam 0.10891089 0.8854938
## 
##        dvd
## train_y       [,1]      [,2]
##    ham  0.08715596 1.0502228
##    spam 0.01485149 0.1570158
## 
##        dvds
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2877522
##    spam 0.00990099 0.1407195
## 
##        each
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.30693069 1.6795082
## 
##        earn
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.074257426 0.31454096
## 
##        easily
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3293709
##    spam 0.12376238 0.3726064
## 
##        easy
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3011063
##    spam 0.16831683 0.5476191
## 
##        ebay
## train_y        [,1]       [,2]
##    ham  0.009174312 0.13545709
##    spam 0.004950495 0.07035975
## 
##        echostar
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        economy
## train_y       [,1]       [,2]
##    ham  0.02293578 0.17812802
##    spam 0.00990099 0.09925589
## 
##        edt
## train_y      [,1]      [,2]
##    ham  0.6376147 1.0698455
##    spam 0.5297030 0.6553332
## 
##        effort
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.04455446 0.2695030
## 
##        eggs
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.000000000 0.00000000
## 
##        egp
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        egwn
## train_y      [,1]      [,2]
##    ham  0.2018349 0.6038252
##    spam 0.0000000 0.0000000
## 
##        egwnnet
## train_y      [,1]      [,2]
##    ham  0.2385321 0.8247226
##    spam 0.0000000 0.0000000
## 
##        either
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.05445545 0.2483877
## 
##        else
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2758628
##    spam 0.02475248 0.1557559
## 
##        email
## train_y      [,1]     [,2]
##    ham  0.3807339 0.829744
##    spam 1.7326733 4.526079
## 
##        emails
## train_y       [,1]      [,2]
##    ham  0.03211009 0.3512665
##    spam 0.39108911 1.9343761
## 
##        encodingutf
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        end
## train_y       [,1]      [,2]
##    ham  0.19266055 0.6852907
##    spam 0.07920792 0.3363003
## 
##        engineering
## train_y        [,1]       [,2]
##    ham  0.077981651 0.87902940
##    spam 0.004950495 0.07035975
## 
##        engines
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.094059406 0.63564466
## 
##        enough
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2734383
##    spam 0.02970297 0.1701884
## 
##        enter
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.02475248 0.1849598
## 
##        enterprise
## train_y        [,1]       [,2]
##    ham  0.077981651 0.69783837
##    spam 0.004950495 0.07035975
## 
##        entire
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.084158416 0.31202522
## 
##        enus
## train_y      [,1]      [,2]
##    ham  0.1330275 0.4948686
##    spam 0.0000000 0.0000000
## 
##        envelopefrom
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07425743 0.3145410
## 
##        error
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4612403
##    spam 0.11881188 0.3243709
## 
##        errorsto
## train_y      [,1]      [,2]
##    ham  0.6192661 0.4960632
##    spam 0.1386139 0.3464016
## 
##        esmtp
## train_y     [,1]     [,2]
##    ham  3.573394 1.570649
##    spam 2.247525 0.966153
## 
##        est
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.7850789
## 
##        etc
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2213120
##    spam 0.05940594 0.4640677
## 
##        european
## train_y       [,1]      [,2]
##    ham  0.06422018 0.7531835
##    spam 0.00000000 0.0000000
## 
##        even
## train_y      [,1]      [,2]
##    ham  0.1743119 0.5654253
##    spam 0.1980198 0.5904683
## 
##        events
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04950495 0.3115117
## 
##        ever
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2807242
##    spam 0.10891089 0.4208731
## 
##        every
## train_y      [,1]      [,2]
##    ham  0.1055046 0.5702833
##    spam 0.2772277 1.0754503
## 
##        everything
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.06930693 0.3076933
## 
##        exactly
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.05445545 0.2274780
## 
##        example
## train_y       [,1]     [,2]
##    ham  0.04128440 0.221312
##    spam 0.04455446 0.269503
## 
##        excellent
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.22747795
## 
##        except
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.01485149 0.1570158
## 
##        exchange
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.16336634 0.3965580
## 
##        exim
## train_y       [,1]      [,2]
##    ham  0.42660550 0.7955107
##    spam 0.07425743 0.3855999
## 
##        exist
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3606495
##    spam 0.01485149 0.1570158
## 
##        exmh
## train_y     [,1]      [,2]
##    ham  0.266055 0.9420265
##    spam 0.000000 0.0000000
## 
##        exmhp
## train_y       [,1]      [,2]
##    ham  0.05504587 0.4035525
##    spam 0.00000000 0.0000000
## 
##        exmhusers
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        exmhusersadminredhatcom
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        exmhusersadminspamassassintaintorg
## train_y      [,1]     [,2]
##    ham  0.1376147 0.629064
##    spam 0.0000000 0.000000
## 
##        exmhuserslistmanredhatcom
## train_y       [,1]     [,2]
##    ham  0.09174312 0.419376
##    spam 0.00000000 0.000000
## 
##        exmhuserslistmanspamassassintaintorg
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        exmhusersredhatcom
## train_y      [,1]     [,2]
##    ham  0.1926606 0.910533
##    spam 0.0000000 0.000000
## 
##        exmhusersspamassassintaintorg
## train_y     [,1]     [,2]
##    ham  0.233945 1.071346
##    spam 0.000000 0.000000
## 
##        exmhworkersadminspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.1238532 0.5982153
##    spam 0.0000000 0.0000000
## 
##        exmhworkerslistmanredhatcom
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3988102
##    spam 0.00000000 0.0000000
## 
##        exmhworkersredhatcom
## train_y      [,1]      [,2]
##    ham  0.1743119 0.8676897
##    spam 0.0000000 0.0000000
## 
##        exmhworkersspamassassintaintorg
## train_y      [,1]     [,2]
##    ham  0.1605505 0.778101
##    spam 0.0000000 0.000000
## 
##        experience
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3459302
##    spam 0.03960396 0.1955114
## 
##        express
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2457090
##    spam 0.18316832 0.4126288
## 
##        extended
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.103960396 0.70116049
## 
##        face
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.06435644 0.5191045
## 
##        face±¼¸²span
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1336634 1.899713
## 
##        facearial
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.4950495 2.111912
## 
##        facearialfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.9893278
## 
##        facecourier
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        faced
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.3201291
## 
##        facedarial
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.3861386 1.70145
## 
##        facedtahoma
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2376238 1.719936
## 
##        facedtimes
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.03960396 0.219488
## 
##        facedverdana
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.4257426 1.827629
## 
##        facetahoma
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.3782483
## 
##        facetimes
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.5932148
## 
##        faceverdana
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.8069307 4.054032
## 
##        faceverdanaarial
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        faceverdanafont
## train_y     [,1]     [,2]
##    ham  0.000000 0.000000
##    spam 0.519802 7.387774
## 
##        fact
## train_y       [,1]      [,2]
##    ham  0.07339450 0.4544997
##    spam 0.07920792 0.4389759
## 
##        factors
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07425743 0.7850789
## 
##        failed
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2023516
##    spam 0.03465347 0.2519321
## 
##        fall
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3323419
##    spam 0.04455446 0.2068360
## 
##        family
## train_y       [,1]      [,2]
##    ham  0.07798165 0.6356328
##    spam 0.08415842 0.3566658
## 
##        familysansserif
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1089109 1.296002
## 
##        far
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2537088
##    spam 0.05445545 0.3338379
## 
##        fast
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2426356
##    spam 0.05940594 0.2571092
## 
##        fastest
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.05940594 0.2571092
## 
##        father
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.064356436 0.46874112
## 
##        fax
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.27227723 1.356805
## 
##        featurepacked
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.4014652
## 
##        feb
## train_y      [,1]     [,2]
##    ham  0.1880734 1.197711
##    spam 0.0000000 0.000000
## 
##        federal
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.108910891 0.52596256
## 
##        fee
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.02970297 0.1701884
## 
##        feel
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.10891089 0.4866576
## 
##        fees
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.03960396 0.2194880
## 
##        fetchmail
## train_y      [,1]      [,2]
##    ham  0.9908257 0.1917858
##    spam 0.9306931 0.2546063
## 
##        few
## train_y      [,1]      [,2]
##    ham  0.1284404 0.3617907
##    spam 0.1831683 0.8110640
## 
##        ffffc
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        fields
## train_y        [,1]       [,2]
##    ham  0.073394495 1.01787184
##    spam 0.004950495 0.07035975
## 
##        figure
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2213120
##    spam 0.02475248 0.1557559
## 
##        file
## train_y       [,1]      [,2]
##    ham  0.13302752 0.4948686
##    spam 0.03960396 0.2966074
## 
##        files
## train_y       [,1]     [,2]
##    ham  0.13761468 0.498253
##    spam 0.04455446 0.206836
## 
##        fill
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1633663 0.4439136
## 
##        finally
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.08415842 0.3424328
## 
##        financial
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.18811881 0.6723075
## 
##        find
## train_y      [,1]      [,2]
##    ham  0.1238532 0.4053556
##    spam 0.2079208 0.6037500
## 
##        finding
## train_y       [,1]       [,2]
##    ham  0.03211009 0.17669820
##    spam 0.00990099 0.09925589
## 
##        fine
## train_y       [,1]       [,2]
##    ham  0.04128440 0.22131197
##    spam 0.00990099 0.09925589
## 
##        first
## train_y      [,1]      [,2]
##    ham  0.2293578 0.8328844
##    spam 0.2079208 0.8383451
## 
##        five
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.084158416 0.32758203
## 
##        floppy
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02475248 0.1557559
## 
##        folder
## train_y       [,1]      [,2]
##    ham  0.07798165 0.4382323
##    spam 0.00000000 0.0000000
## 
##        follow
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.123762376 0.66879985
## 
##        following
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2479357
##    spam 0.23762376 1.0710902
## 
##        font
## train_y     [,1]     [,2]
##    ham  0.000000 0.000000
##    spam 1.485149 3.871349
## 
##        fontbfont
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.04950495 0.327093
## 
##        fontfamily
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2524752 1.759302
## 
##        fontfont
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2871287 1.362881
## 
##        fontifont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.2793308
## 
##        fontp
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.0990099 0.359794
## 
##        fontsize
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1237624 0.7326974
## 
##        fonttd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06435644 0.3006077
## 
##        for
## train_y     [,1]     [,2]
##    ham  6.215596 3.702575
##    spam 7.391089 6.877067
## 
##        force
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.02970297 0.1701884
## 
##        foreign
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.089108911 0.42552888
## 
##        forged
## train_y      [,1]      [,2]
##    ham  0.0412844 0.1994051
##    spam 0.1237624 0.3726064
## 
##        fork
## train_y      [,1]      [,2]
##    ham  0.1100917 0.3920747
##    spam 0.0000000 0.0000000
## 
##        forkadminxentcom
## train_y     [,1]     [,2]
##    ham  1.027523 1.777788
##    spam 0.000000 0.000000
## 
##        forkspamassassintaintorg
## train_y      [,1]     [,2]
##    ham  0.7431193 1.315653
##    spam 0.0000000 0.000000
## 
##        forkxentcom
## train_y      [,1]     [,2]
##    ham  0.6192661 1.114213
##    spam 0.0000000 0.000000
## 
##        form
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.49504950 1.116353
## 
##        format
## train_y       [,1]      [,2]
##    ham  0.06422018 0.4852712
##    spam 0.07920792 0.3363003
## 
##        formatflowed
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.00000000 0.0000000
## 
##        forteanaowneryahoogroupscom
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        forteanaunsubscribeegroupscom
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        fortune
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.07425743 0.3299792
## 
##        forward
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.06435644 0.2459965
## 
##        found
## train_y       [,1]      [,2]
##    ham  0.28440367 0.6524218
##    spam 0.05445545 0.2856518
## 
##        four
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.05445545 0.3624199
## 
##        france
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.03960396 0.4329878
## 
##        free
## train_y      [,1]      [,2]
##    ham  0.1651376 0.4802795
##    spam 0.9702970 2.2984115
## 
##        freshrpms
## train_y      [,1]      [,2]
##    ham  0.1055046 0.3225289
##    spam 0.0000000 0.0000000
## 
##        fri
## train_y     [,1]     [,2]
##    ham  1.045872 2.482697
##    spam 1.034653 1.995963
## 
##        friend
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.079207921 0.33630028
## 
##        friends
## train_y       [,1]      [,2]
##    ham  0.27981651 0.5076883
##    spam 0.06930693 0.3076933
## 
##        from
## train_y     [,1]     [,2]
##    ham  8.889908 3.288969
##    spam 8.237624 2.667842
## 
##        frontpage
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.1833549
## 
##        full
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.09405941 0.3398337
## 
##        fully
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.07425743 0.3855999
## 
##        fun
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.03465347 0.2519321
## 
##        fund
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.153465347 0.67743507
## 
##        funds
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.059405941 0.35469228
## 
##        further
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.19306931 0.6208255
## 
##        future
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2734383
##    spam 0.19306931 0.4431361
## 
##        game
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2436788
##    spam 0.01485149 0.2110793
## 
##        garrigues
## train_y       [,1]      [,2]
##    ham  0.07798165 0.4687188
##    spam 0.00000000 0.0000000
## 
##        gary
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4511385
##    spam 0.00000000 0.0000000
## 
##        garymcanadacom
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3118321
##    spam 0.00000000 0.0000000
## 
##        gecko
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2537088
##    spam 0.00000000 0.0000000
## 
##        geege
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3401065
##    spam 0.00000000 0.0000000
## 
##        geek
## train_y        [,1]       [,2]
##    ham  0.055045872 0.24793571
##    spam 0.004950495 0.07035975
## 
##        general
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.11881188 0.4181725
## 
##        generation
## train_y       [,1]      [,2]
##    ham  0.05963303 0.6863541
##    spam 0.05940594 0.7768002
## 
##        get
## train_y      [,1]      [,2]
##    ham  0.4311927 0.9094179
##    spam 0.7475248 2.2082205
## 
##        gets
## train_y       [,1]      [,2]
##    ham  0.04128440 0.1994051
##    spam 0.01485149 0.1212589
## 
##        getting
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3074629
##    spam 0.01485149 0.1212589
## 
##        give
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4014781
##    spam 0.12871287 0.4606585
## 
##        given
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.06930693 0.3528823
## 
##        gmt
## train_y      [,1]      [,2]
##    ham  0.1513761 0.6368289
##    spam 0.1237624 0.6460979
## 
##        gnulinux
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2712651
##    spam 0.00000000 0.0000000
## 
##        gnupg
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.00000000 0.0000000
## 
##        goes
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2213120
##    spam 0.03960396 0.3129316
## 
##        going
## train_y       [,1]      [,2]
##    ham  0.10091743 0.4172536
##    spam 0.08910891 0.5296955
## 
##        good
## train_y      [,1]      [,2]
##    ham  0.1743119 0.4770114
##    spam 0.1584158 0.5227686
## 
##        got
## train_y       [,1]      [,2]
##    ham  0.12385321 0.3438463
##    spam 0.08415842 0.3424328
## 
##        government
## train_y       [,1]     [,2]
##    ham  0.03211009 0.260938
##    spam 0.25247525 2.137237
## 
##        grant
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1039604 1.477555
## 
##        grants
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.1980198 2.81439
## 
##        great
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2537088
##    spam 0.14851485 0.3961541
## 
##        group
## train_y      [,1]      [,2]
##    ham  0.2201835 0.5973490
##    spam 0.2376238 0.6932297
## 
##        groups
## train_y       [,1]      [,2]
##    ham  0.15596330 0.5200906
##    spam 0.01485149 0.1570158
## 
##        growing
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2752875
##    spam 0.09405941 0.3812318
## 
##        guarantee
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.084158416 0.37035217
## 
##        guaranteed
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.133663366 0.44269128
## 
##        guardian
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.00000000 0.0000000
## 
##        guide
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1386139 1.230052
## 
##        habeas
## train_y       [,1]      [,2]
##    ham  0.07798165 0.5331167
##    spam 0.00000000 0.0000000
## 
##        had
## train_y      [,1]      [,2]
##    ham  0.2385321 0.8840531
##    spam 0.2178218 1.4633429
## 
##        hal
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3590046
##    spam 0.00000000 0.0000000
## 
##        half
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3341181
##    spam 0.05445545 0.3758969
## 
##        hand
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.01980198 0.1396654
## 
##        happen
## train_y       [,1]     [,2]
##    ham  0.04128440 0.221312
##    spam 0.04455446 0.206836
## 
##        happy
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2412376
##    spam 0.06435644 0.4357379
## 
##        hard
## train_y       [,1]      [,2]
##    ham  0.11926606 0.5796037
##    spam 0.02970297 0.1972672
## 
##        hardware
## train_y        [,1]       [,2]
##    ham  0.064220183 0.41348757
##    spam 0.004950495 0.07035975
## 
##        has
## train_y      [,1]     [,2]
##    ham  0.5504587 1.468478
##    spam 0.5346535 1.590171
## 
##        have
## train_y      [,1]     [,2]
##    ham  0.8990826 1.380876
##    spam 1.5792079 3.523364
## 
##        having
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3253999
##    spam 0.04950495 0.2777392
## 
##        head
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.46039604 0.8291432
## 
##        health
## train_y       [,1]      [,2]
##    ham  0.03211009 0.4116687
##    spam 0.08415842 0.4436916
## 
##        heard
## train_y       [,1]      [,2]
##    ham  0.04128440 0.1994051
##    spam 0.02475248 0.1557559
## 
##        heaven
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2807242
##    spam 0.01485149 0.1570158
## 
##        height
## train_y    [,1]     [,2]
##    ham  0.00000 0.000000
##    spam 1.70297 6.214322
## 
##        heightbfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.4962794
## 
##        heightd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.7722772 2.631161
## 
##        heightdbr
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.2210534
## 
##        heightdtd
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1089109 0.7248399
## 
##        heightfont
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1188119 1.347835
## 
##        heightimg
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1039604 0.4826174
## 
##        heighttd
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1287129 1.085072
## 
##        held
## train_y       [,1]      [,2]
##    ham  0.04128440 0.3632194
##    spam 0.04455446 0.2068360
## 
##        helo
## train_y      [,1]      [,2]
##    ham  0.1422018 0.3629865
##    spam 0.1138614 0.3482807
## 
##        helouswsflistsourceforgenet
## train_y       [,1]      [,2]
##    ham  0.13302752 0.3536655
##    spam 0.01980198 0.1396654
## 
##        help
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3221026
##    spam 0.33663366 0.9902734
## 
##        helvetica
## train_y     [,1]     [,2]
##    ham  0.000000 0.000000
##    spam 1.277228 4.202863
## 
##        her
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2690350
##    spam 0.10891089 0.6213609
## 
##        herba
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.09405941 1.336835
## 
##        here
## train_y      [,1]      [,2]
##    ham  0.2018349 0.4947618
##    spam 0.5792079 0.9955940
## 
##        herea
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1336634 0.5790329
## 
##        hettinga
## train_y       [,1]      [,2]
##    ham  0.08256881 0.4320872
##    spam 0.00000000 0.0000000
## 
##        hextab
## train_y       [,1]     [,2]
##    ham  0.09174312 1.354571
##    spam 0.00000000 0.000000
## 
##        hidden
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.2777392
## 
##        high
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.07920792 0.3507822
## 
##        higher
## train_y        [,1]       [,2]
##    ham  0.050458716 0.30694687
##    spam 0.004950495 0.07035975
## 
##        his
## train_y      [,1]      [,2]
##    ham  0.1284404 0.5531796
##    spam 0.2524752 1.1199764
## 
##        hit
## train_y       [,1]      [,2]
##    ham  0.09174312 1.0949510
##    spam 0.02970297 0.1701884
## 
##        home
## train_y      [,1]     [,2]
##    ham  0.0412844 0.221312
##    spam 0.3663366 1.450495
## 
##        hope
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.044554455 0.22963317
## 
##        host
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.07920792 0.3211660
## 
##        hostinsuranceiqcom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        hotmailcom
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2335349
##    spam 0.03465347 0.2087326
## 
##        hour
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2524978
##    spam 0.05445545 0.2856518
## 
##        hours
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.15346535 0.4899110
## 
##        how
## train_y      [,1]      [,2]
##    ham  0.2431193 0.5999796
##    spam 0.5346535 1.6333853
## 
##        however
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3919938
##    spam 0.06930693 0.3800347
## 
##        hrefhttpadfarmmediaplexcomadckfont
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.09405941 1.336835
## 
##        hrefhttpwwwjeweldivecomslefreakindexhtmlimg
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        hspace
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.4483302
## 
##        html
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3573225
##    spam 0.69801980 1.0664005
## 
##        httpamavisorg
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.049504950 0.23924581
## 
##        httpaptfreshrpmsnet
## train_y       [,1]     [,2]
##    ham  0.09174312 1.354571
##    spam 0.00000000 0.000000
## 
##        httpboingboingnet
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.00000000 0.0000000
## 
##        httpdocsyahoocominfoterms
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        httpequivcontenttype
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.2734495
## 
##        httpequivdcontenttype
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1188119 0.3243709
## 
##        httplistsfreshrpmsnetmailmanlistinforpmlist
## train_y      [,1]      [,2]
##    ham  0.1100917 0.3418424
##    spam 0.0000000 0.0000000
## 
##        httplistsfreshrpmsnetmailmanlistinforpmzzzlist
## train_y      [,1]      [,2]
##    ham  0.2018349 0.6038252
##    spam 0.0000000 0.0000000
## 
##        httplistsfreshrpmsnetpipermailrpmzzzlist
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        httpsexamplesourceforgenetlistslistinforazorusers
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3988102
##    spam 0.00000000 0.0000000
## 
##        httpsexamplesourceforgenetlistslistinfospamassassintalk
## train_y      [,1]     [,2]
##    ham  0.1651376 0.584181
##    spam 0.0000000 0.000000
## 
##        httpslistmanredhatcommailmanlistinfoexmhusers
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        httpslistmanspamassassintaintorgmailmanlistinfoexmhusers
## train_y       [,1]     [,2]
##    ham  0.09174312 0.419376
##    spam 0.00000000 0.000000
## 
##        httpslistmanspamassassintaintorgmailmanlistinfoexmhworkers
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3988102
##    spam 0.00000000 0.0000000
## 
##        httpslistmanspamassassintaintorgmailmanprivateexmhusers
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        httpslistssourceforgenetlistslistinfospamassassintalk
## train_y      [,1]      [,2]
##    ham  0.0733945 0.2613831
##    spam 0.0000000 0.0000000
## 
##        httpswwwinphoniccomrasprsourceforgerefcodevs
## train_y       [,1]       [,2]
##    ham  0.05963303 0.25603113
##    spam 0.00990099 0.09925589
## 
##        httpthinkgeekcomsf
## train_y        [,1]       [,2]
##    ham  0.050458716 0.23947864
##    spam 0.004950495 0.07035975
## 
##        httpwwwadclickwspcfmospk
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1188119 0.7023362
## 
##        httpwwwgeocrawlercomredirsfphplistspamassassintalk
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2712651
##    spam 0.00000000 0.0000000
## 
##        httpwwwinsuranceiqcomoptout
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.3185867
## 
##        httpwwwlinuxiemailmanlistinfoilug
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3785792
##    spam 0.12376238 0.5081717
## 
##        httpwwwlinuxiemailmanlistinfosocial
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06435644 0.4241665
## 
##        httpwwwnewsisfreecomclick
## train_y       [,1]      [,2]
##    ham  0.09174312 0.2893273
##    spam 0.00000000 0.0000000
## 
##        httpxentcommailmanlistinfofork
## train_y      [,1]      [,2]
##    ham  0.5321101 0.9314654
##    spam 0.0000000 0.0000000
## 
##        httpxentcompipermailfork
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        hubfreebsdorg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.7275531
## 
##        huge
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.07920792 0.3052825
## 
##        hughes
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.000000000 0.00000000
## 
##        hundred
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.059405941 0.29326714
## 
##        hundreds
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.14356436 0.5127073
## 
##        idea
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2807242
##    spam 0.05940594 0.3403768
## 
##        ideas
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.02970297 0.1701884
## 
##        ill
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3753548
##    spam 0.03465347 0.2313429
## 
##        ilug
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2498044
##    spam 0.07425743 0.2628408
## 
##        ilugadminlinuxie
## train_y      [,1]      [,2]
##    ham  0.1467890 0.7538007
##    spam 0.2970297 1.0513631
## 
##        iluglinuxie
## train_y      [,1]     [,2]
##    ham  0.2201835 1.146888
##    spam 0.4009901 1.425636
## 
##        image
## train_y       [,1]      [,2]
##    ham  0.04128440 0.6095569
##    spam 0.01980198 0.1716295
## 
##        imap
## train_y      [,1]      [,2]
##    ham  0.9816514 0.1345175
##    spam 0.7029703 0.4580850
## 
##        img
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.37128713 1.5081099
## 
##        immediate
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.09900990 0.3733658
## 
##        immediately
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.103960396 0.37863877
## 
##        importance
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2213120
##    spam 0.1930693 0.3956876
## 
##        important
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.09900990 0.5279256
## 
##        inc
## train_y       [,1]      [,2]
##    ham  0.08256881 0.5700423
##    spam 0.03465347 0.2313429
## 
##        include
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.11386139 0.3622840
## 
##        included
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04455446 0.3201291
## 
##        includes
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.183168317 0.81717500
## 
##        including
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3853586
##    spam 0.08415842 0.3703522
## 
##        income
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.178217822 0.79671015
## 
##        increase
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.12376238 0.4982853
## 
##        independent
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07920792 0.3211660
## 
##        individuals
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.069306931 0.40537252
## 
##        industry
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3162746
##    spam 0.01980198 0.1716295
## 
##        info
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3838196
##    spam 0.14851485 0.6048912
## 
##        information
## train_y      [,1]      [,2]
##    ham  0.1972477 0.8383612
##    spam 0.6584158 1.0543223
## 
##        inline
## train_y       [,1]      [,2]
##    ham  0.12844037 0.4722906
##    spam 0.01485149 0.1212589
## 
##        input
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.45049505 2.3393720
## 
##        inquiry
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.034653465 0.20873256
## 
##        inreplyto
## train_y      [,1]      [,2]
##    ham  0.4220183 0.5395608
##    spam 0.0000000 0.0000000
## 
##        inset
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.000000000 0.00000000
## 
##        install
## train_y      [,1]      [,2]
##    ham  0.1192661 0.5796037
##    spam 0.0000000 0.0000000
## 
##        installed
## train_y        [,1]       [,2]
##    ham  0.050458716 0.29154723
##    spam 0.004950495 0.07035975
## 
##        instant
## train_y       [,1]      [,2]
##    ham  0.05045872 0.4422656
##    spam 0.03960396 0.2793308
## 
##        instead
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2658735
##    spam 0.08415842 0.3703522
## 
##        instructions
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.138613861 0.66211936
## 
##        insurance
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1336634 0.5526557
## 
##        intended
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.7966638
## 
##        interactive
## train_y       [,1]      [,2]
##    ham  0.04128440 0.3756925
##    spam 0.02475248 0.2326169
## 
##        interest
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2335349
##    spam 0.10396040 0.3513785
## 
##        interested
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.202970297 2.0572384
## 
##        internal
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.01485149 0.1570158
## 
##        international
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3162746
##    spam 0.08415842 0.4436916
## 
##        internet
## train_y      [,1]      [,2]
##    ham  0.1467890 0.6342845
##    spam 0.5148515 1.3279533
## 
##        intmxcorpredhatcom
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.00000000 0.0000000
## 
##        intmxcorpspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.2614679 0.8481379
##    spam 0.0000000 0.0000000
## 
##        into
## train_y      [,1]      [,2]
##    ham  0.2889908 0.6678723
##    spam 0.2722772 0.7465501
## 
##        intro
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 1.125756
## 
##        invest
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.069306931 0.33849023
## 
##        investment
## train_y       [,1]      [,2]
##    ham  0.01834862 0.2138802
##    spam 0.23762376 0.8598104
## 
##        investors
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.069306931 0.3528823
## 
##        invoked
## train_y       [,1]      [,2]
##    ham  0.22935780 0.4630699
##    spam 0.05940594 0.2369702
## 
##        involved
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.05940594 0.2932671
## 
##        irish
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3820531
##    spam 0.21287129 0.6061317
## 
##        isnt
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2758628
##    spam 0.01980198 0.1396654
## 
##        issue
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2285947
##    spam 0.02475248 0.2897609
## 
##        issued
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.3140316
## 
##        ist
## train_y     [,1]      [,2]
##    ham  1.766055 0.6112193
##    spam 1.450495 0.7726833
## 
##        its
## train_y      [,1]      [,2]
##    ham  0.5275229 1.1325410
##    spam 0.2772277 0.9631913
## 
##        ive
## train_y       [,1]      [,2]
##    ham  0.12385321 0.4381358
##    spam 0.04455446 0.3041914
## 
##        jaa
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2436788
##    spam 0.04950495 0.3270930
## 
##        jalapeno
## train_y      [,1]      [,2]
##    ham  1.5504587 0.8367838
##    spam 0.9851485 0.9998892
## 
##        java
## train_y        [,1]       [,2]
##    ham  0.050458716 0.44226561
##    spam 0.004950495 0.07035975
## 
##        jmasonorg
## train_y       [,1]      [,2]
##    ham  0.71559633 0.4521682
##    spam 0.01980198 0.1396654
## 
##        jmexmhjmasonorg
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.00000000 0.0000000
## 
##        jmjmasonorg
## train_y       [,1]       [,2]
##    ham  0.55504587 0.55912806
##    spam 0.00990099 0.09925589
## 
##        jmlocalhost
## train_y       [,1]      [,2]
##    ham  1.71559633 0.7001217
##    spam 0.03960396 0.2793308
## 
##        jmnetnoteinccom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3254322
## 
##        jmrpmjmasonorg
## train_y       [,1]      [,2]
##    ham  0.09174312 0.2893273
##    spam 0.00000000 0.0000000
## 
##        jmsajmasonorg
## train_y      [,1]     [,2]
##    ham  0.0733945 0.278456
##    spam 0.0000000 0.000000
## 
##        jmuseperljmasonorg
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3279559
##    spam 0.00000000 0.0000000
## 
##        job
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.03465347 0.2087326
## 
##        john
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2658735
##    spam 0.03465347 0.3054841
## 
##        join
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.06435644 0.3006077
## 
##        jul
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.054455446 0.49071473
## 
##        just
## train_y      [,1]      [,2]
##    ham  0.4174312 0.7829219
##    spam 0.5000000 1.6847280
## 
##        justin
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2580051
##    spam 0.00000000 0.0000000
## 
##        kabila
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08415842 0.745031
## 
##        kathmandu
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08910891 1.266476
## 
##        keep
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3654242
##    spam 0.15841584 0.6105649
## 
##        kelly
## train_y      [,1]     [,2]
##    ham  0.0733945 1.017872
##    spam 0.0000000 0.000000
## 
##        kernel
## train_y      [,1]      [,2]
##    ham  0.0733945 0.6748466
##    spam 0.0000000 0.0000000
## 
##        key
## train_y       [,1]      [,2]
##    ham  0.12385321 0.8136394
##    spam 0.02475248 0.1557559
## 
##        khare
## train_y     [,1]      [,2]
##    ham  0.266055 0.4730955
##    spam 0.000000 0.0000000
## 
##        kind
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.04950495 0.3270930
## 
##        know
## train_y      [,1]      [,2]
##    ham  0.1926606 0.4498246
##    spam 0.2475248 0.7385065
## 
##        knowledge
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3013520
##    spam 0.05445545 0.3338379
## 
##        known
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2412376
##    spam 0.02475248 0.1849598
## 
##        lairxentcom
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        laptop
## train_y        [,1]       [,2]
##    ham  0.027522936 0.23353487
##    spam 0.004950495 0.07035975
## 
##        large
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2826753
##    spam 0.08910891 0.3338010
## 
##        last
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3677308
##    spam 0.13861386 0.4354834
## 
##        late
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.06435644 0.3467214
## 
##        later
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.08415842 0.5162499
## 
##        laurent
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.059405941 0.4951864
## 
##        lawrence
## train_y      [,1]      [,2]
##    ham  0.1055046 0.4731179
##    spam 0.0000000 0.0000000
## 
##        laws
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.064356436 0.2654515
## 
##        lbs
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.4672676
## 
##        learn
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.14851485 0.9020280
## 
##        least
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3262757
##    spam 0.09900990 0.5817276
## 
##        left
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2752875
##    spam 0.03465347 0.2087326
## 
##        legal
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.17326733 0.6799753
## 
##        leramilerctrorg
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05445545 0.267669
## 
##        lerleramilerctrorg
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05445545 0.227478
## 
##        lerlerctrorg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.4436916
## 
##        les
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1386139 1.970073
## 
##        less
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3728402
##    spam 0.11881188 0.3808116
## 
##        let
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.06435644 0.2835750
## 
##        lets
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.05940594 0.3546923
## 
##        letter
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.14356436 0.7689129
## 
##        level
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.08415842 0.7315536
## 
##        life
## train_y      [,1]      [,2]
##    ham  0.0733945 0.3097917
##    spam 0.1980198 0.6985387
## 
##        lifetime
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.1570158
## 
##        lifont
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1485149 0.7776241
## 
##        light
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3069469
##    spam 0.01485149 0.1212589
## 
##        like
## train_y      [,1]      [,2]
##    ham  0.3302752 0.6930204
##    spam 0.4108911 0.8946943
## 
##        likely
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.01980198 0.1396654
## 
##        limited
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2524978
##    spam 0.13366337 0.4075841
## 
##        line
## train_y      [,1]      [,2]
##    ham  0.1146789 0.4901473
##    spam 0.1287129 0.3641487
## 
##        link
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3136234
##    spam 0.26237624 0.6030357
## 
##        links
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2596385
##    spam 0.02475248 0.1849598
## 
##        linux
## train_y      [,1]      [,2]
##    ham  0.2064220 0.7174937
##    spam 0.2029703 0.6013179
## 
##        list
## train_y      [,1]     [,2]
##    ham  1.0137615 1.100814
##    spam 0.8316832 1.262307
## 
##        listarchive
## train_y       [,1]      [,2]
##    ham  0.59633028 0.5010453
##    spam 0.09405941 0.2926366
## 
##        listed
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 0.321166
## 
##        listhelp
## train_y       [,1]      [,2]
##    ham  0.61926606 0.4960632
##    spam 0.09405941 0.2926366
## 
##        listid
## train_y      [,1]      [,2]
##    ham  0.6376147 0.4912673
##    spam 0.1485149 0.3564931
## 
##        listmanredhatcom
## train_y      [,1]      [,2]
##    ham  0.1743119 0.5654253
##    spam 0.0000000 0.0000000
## 
##        listmanspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.2614679 0.8481379
##    spam 0.0000000 0.0000000
## 
##        listmasterlinuxie
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.09900990 0.2994174
## 
##        listpost
## train_y       [,1]      [,2]
##    ham  0.61926606 0.4960632
##    spam 0.07920792 0.2707340
## 
##        lists
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4750797
##    spam 0.04455446 0.2296332
## 
##        listsubscribe
## train_y       [,1]      [,2]
##    ham  0.61926606 0.4960632
##    spam 0.09405941 0.2926366
## 
##        listunsubscribe
## train_y       [,1]      [,2]
##    ham  0.67889908 0.4777199
##    spam 0.09405941 0.2926366
## 
##        little
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.12376238 0.5367395
## 
##        live
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.08910891 0.3758641
## 
##        living
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07425743 0.4225376
## 
##        loan
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.3889071
## 
##        loans
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.3667099
## 
##        local
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2658735
##    spam 0.13366337 0.3823929
## 
##        localhost
## train_y     [,1]      [,2]
##    ham  3.082569 0.8812270
##    spam 2.391089 0.7401222
## 
##        localhostlocaldomain
## train_y       [,1]      [,2]
##    ham  0.17431193 0.6123768
##    spam 0.02970297 0.2425177
## 
##        log
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.00000000 0.0000000
## 
##        long
## train_y      [,1]      [,2]
##    ham  0.0733945 0.3243262
##    spam 0.1039604 0.3915579
## 
##        longer
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.05940594 0.2757814
## 
##        look
## train_y       [,1]      [,2]
##    ham  0.10091743 0.3577955
##    spam 0.08415842 0.4323332
## 
##        looking
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.15346535 0.6550325
## 
##        lose
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.138613861 0.79212169
## 
##        loss
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.069306931 0.29107540
## 
##        lost
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2768190
##    spam 0.03465347 0.2087326
## 
##        lot
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3590046
##    spam 0.06930693 0.3234585
## 
##        love
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.06435644 0.3167258
## 
##        low
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.14851485 0.4546310
## 
##        lowest
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.3363003
## 
##        lugh
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.07425743 0.3299792
## 
##        lughtuathaorg
## train_y      [,1]      [,2]
##    ham  0.1422018 0.7330001
##    spam 0.4108911 1.2476765
## 
##        made
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.27227723 1.2891139
## 
##        mail
## train_y      [,1]      [,2]
##    ham  0.2889908 0.7336343
##    spam 0.4009901 0.8119744
## 
##        mailing
## train_y      [,1]      [,2]
##    ham  0.5000000 0.6240200
##    spam 0.2079208 0.5147928
## 
##        mailinglist
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2687598
##    spam 0.00000000 0.0000000
## 
##        mailings
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1782178 0.5258689
## 
##        mailinsuranceiqcom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3403768
## 
##        maillocalhost
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.00000000 0.0000000
## 
##        mailtoexmhusersrequestredhatcomsubjectsubscribe
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        mailtoexmhusersrequestredhatcomsubjectunsubscribe
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        mailtoexmhusersrequestspamassassintaintorgsubjecthelp
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        mailtoexmhusersspamassassintaintorg
## train_y       [,1]     [,2]
##    ham  0.04587156 0.209688
##    spam 0.00000000 0.000000
## 
##        mailtoforkrequestxentcomsubjecthelp
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        mailtoforkrequestxentcomsubjectsubscribe
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        mailtoforkrequestxentcomsubjectunsubscribe
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        mailtoforkspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.2522936 0.4353284
##    spam 0.0000000 0.0000000
## 
##        mailtorpmlistrequestfreshrpmsnetsubjectsubscribe
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        mailtorpmlistrequestfreshrpmsnetsubjectunsubscribe
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        mailtorpmzzzlistfreshrpmsnet
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        mailtorpmzzzlistrequestfreshrpmsnetsubjecthelp
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        mailtospamassassintalkexamplesourceforgenet
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        mailtospamassassintalkrequestexamplesourceforgenetsubjecthelp
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        mailtospamassassintalkrequestlistssourceforgenetsubjectsubscribe
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        mailtospamassassintalkrequestlistssourceforgenetsubjectunsubscribe
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        mailtozzzzteanaunsubscribeyahoogroupscom
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        mailwebnotenet
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.48514851 0.5010211
## 
##        main
## train_y       [,1]       [,2]
##    ham  0.04587156 0.24980439
##    spam 0.00990099 0.09925589
## 
##        maintainer
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.09900990 0.2994174
## 
##        major
## train_y       [,1]      [,2]
##    ham  0.08715596 0.5402851
##    spam 0.07425743 0.3855999
## 
##        make
## train_y      [,1]      [,2]
##    ham  0.1880734 0.4955516
##    spam 0.5940594 2.4051281
## 
##        makes
## train_y       [,1]      [,2]
##    ham  0.04128440 0.1994051
##    spam 0.02475248 0.1849598
## 
##        making
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.06930693 0.3234585
## 
##        male
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.044554455 0.36377656
## 
##        man
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.02970297 0.3584223
## 
##        management
## train_y       [,1]      [,2]
##    ham  0.06880734 0.5078548
##    spam 0.06435644 0.2459965
## 
##        manager
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.04950495 0.2592080
## 
##        many
## train_y      [,1]     [,2]
##    ham  0.1880734 0.565070
##    spam 0.2722772 1.334623
## 
##        map
## train_y       [,1]      [,2]
##    ham  0.02293578 0.3386427
##    spam 0.04950495 0.7035975
## 
##        marginright
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.8332915
## 
##        mark
## train_y        [,1]       [,2]
##    ham  0.087155963 0.35497801
##    spam 0.004950495 0.07035975
## 
##        market
## train_y       [,1]      [,2]
##    ham  0.06422018 0.4558929
##    spam 0.20792079 0.9856365
## 
##        marketing
## train_y       [,1]      [,2]
##    ham  0.06880734 0.6366961
##    spam 0.31683168 1.0455372
## 
##        marriott
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        mason
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2580051
##    spam 0.00000000 0.0000000
## 
##        matter
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.08415842 0.3566658
## 
##        matthias
## train_y       [,1]      [,2]
##    ham  0.08256881 0.4426239
##    spam 0.00000000 0.0000000
## 
##        maxline
## train_y       [,1]     [,2]
##    ham  0.08715596 1.286842
##    spam 0.00000000 0.000000
## 
##        maxtor
## train_y       [,1]     [,2]
##    ham  0.09174312 1.354571
##    spam 0.00000000 0.000000
## 
##        may
## train_y      [,1]      [,2]
##    ham  0.2018349 0.5130521
##    spam 0.4900990 1.0846743
## 
##        maybe
## train_y        [,1]       [,2]
##    ham  0.059633028 0.27343834
##    spam 0.004950495 0.07035975
## 
##        mean
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.02475248 0.1557559
## 
##        means
## train_y       [,1]      [,2]
##    ham  0.05504587 0.2479357
##    spam 0.03465347 0.2313429
## 
##        media
## train_y       [,1]     [,2]
##    ham  0.03211009 0.260938
##    spam 0.04950495 0.295109
## 
##        meetings
## train_y       [,1]      [,2]
##    ham  0.06880734 0.8201604
##    spam 0.00000000 0.0000000
## 
##        member
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.10396040 0.3513785
## 
##        members
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.06435644 0.2835750
## 
##        membership
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.074257426 0.68344365
## 
##        men
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.06435644 0.6074306
## 
##        message
## train_y      [,1]      [,2]
##    ham  0.3944954 0.8534921
##    spam 0.3663366 0.7014239
## 
##        messageid
## train_y      [,1]       [,2]
##    ham  1.0137615 0.11676744
##    spam 0.9950495 0.07035975
## 
##        messages
## train_y       [,1]       [,2]
##    ham  0.13761468 0.52526737
##    spam 0.00990099 0.09925589
## 
##        meta
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.311881188 0.86775138
## 
##        method
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.10891089 0.6449342
## 
##        methoddpost
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.1955114
## 
##        mgrpscdyahoocom
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        microsoft
## train_y      [,1]      [,2]
##    ham  0.2018349 0.5883636
##    spam 0.5891089 0.8721679
## 
##        might
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3874375
##    spam 0.02475248 0.1557559
## 
##        million
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3293709
##    spam 0.37623762 1.3409100
## 
##        millions
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.4114034
## 
##        mime
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2426356
##    spam 0.05940594 0.2369702
## 
##        mimeole
## train_y       [,1]      [,2]
##    ham  0.07339450 0.2613831
##    spam 0.09405941 0.2926366
## 
##        mimeversion
## train_y      [,1]      [,2]
##    ham  0.6651376 0.4826723
##    spam 0.8465347 0.3613310
## 
##        mind
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.09405941 0.5145295
## 
##        minutes
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.3667099
## 
##        mladih
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.9925589
## 
##        moment
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.05445545 0.2856518
## 
##        mon
## train_y     [,1]     [,2]
##    ham  1.412844 2.806218
##    spam 1.306931 1.950852
## 
##        monday
## train_y      [,1]     [,2]
##    ham  0.0412844 0.276819
##    spam 0.0000000 0.000000
## 
##        money
## train_y       [,1]      [,2]
##    ham  0.06880734 0.4701597
##    spam 0.87128713 3.1184362
## 
##        mono
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        month
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.19306931 0.6671775
## 
##        months
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.14356436 0.8190415
## 
##        more
## train_y      [,1]     [,2]
##    ham  0.4633028 1.086589
##    spam 0.8118812 1.932765
## 
##        mortgage
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1287129 0.6175439
## 
##        most
## train_y      [,1]      [,2]
##    ham  0.1422018 0.5370672
##    spam 0.2376238 0.9158474
## 
##        move
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2513230
##    spam 0.11386139 0.6164462
## 
##        moved
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.03960396 0.2609128
## 
##        mozilla
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        msimagelist
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 1.125756
## 
##        mtagrpscdyahoocom
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        much
## train_y      [,1]      [,2]
##    ham  0.1467890 0.3798056
##    spam 0.2722772 0.9142998
## 
##        multipart
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.074257426 0.41059439
## 
##        multipartalternative
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.2369702
## 
##        multipartmixed
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.084158416 0.27831500
## 
##        murphy
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4511385
##    spam 0.00000000 0.0000000
## 
##        music
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.02475248 0.2101437
## 
##        must
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.19306931 0.5253300
## 
##        mutti
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2537088
##    spam 0.00000000 0.0000000
## 
##        mxfreebsdorg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.7275531
## 
##        mxredhatcom
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2758628
##    spam 0.00000000 0.0000000
## 
##        mxspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.1788991 0.5840544
##    spam 0.0000000 0.0000000
## 
##        myself
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.01980198 0.1396654
## 
##        name
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3401065
##    spam 0.54950495 2.1877144
## 
##        namedcity
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedcontactname
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedemail
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedhdnrecipienttxt
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedhdnsubjecttxt
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedphone
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedsentto
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        namedstate
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        names
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.158415842 0.77565794
## 
##        national
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3216100
##    spam 0.08415842 0.4086704
## 
##        natural
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.03960396 0.2793308
## 
##        navy
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        nbsp
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1039604 0.4826174
## 
##        need
## train_y      [,1]      [,2]
##    ham  0.1467890 0.4668887
##    spam 0.3316832 0.8428134
## 
##        needed
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3745655
##    spam 0.07920792 0.3507822
## 
##        needs
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.01980198 0.1396654
## 
##        net
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.12376238 0.6383512
## 
##        network
## train_y       [,1]      [,2]
##    ham  0.27522936 1.1669138
##    spam 0.03960396 0.1955114
## 
##        networks
## train_y      [,1]     [,2]
##    ham  0.1009174 1.175361
##    spam 0.0000000 0.000000
## 
##        never
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3439692
##    spam 0.13366337 0.4646246
## 
##        new
## train_y      [,1]      [,2]
##    ham  0.3440367 0.7716081
##    spam 0.7524752 1.8115491
## 
##        news
## train_y      [,1]      [,2]
##    ham  0.1100917 0.7098965
##    spam 0.1534653 0.6625842
## 
##        newsletter
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.03960396 0.3574590
## 
##        next
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3939304
##    spam 0.18811881 0.7881318
## 
##        ngrpscdyahoocom
## train_y      [,1]      [,2]
##    ham  0.1788991 0.7120521
##    spam 0.0000000 0.0000000
## 
##        nice
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2676169
##    spam 0.01485149 0.1212589
## 
##        nigeria
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.4274922
## 
##        nmh
## train_y      [,1]      [,2]
##    ham  0.0733945 0.2945409
##    spam 0.0000000 0.0000000
## 
##        nnfmp
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.08910891 0.3483868
## 
##        none
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.06435644 0.4241665
## 
##        normal
## train_y      [,1]      [,2]
##    ham  0.2018349 0.6336176
##    spam 0.6485149 1.2258504
## 
##        north
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.03960396 0.2793308
## 
##        norton
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.4255578
## 
##        noshade
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06435644 0.2654515
## 
##        not
## train_y      [,1]     [,2]
##    ham  0.9311927 1.449564
##    spam 1.5990099 3.777730
## 
##        note
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.15346535 0.6077549
## 
##        nothing
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.08415842 0.3566658
## 
##        notice
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.08415842 0.3703522
## 
##        nov
## train_y       [,1]      [,2]
##    ham  0.09633028 1.0045451
##    spam 0.01485149 0.1570158
## 
##        now
## train_y      [,1]      [,2]
##    ham  0.3027523 0.7498643
##    spam 0.5099010 0.9632041
## 
##        nsegwnnet
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.00000000 0.0000000
## 
##        number
## train_y      [,1]      [,2]
##    ham  0.1009174 0.4387866
##    spam 0.2128713 0.6535267
## 
##        numbers
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2335349
##    spam 0.11881188 0.5949561
## 
##        obligation
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.3299792
## 
##        oct
## train_y      [,1]      [,2]
##    ham  2.2798165 3.8604286
##    spam 0.1386139 0.9776579
## 
##        october
## train_y        [,1]       [,2]
##    ham  0.036697248 0.23226417
##    spam 0.004950495 0.07035975
## 
##        off
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3967909
##    spam 0.10396040 0.3369222
## 
##        offer
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.45049505 1.3308527
## 
##        offering
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.014851485 0.12125885
## 
##        offers
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.25742574 0.8304343
## 
##        office
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.09900990 0.4784916
## 
##        often
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2690350
##    spam 0.03465347 0.2519321
## 
##        oil
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.04950495 0.2777392
## 
##        old
## train_y      [,1]      [,2]
##    ham  0.1376147 0.3832408
##    spam 0.1138614 0.4803667
## 
##        once
## train_y      [,1]      [,2]
##    ham  0.1100917 0.3920747
##    spam 0.1188119 0.4181725
## 
##        one
## train_y      [,1]     [,2]
##    ham  0.4633028 1.073790
##    spam 0.8465347 2.762797
## 
##        online
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3200286
##    spam 0.21782178 0.5390975
## 
##        only
## train_y      [,1]      [,2]
##    ham  0.3211009 0.7902719
##    spam 0.7623762 1.8986694
## 
##        open
## train_y       [,1]     [,2]
##    ham  0.05963303 0.347637
##    spam 0.04455446 0.206836
## 
##        opportunities
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2609380
##    spam 0.06930693 0.4053725
## 
##        opportunity
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1584158 0.4832039
## 
##        optin
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.4086704
## 
##        option
## train_y        [,1]       [,2]
##    ham  0.009174312  0.1354571
##    spam 1.509900990 18.0169186
## 
##        order
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.50990099 1.8958979
## 
##        ordering
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.09405941 0.6035256
## 
##        orders
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.26237624 1.572611
## 
##        organization
## train_y        [,1]       [,2]
##    ham  0.123853211 0.61342869
##    spam 0.004950495 0.07035975
## 
##        original
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3602683
##    spam 0.08415842 0.3703522
## 
##        osdn
## train_y       [,1]       [,2]
##    ham  0.05963303 0.25603113
##    spam 0.00990099 0.09925589
## 
##        other
## train_y      [,1]      [,2]
##    ham  0.3027523 0.7374709
##    spam 0.2970297 0.7667798
## 
##        others
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.05445545 0.3338379
## 
##        our
## train_y      [,1]      [,2]
##    ham  0.1743119 0.8352161
##    spam 1.4900990 2.4802505
## 
##        out
## train_y      [,1]      [,2]
##    ham  0.3669725 0.7456238
##    spam 0.8663366 2.5268617
## 
##        outlook
## train_y      [,1]      [,2]
##    ham  0.1192661 0.3387364
##    spam 0.2227723 0.4171405
## 
##        over
## train_y      [,1]     [,2]
##    ham  0.1926606 0.749526
##    spam 0.4207921 1.025138
## 
##        own
## train_y      [,1]      [,2]
##    ham  0.1651376 0.4802795
##    spam 0.2970297 0.8527924
## 
##        owners
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.22747795
## 
##        package
## train_y       [,1]      [,2]
##    ham  0.10550459 0.6388837
##    spam 0.07920792 0.3780855
## 
##        packages
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4750797
##    spam 0.00000000 0.0000000
## 
##        paddingbottom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.1570158
## 
##        paddingleft
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.1570158
## 
##        paddingright
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        paddingtop
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.1570158
## 
##        page
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.08415842 0.4436916
## 
##        paid
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.12376238 0.4107143
## 
##        par
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.6332378
## 
##        part
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2213120
##    spam 0.06930693 0.4174651
## 
##        partner
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.089108911 0.41367206
## 
##        partners
## train_y       [,1]      [,2]
##    ham  0.04128440 0.5457352
##    spam 0.05445545 0.2856518
## 
##        party
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.10891089 0.3569074
## 
##        pass
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.019801980 0.13966542
## 
##        passed
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.30060773
## 
##        past
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.08415842 0.2956510
## 
##        paste
## train_y       [,1]      [,2]
##    ham  0.03669725 0.4277603
##    spam 0.05940594 0.2932671
## 
##        patch
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.01485149 0.2110793
## 
##        paul
## train_y        [,1]       [,2]
##    ham  0.073394495 0.45449972
##    spam 0.004950495 0.07035975
## 
##        pay
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.13366337 0.4196130
## 
##        paying
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.03465347 0.1833549
## 
##        pdt
## train_y       [,1]      [,2]
##    ham  0.59174312 0.9806072
##    spam 0.08910891 0.6245239
## 
##        people
## train_y      [,1]     [,2]
##    ham  0.4724771 1.793916
##    spam 0.6930693 3.619303
## 
##        peoples
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2228350
##    spam 0.01485149 0.1212589
## 
##        per
## train_y       [,1]      [,2]
##    ham  0.07798165 0.5747142
##    spam 0.25742574 0.9267014
## 
##        perfect
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.05445545 0.2856518
## 
##        performance
## train_y       [,1]      [,2]
##    ham  0.05045872 0.4916114
##    spam 0.04455446 0.2068360
## 
##        perl
## train_y      [,1]     [,2]
##    ham  0.2293578 1.324237
##    spam 0.0000000 0.000000
## 
##        person
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.12376238 0.6063755
## 
##        personal
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.14356436 0.8370662
## 
##        pfont
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.4356436 1.50565
## 
##        pgp
## train_y      [,1]      [,2]
##    ham  0.1788991 0.6856761
##    spam 0.0000000 0.0000000
## 
##        phobos
## train_y      [,1]      [,2]
##    ham  0.2110092 0.4200811
##    spam 0.2079208 0.4068281
## 
##        phoboslabsnetnoteinccom
## train_y      [,1]     [,2]
##    ham  0.2247706 0.516931
##    spam 0.0000000 0.000000
## 
##        phoboslabsspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.4356436 0.4970729
## 
##        phone
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3945470
##    spam 0.1633663 0.5353611
## 
##        pickup
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.02970297 0.1701884
## 
##        place
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3011063
##    spam 0.08415842 0.3424328
## 
##        plan
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.09405941 0.4416887
## 
##        plans
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.069306931 0.40537252
## 
##        platform
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3800282
##    spam 0.00000000 0.0000000
## 
##        play
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2426356
##    spam 0.01980198 0.1716295
## 
##        please
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3446752
##    spam 0.8960396 1.2069798
## 
##        plus
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3573225
##    spam 0.21287129 1.3491227
## 
##        pnbspp
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1089109 0.4866576
## 
##        point
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.04455446 0.2068360
## 
##        poker
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.4221585
## 
##        policy
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.039603960 0.32844552
## 
##        political
## train_y       [,1]      [,2]
##    ham  0.05045872 0.4098159
##    spam 0.02475248 0.1849598
## 
##        pop
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.23267327 0.4235855
## 
##        popular
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.05445545 0.3025677
## 
##        port
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.004950495 0.07035975
## 
##        position
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.05445545 0.227478
## 
##        possible
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3495472
##    spam 0.06435644 0.2459965
## 
##        post
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.04950495 0.4082785
## 
##        postfix
## train_y     [,1]     [,2]
##    ham  1.954128 1.276410
##    spam 1.163366 0.703965
## 
##        potential
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.05940594 0.3945344
## 
##        pour
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1287129 1.829354
## 
##        power
## train_y       [,1]      [,2]
##    ham  0.05963303 0.4197035
##    spam 0.08415842 0.4761439
## 
##        precedence
## train_y      [,1]      [,2]
##    ham  0.7660550 0.6688211
##    spam 0.1534653 0.3613310
## 
##        predsednika
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.08910891 0.893303
## 
##        preferences
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3341181
##    spam 0.00000000 0.0000000
## 
##        premium
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.019801980 0.17162948
## 
##        premiums
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        present
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.04950495 0.2392458
## 
##        president
## train_y       [,1]      [,2]
##    ham  0.05963303 0.5688730
##    spam 0.08910891 0.5918015
## 
##        pretty
## train_y       [,1]      [,2]
##    ham  0.07339450 0.2945409
##    spam 0.01485149 0.1212589
## 
##        price
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.39108911 1.449144
## 
##        prices
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1138614 0.3887804
## 
##        pricing
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.06435644 0.5379312
## 
##        private
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.17821782 0.4762214
## 
##        probably
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3991546
##    spam 0.02970297 0.1972672
## 
##        problem
## train_y       [,1]      [,2]
##    ham  0.13761468 0.4065793
##    spam 0.03465347 0.2313429
## 
##        problems
## train_y       [,1]      [,2]
##    ham  0.10091743 0.4387866
##    spam 0.05940594 0.3097674
## 
##        process
## train_y       [,1]      [,2]
##    ham  0.11467890 0.4509745
##    spam 0.06930693 0.3800347
## 
##        processing
## train_y       [,1]      [,2]
##    ham  0.08256881 1.0216860
##    spam 0.02475248 0.1849598
## 
##        produced
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0990099 0.2994174
## 
##        product
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3853586
##    spam 0.18316832 1.3717527
## 
##        products
## train_y       [,1]      [,2]
##    ham  0.05504587 0.5316674
##    spam 0.08910891 0.3185480
## 
##        professional
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2335349
##    spam 0.13861386 0.4467618
## 
##        professionals
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.08415842 0.4655778
## 
##        profiled
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.6230234
## 
##        profitable
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.069306931 0.29107540
## 
##        program
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.32178218 1.6633063
## 
##        programs
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.14356436 1.2868192
## 
##        project
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2843157
##    spam 0.01485149 0.1212589
## 
##        promotion
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.049504950 0.25920804
## 
##        proposal
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.2932671
## 
##        protect
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.138613861 0.48928220
## 
##        proven
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.03465347 0.1833549
## 
##        provide
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.14851485 0.4546310
## 
##        ptsize
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1089109 1.296002
## 
##        public
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.13366337 0.4196130
## 
##        publishing
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.05445545 0.4370923
## 
##        pudgeperlorg
## train_y       [,1]      [,2]
##    ham  0.08256881 0.4919338
##    spam 0.00000000 0.0000000
## 
##        purchase
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1237624 0.572617
## 
##        put
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3602683
##    spam 0.13366337 0.4752119
## 
##        python
## train_y       [,1]      [,2]
##    ham  0.04587156 0.4873576
##    spam 0.00000000 0.0000000
## 
##        qmail
## train_y       [,1]      [,2]
##    ham  0.22477064 0.4603457
##    spam 0.05940594 0.2369702
## 
##        qmqp
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2687598
##    spam 0.06435644 0.3006077
## 
##        qualify
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.2609128
## 
##        quality
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3162746
##    spam 0.06930693 0.2734495
## 
##        question
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2580051
##    spam 0.02970297 0.1701884
## 
##        questions
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2128895
##    spam 0.08415842 0.2956510
## 
##        quick
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.11386139 0.5104928
## 
##        quickly
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.02970297 0.2977677
## 
##        quite
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.01485149 0.1212589
## 
##        quote
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.059405941 0.34037679
## 
##        quotedprintable
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2193933
##    spam 0.25247525 0.4893074
## 
##        rate
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.074257426 0.31454096
## 
##        rates
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.118811881 0.50445042
## 
##        rather
## train_y       [,1]       [,2]
##    ham  0.07798165 0.31604054
##    spam 0.00990099 0.09925589
## 
##        razor
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3838196
##    spam 0.00000000 0.0000000
## 
##        razorusers
## train_y      [,1]      [,2]
##    ham  0.1009174 0.5070008
##    spam 0.0000000 0.0000000
## 
##        razorusersadminexamplesourceforgenet
## train_y      [,1]      [,2]
##    ham  0.1238532 0.5982153
##    spam 0.0000000 0.0000000
## 
##        razorusersexamplesourceforgenet
## train_y      [,1]      [,2]
##    ham  0.1284404 0.6236642
##    spam 0.0000000 0.0000000
## 
##        razoruserslistssourceforgenet
## train_y      [,1]      [,2]
##    ham  0.1192661 0.5952929
##    spam 0.0000000 0.0000000
## 
##        rdf
## train_y       [,1]      [,2]
##    ham  0.09633028 0.8060173
##    spam 0.00000000 0.0000000
## 
##        reach
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.22747795
## 
##        read
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2877522
##    spam 0.15346535 0.7472756
## 
##        reading
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3866729
##    spam 0.04950495 0.2951090
## 
##        ready
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.049504950 0.2174588
## 
##        real
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2853917
##    spam 0.07920792 0.3780855
## 
##        really
## train_y       [,1]      [,2]
##    ham  0.15596330 0.4833507
##    spam 0.07920792 0.4717527
## 
##        realtime
## train_y       [,1]       [,2]
##    ham  0.04128440 0.25963853
##    spam 0.00990099 0.09925589
## 
##        reason
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.03960396 0.2194880
## 
##        receive
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.49504950 1.125231
## 
##        received
## train_y     [,1]     [,2]
##    ham  6.059633 2.532939
##    spam 5.019802 1.897787
## 
##        receiving
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.12376238 0.4226541
## 
##        recently
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.05940594 0.2571092
## 
##        recommendation
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.079207921 0.50239562
## 
##        red
## train_y       [,1]      [,2]
##    ham  0.07339450 0.3515973
##    spam 0.03465347 0.3213577
## 
##        references
## train_y       [,1]      [,2]
##    ham  0.34862385 0.4776314
##    spam 0.01485149 0.1212589
## 
##        regards
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.06930693 0.2546063
## 
##        register
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.5272954
## 
##        registered
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.128712871 0.40305713
## 
##        regular
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.03465347 0.2087326
## 
##        relaydubtnwcgroupcom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3945344
## 
##        release
## train_y       [,1]      [,2]
##    ham  0.06422018 0.5643026
##    spam 0.03960396 0.1955114
## 
##        relevant
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2023516
##    spam 0.02970297 0.1972672
## 
##        remember
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.09405941 0.6511103
## 
##        removal
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1435644 0.4616466
## 
##        remove
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1900141
##    spam 0.26732673 0.5443713
## 
##        removed
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.326732673 0.61666590
## 
##        repeat
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.000000000 0.00000000
## 
##        reply
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.18811881 0.4723788
## 
##        replyto
## train_y      [,1]      [,2]
##    ham  0.2981651 0.4684481
##    spam 0.4900990 0.5011440
## 
##        report
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4014781
##    spam 0.67326733 4.7276237
## 
##        reported
## train_y       [,1]       [,2]
##    ham  0.02752294 0.28668503
##    spam 0.00990099 0.09925589
## 
##        reports
## train_y       [,1]     [,2]
##    ham  0.05963303 0.347637
##    spam 0.17821782 1.272722
## 
##        republic
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.45929315
## 
##        request
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07920792 0.3052825
## 
##        requests
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.21745876
## 
##        required
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.12871287 0.4152172
## 
##        research
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2322642
##    spam 0.07920792 0.3507822
## 
##        resources
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.059405941 0.3945344
## 
##        respect
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.03465347 0.1833549
## 
##        response
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.148514851 0.83321757
## 
##        rest
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.034653465 0.18335494
## 
##        result
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.03465347 0.1833549
## 
##        results
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3417187
##    spam 0.06435644 0.3873842
## 
##        retail
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.074257426 0.26284076
## 
##        return
## train_y       [,1]      [,2]
##    ham  0.04128440 0.2596385
##    spam 0.05940594 0.3546923
## 
##        returnpath
## train_y     [,1]      [,2]
##    ham  1.000000 0.0000000
##    spam 1.039604 0.2609128
## 
##        revenues
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.064356436 0.37432105
## 
##        revision
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.044554455 0.2068360
## 
##        richardwcom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.4189962
## 
##        right
## train_y      [,1]      [,2]
##    ham  0.1743119 0.6123768
##    spam 0.1732673 0.5595647
## 
##        rights
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.04950495 0.2777392
## 
##        risk
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.173267327 0.62666949
## 
##        road
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.02475248 0.1557559
## 
##        robert
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.01485149 0.1212589
## 
##        rohit
## train_y     [,1]      [,2]
##    ham  0.293578 0.5728537
##    spam 0.000000 0.0000000
## 
##        roman
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.15841584 0.7561709
## 
##        root
## train_y       [,1]      [,2]
##    ham  0.10091743 0.8793059
##    spam 0.03465347 0.4276363
## 
##        rootlocalhost
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2498044
##    spam 0.08415842 0.3424328
## 
##        rootlughtuathaorg
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.07425743 0.2628408
## 
##        rowspand
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02970297 0.1701884
## 
##        rpm
## train_y     [,1]      [,2]
##    ham  0.233945 0.8288263
##    spam 0.000000 0.0000000
## 
##        rpmlist
## train_y      [,1]      [,2]
##    ham  0.1100917 0.3418424
##    spam 0.0000000 0.0000000
## 
##        rpmlistadminfreshrpmsnet
## train_y      [,1]      [,2]
##    ham  0.1009174 0.3019126
##    spam 0.0000000 0.0000000
## 
##        rpmlistfreshrpmsnet
## train_y      [,1]      [,2]
##    ham  0.3211009 0.9965908
##    spam 0.0000000 0.0000000
## 
##        rpmzzzlistadminfreshrpmsnet
## train_y      [,1]      [,2]
##    ham  0.3027523 0.9057379
##    spam 0.0000000 0.0000000
## 
##        rpmzzzlistfreshrpmsnet
## train_y      [,1]    [,2]
##    ham  0.4036697 1.20765
##    spam 0.0000000 0.00000
## 
##        rss
## train_y      [,1]     [,2]
##    ham  0.1422018 1.704686
##    spam 0.0000000 0.000000
## 
##        rssfeedsjmasonorg
## train_y      [,1]      [,2]
##    ham  0.2431193 0.4299538
##    spam 0.0000000 0.0000000
## 
##        rssfeedsspamassassintaintorg
## train_y      [,1]      [,2]
##    ham  0.5137615 0.8914823
##    spam 0.0000000 0.0000000
## 
##        rules
## train_y        [,1]       [,2]
##    ham  0.050458716 0.46263598
##    spam 0.004950495 0.07035975
## 
##        run
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3392664
##    spam 0.07920792 0.3052825
## 
##        running
## train_y        [,1]       [,2]
##    ham  0.077981651 0.26875984
##    spam 0.004950495 0.07035975
## 
##        safetyolnewnamednscom
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1188119 0.6807536
## 
##        said
## train_y       [,1]      [,2]
##    ham  0.32568807 1.6318774
##    spam 0.07425743 0.3724742
## 
##        sales
## train_y       [,1]      [,2]
##    ham  0.04587156 0.3000867
##    spam 0.17326733 0.5770729
## 
##        same
## train_y      [,1]      [,2]
##    ham  0.1788991 0.4504117
##    spam 0.1435644 0.4616466
## 
##        san
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.01485149 0.1570158
## 
##        sans
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02475248 0.2531025
## 
##        sansserif
## train_y     [,1]     [,2]
##    ham  0.000000 0.000000
##    spam 1.277228 4.152848
## 
##        sat
## train_y      [,1]     [,2]
##    ham  0.5504587 1.746550
##    spam 0.5346535 1.479978
## 
##        satalk
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.00000000 0.0000000
## 
##        save
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.222772277 0.93833569
## 
##        savings
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.47923740
## 
##        savoir
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.7739573
## 
##        say
## train_y      [,1]      [,2]
##    ham  0.1376147 0.4496366
##    spam 0.1039604 0.5316679
## 
##        saying
## train_y       [,1]       [,2]
##    ham  0.04128440 0.27681900
##    spam 0.00990099 0.09925589
## 
##        says
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3476370
##    spam 0.01980198 0.1716295
## 
##        school
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3533964
##    spam 0.05445545 0.3889071
## 
##        science
## train_y       [,1]      [,2]
##    ham  0.07798165 0.9688092
##    spam 0.01485149 0.1212589
## 
##        script
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3716193
##    spam 0.01980198 0.2814390
## 
##        scroll
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        search
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2929938
##    spam 0.1534653 0.7270282
## 
##        second
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.04455446 0.2068360
## 
##        secret
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.3363003
## 
##        secure
## train_y       [,1]      [,2]
##    ham  0.07798165 0.6428419
##    spam 0.06930693 0.2734495
## 
##        securities
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.4672676
## 
##        security
## train_y      [,1]      [,2]
##    ham  0.1009174 0.5830945
##    spam 0.1336634 0.5959694
## 
##        see
## train_y      [,1]      [,2]
##    ham  0.1743119 0.5971366
##    spam 0.2524752 0.8349450
## 
##        seed
## train_y       [,1]      [,2]
##    ham  0.04587156 0.6772855
##    spam 0.02475248 0.3517988
## 
##        seem
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.03465347 0.1833549
## 
##        seems
## train_y       [,1]      [,2]
##    ham  0.09174312 0.3195990
##    spam 0.02970297 0.2977677
## 
##        seen
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2877522
##    spam 0.09405941 0.4528125
## 
##        select
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2780381
##    spam 0.01980198 0.1716295
## 
##        self
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.044554455 0.22963317
## 
##        sell
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.10396040 0.4279817
## 
##        selling
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.03465347 0.2519321
## 
##        send
## train_y      [,1]      [,2]
##    ham  0.1192661 0.3649322
##    spam 0.5495050 2.0418567
## 
##        sender
## train_y      [,1]      [,2]
##    ham  0.7110092 0.6609363
##    spam 0.2871287 0.4749786
## 
##        sending
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2426356
##    spam 0.16831683 0.9417810
## 
##        senior
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.02475248 0.1849598
## 
##        sent
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3392664
##    spam 0.23762376 0.5841780
## 
##        senttozzzzspamassassintaintorgreturnsgroupsyahoocom
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4711254
##    spam 0.00000000 0.0000000
## 
##        sep
## train_y     [,1]     [,2]
##    ham  4.018349 4.653885
##    spam 4.079208 3.584608
## 
##        september
## train_y       [,1]      [,2]
##    ham  0.09174312 0.4511385
##    spam 0.01980198 0.1716295
## 
##        sequence
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3490933
##    spam 0.01485149 0.1212589
## 
##        sequences
## train_y       [,1]      [,2]
##    ham  0.09633028 0.6032824
##    spam 0.00000000 0.0000000
## 
##        server
## train_y       [,1]      [,2]
##    ham  0.16513761 0.8033772
##    spam 0.03960396 0.2194880
## 
##        service
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3898308
##    spam 0.37623762 0.6594357
## 
##        services
## train_y      [,1]      [,2]
##    ham  0.1055046 0.9756798
##    spam 0.2227723 0.6873963
## 
##        set
## train_y       [,1]      [,2]
##    ham  0.12844037 0.4624303
##    spam 0.04950495 0.2392458
## 
##        settlement
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.00000000 0.0000000
## 
##        several
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3662043
##    spam 0.10891089 0.4208731
## 
##        sex
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.01980198 0.1716295
## 
##        sfnet
## train_y       [,1]      [,2]
##    ham  0.26605505 0.7007856
##    spam 0.03465347 0.2519321
## 
##        shangrila
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1435644 2.040433
## 
##        share
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2843157
##    spam 0.11386139 0.3887804
## 
##        she
## train_y       [,1]      [,2]
##    ham  0.04128440 0.3632194
##    spam 0.08415842 0.6524706
## 
##        shipping
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1881188 1.112685
## 
##        short
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.05445545 0.3025677
## 
##        should
## train_y      [,1]      [,2]
##    ham  0.1834862 0.5018884
##    spam 0.2673267 0.9075810
## 
##        show
## train_y       [,1]      [,2]
##    ham  0.09633028 0.4652786
##    spam 0.05940594 0.3097674
## 
##        shows
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.01485149 0.1212589
## 
##        sign
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.03465347 0.2087326
## 
##        signature
## train_y       [,1]      [,2]
##    ham  0.14678899 0.5315084
##    spam 0.03465347 0.2087326
## 
##        signed
## train_y       [,1]      [,2]
##    ham  0.04128440 0.1994051
##    spam 0.01980198 0.1716295
## 
##        similar
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.05445545 0.2274780
## 
##        simple
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.17326733 0.7561872
## 
##        simply
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.15346535 0.5098169
## 
##        since
## train_y       [,1]      [,2]
##    ham  0.10550459 0.4532189
##    spam 0.07920792 0.3780855
## 
##        sincerely
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.2369702
## 
##        single
## train_y        [,1]       [,2]
##    ham  0.036697248 0.23226417
##    spam 0.004950495 0.07035975
## 
##        singledrop
## train_y      [,1]      [,2]
##    ham  0.9816514 0.1345175
##    spam 0.9306931 0.2546063
## 
##        sir
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.3076933
## 
##        site
## train_y      [,1]      [,2]
##    ham  0.1146789 0.5175849
##    spam 0.1831683 0.7924481
## 
##        sites
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.19801980 0.7793326
## 
##        six
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.089108911 0.36238595
## 
##        size
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2596385
##    spam 1.3217822 3.8711101
## 
##        sizea
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.6978508
## 
##        sizebfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.5481586
## 
##        sized
## train_y     [,1]     [,2]
##    ham  0.000000 0.000000
##    spam 1.024752 4.005516
## 
##        sizedb
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.3353101
## 
##        sizedfontbitd
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        sizedtd
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1584158 0.8607838
## 
##        sizefont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.3528823
## 
##        small
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.05940594 0.4532203
## 
##        smoking
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.9893278
## 
##        smtp
## train_y      [,1]      [,2]
##    ham  0.6651376 0.9943505
##    spam 0.9653465 0.8602829
## 
##        smtpeasydnscom
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1336634 0.6205081
## 
##        smtpsvc
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.12376238 0.3301284
## 
##        social
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3919669
##    spam 0.05940594 0.3403768
## 
##        socialadminlinuxie
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.6230234
## 
##        sociallinuxie
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1336634 0.8446233
## 
##        software
## train_y      [,1]      [,2]
##    ham  0.1513761 0.7498221
##    spam 0.2821782 0.9167210
## 
##        sold
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.06435644 0.3167258
## 
##        solution
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3549482
##    spam 0.01980198 0.1396654
## 
##        solutions
## train_y       [,1]      [,2]
##    ham  0.05963303 0.4514430
##    spam 0.01980198 0.2221647
## 
##        some
## train_y      [,1]      [,2]
##    ham  0.3256881 0.7115769
##    spam 0.1980198 0.6985387
## 
##        someone
## train_y       [,1]      [,2]
##    ham  0.11009174 0.4571894
##    spam 0.05445545 0.2483877
## 
##        something
## train_y       [,1]      [,2]
##    ham  0.16055046 0.4573049
##    spam 0.06435644 0.3607853
## 
##        son
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3403768
## 
##        soon
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.05445545 0.2483877
## 
##        sound
## train_y        [,1]       [,2]
##    ham  0.018348624 0.16526205
##    spam 0.004950495 0.07035975
## 
##        source
## train_y       [,1]      [,2]
##    ham  0.08715596 0.5229482
##    spam 0.02475248 0.2101437
## 
##        south
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2128895
##    spam 0.10396040 0.7623505
## 
##        space
## train_y       [,1]       [,2]
##    ham  0.04128440 0.24123760
##    spam 0.00990099 0.09925589
## 
##        spam
## train_y       [,1]      [,2]
##    ham  0.19724771 0.7989577
##    spam 0.05940594 0.2757814
## 
##        spamassassin
## train_y      [,1]      [,2]
##    ham  0.1284404 0.4420505
##    spam 0.0000000 0.0000000
## 
##        spamassassintaintorg
## train_y        [,1]       [,2]
##    ham  0.077981651 0.35711538
##    spam 0.004950495 0.07035975
## 
##        spamassassintalk
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3136234
##    spam 0.00000000 0.0000000
## 
##        spamassassintalkadminexamplesourceforgenet
## train_y     [,1]      [,2]
##    ham  0.233945 0.8062795
##    spam 0.000000 0.0000000
## 
##        spamassassintalkadminlistssourceforgenet
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2687598
##    spam 0.00000000 0.0000000
## 
##        spamassassintalkexamplesourceforgenet
## train_y      [,1]      [,2]
##    ham  0.2431193 0.8261695
##    spam 0.0000000 0.0000000
## 
##        spamassassintalklistssourceforgenet
## train_y      [,1]     [,2]
##    ham  0.2155963 0.758567
##    spam 0.0000000 0.000000
## 
##        spambayes
## train_y       [,1]     [,2]
##    ham  0.03669725 0.269035
##    spam 0.00000000 0.000000
## 
##        special
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.33663366 0.9648265
## 
##        sponsored
## train_y       [,1]      [,2]
##    ham  0.13302752 0.3664640
##    spam 0.01485149 0.1212589
## 
##        srcdhttpiiqusimagesamfingif
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        srcdhttpiiqusimagesvbilsagif
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        srchttpaeakamainetfdimagescolumbiahousecomchimagesdemoemailcleargif
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.09405941 1.336835
## 
##        srchttpefriendfindercombannersaffadimagesgif
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1435644 2.040433
## 
##        srchttpwwwprizeinthebagnetimagesrvmovieoceanscjpg
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        srchttpwwwsalealertscomdotgif
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.6983271
## 
##        standard
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.07425743 0.3982932
## 
##        start
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2394786
##    spam 0.19306931 0.8738042
## 
##        started
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.07425743 0.5080748
## 
##        state
## train_y       [,1]      [,2]
##    ham  0.06880734 0.4071249
##    spam 0.16336634 0.4763507
## 
##        statements
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.09900990 0.6230234
## 
##        states
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2915472
##    spam 0.16336634 0.5353611
## 
##        step
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.074257426 0.98719699
## 
##        still
## train_y       [,1]      [,2]
##    ham  0.15596330 0.4222894
##    spam 0.08415842 0.3424328
## 
##        stock
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.079207921 0.54055745
## 
##        stop
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.06930693 0.3800347
## 
##        storage
## train_y       [,1]     [,2]
##    ham  0.08715596 1.023557
##    spam 0.00000000 0.000000
## 
##        store
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04455446 0.3201291
## 
##        stories
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.02475248 0.2897609
## 
##        story
## train_y       [,1]      [,2]
##    ham  0.08256881 0.4320872
##    spam 0.01980198 0.1396654
## 
##        street
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.02970297 0.2210534
## 
##        strong
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.03960396 0.1955114
## 
##        stuff
## train_y       [,1]      [,2]
##    ham  0.07339450 0.3515973
##    spam 0.02475248 0.2326169
## 
##        style
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.099009901 0.43491751
## 
##        stylebackgroundcolor
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.0990099 1.205336
## 
##        stylebordercollapse
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.5257986
## 
##        styleborderright
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        stylecolor
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        styledcolor
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.3353101
## 
##        stylefontfamily
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.6947912
## 
##        stylefontsize
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3168317 2.740631
## 
##        styleheight
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        stylemargin
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        stylemarginleft
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.8222229
## 
##        styletextalign
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01980198 0.2221647
## 
##        subject
## train_y     [,1]      [,2]
##    ham  1.155963 0.4112320
##    spam 1.163366 0.4209023
## 
##        submit
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.04950495 0.3562166
## 
##        subscribed
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.06435644 0.2459965
## 
##        subscription
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.00990099 0.1407195
## 
##        success
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.089108911 0.50072604
## 
##        successful
## train_y        [,1]      [,2]
##    ham  0.009174312 0.1354571
##    spam 0.054455446 0.3185867
## 
##        such
## train_y      [,1]      [,2]
##    ham  0.1513761 0.6720372
##    spam 0.1386139 0.4685046
## 
##        suite
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.05445545 0.2483877
## 
##        sum
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.08415842 0.3963095
## 
##        sun
## train_y      [,1]     [,2]
##    ham  0.3853211 1.458541
##    spam 0.5049505 1.463478
## 
##        super
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.059405941 0.46406772
## 
##        supplied
## train_y        [,1]       [,2]
##    ham  0.082568807 0.27586280
##    spam 0.004950495 0.07035975
## 
##        support
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3697945
##    spam 0.11386139 0.4013732
## 
##        sur
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 1.125756
## 
##        sure
## train_y      [,1]      [,2]
##    ham  0.1238532 0.3938231
##    spam 0.0990099 0.5184161
## 
##        sweet
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.103960396 1.47755484
## 
##        system
## train_y      [,1]      [,2]
##    ham  0.2018349 0.6263024
##    spam 0.1039604 0.4506316
## 
##        systems
## train_y       [,1]      [,2]
##    ham  0.07339450 0.4119510
##    spam 0.02475248 0.2326169
## 
##        systemworks
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1138614 0.5480912
## 
##        table
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 1.87623762 4.3901212
## 
##        tahoma
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2029703 1.661202
## 
##        take
## train_y      [,1]      [,2]
##    ham  0.1055046 0.3628700
##    spam 0.2178218 0.5572491
## 
##        taken
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.06435644 0.4000209
## 
##        takes
## train_y       [,1]      [,2]
##    ham  0.04128440 0.1994051
##    spam 0.01980198 0.1396654
## 
##        talk
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3365137
##    spam 0.01980198 0.2814390
## 
##        targetblankimg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.02475248 0.3517988
## 
##        tax
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.064356436 0.49956880
## 
##        tbody
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.2673267 1.158066
## 
##        tda
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.0990099 0.5554784
## 
##        tdbfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.5871219
## 
##        tdfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.2296332
## 
##        tdibfont
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        tdimg
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1386139 1.167808
## 
##        tdinput
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07920792 0.7149181
## 
##        tdtr
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05940594 0.368452
## 
##        tdtrtable
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.04455446 0.250363
## 
##        teach
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.04950495 0.3562166
## 
##        team
## train_y       [,1]      [,2]
##    ham  0.04128440 0.4326983
##    spam 0.03960396 0.1955114
## 
##        technologies
## train_y        [,1]       [,2]
##    ham  0.064220183 0.62623488
##    spam 0.004950495 0.07035975
## 
##        technology
## train_y       [,1]      [,2]
##    ham  0.31192661 2.8225466
##    spam 0.08415842 0.4547664
## 
##        tél
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.6332378
## 
##        tell
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3160405
##    spam 0.06435644 0.3320625
## 
##        term
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.113861386 0.79919483
## 
##        terms
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.07425743 0.3447267
## 
##        test
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3118321
##    spam 0.01485149 0.1212589
## 
##        text
## train_y       [,1]      [,2]
##    ham  0.05504587 0.4148147
##    spam 0.09405941 0.5047677
## 
##        textd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.2628408
## 
##        textdecoration
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.3831329
## 
##        texthtml
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.4851485 0.5484281
## 
##        textplain
## train_y      [,1]      [,2]
##    ham  0.9220183 0.2853917
##    spam 0.4950495 0.5012177
## 
##        than
## train_y      [,1]      [,2]
##    ham  0.2568807 0.7042160
##    spam 0.2970297 0.9929558
## 
##        thank
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.089108911 0.30252700
## 
##        thanks
## train_y       [,1]      [,2]
##    ham  0.10550459 0.3365137
##    spam 0.05445545 0.3185867
## 
##        that
## train_y     [,1]     [,2]
##    ham  2.114679 3.685901
##    spam 2.207921 6.366606
## 
##        thats
## train_y      [,1]      [,2]
##    ham  0.1284404 0.4095837
##    spam 0.1237624 0.4881987
## 
##        the
## train_y     [,1]     [,2]
##    ham  8.284404 13.20598
##    spam 9.925743 21.30142
## 
##        their
## train_y      [,1]     [,2]
##    ham  0.4220183 1.092864
##    spam 0.3168317 1.101159
## 
##        them
## train_y      [,1]     [,2]
##    ham  0.2844037 0.798521
##    spam 0.2524752 1.150651
## 
##        then
## train_y      [,1]      [,2]
##    ham  0.2155963 0.5296159
##    spam 0.2326733 0.6311340
## 
##        there
## train_y      [,1]      [,2]
##    ham  0.4495413 0.8797385
##    spam 0.3663366 1.2984704
## 
##        theres
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2920905
##    spam 0.02475248 0.1557559
## 
##        these
## train_y      [,1]     [,2]
##    ham  0.1972477 0.745241
##    spam 0.3564356 1.051738
## 
##        they
## train_y      [,1]     [,2]
##    ham  0.6238532 1.489063
##    spam 0.3613861 1.565516
## 
##        thing
## train_y       [,1]      [,2]
##    ham  0.12385321 0.5064377
##    spam 0.07425743 0.4105944
## 
##        things
## train_y       [,1]      [,2]
##    ham  0.15137615 0.4503178
##    spam 0.05445545 0.3338379
## 
##        think
## train_y      [,1]      [,2]
##    ham  0.2798165 0.7309207
##    spam 0.1039604 0.4161947
## 
##        thinking
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.06930693 0.5419226
## 
##        third
## train_y       [,1]      [,2]
##    ham  0.04128440 0.3503023
##    spam 0.05940594 0.2571092
## 
##        this
## train_y     [,1]     [,2]
##    ham  1.449541 2.271792
##    spam 3.618812 6.414244
## 
##        those
## train_y      [,1]      [,2]
##    ham  0.1743119 0.6272467
##    spam 0.2326733 1.0974062
## 
##        though
## train_y       [,1]      [,2]
##    ham  0.06880734 0.3033446
##    spam 0.05445545 0.2676690
## 
##        thought
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3011063
##    spam 0.02970297 0.2210534
## 
##        thousands
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.168316832 0.65516405
## 
##        threadindex
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.21745876
## 
##        three
## train_y       [,1]      [,2]
##    ham  0.05963303 0.3732086
##    spam 0.02970297 0.1701884
## 
##        through
## train_y      [,1]      [,2]
##    ham  0.1651376 0.4991008
##    spam 0.2722772 0.6911838
## 
##        thu
## train_y     [,1]     [,2]
##    ham  1.610092 2.745636
##    spam 1.094059 2.157035
## 
##        thus
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2866850
##    spam 0.01980198 0.1396654
## 
##        tim
## train_y        [,1]       [,2]
##    ham  0.064220183 0.45589289
##    spam 0.004950495 0.07035975
## 
##        time
## train_y      [,1]      [,2]
##    ham  0.2614679 0.7861014
##    spam 0.6386139 1.3578935
## 
##        times
## train_y      [,1]      [,2]
##    ham  0.1100917 0.5403438
##    spam 0.1881188 1.0193440
## 
##        tipsmtpadmanmailcom
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.4880978
## 
##        tired
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.02475248 0.1849598
## 
##        title
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.05445545 0.2676690
## 
##        tlsvdescbcsha
## train_y        [,1]       [,2]
##    ham  0.045871560 0.20968799
##    spam 0.004950495 0.07035975
## 
##        tobacco
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06435644 0.4122705
## 
##        today
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3624911
##    spam 0.25247525 0.6469360
## 
##        told
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2114948
##    spam 0.03465347 0.2313429
## 
##        tollfree
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.24599646
## 
##        tom
## train_y      [,1]      [,2]
##    ham  0.0733945 0.3382367
##    spam 0.0000000 0.0000000
## 
##        tony
## train_y       [,1]      [,2]
##    ham  0.06422018 0.6689317
##    spam 0.00000000 0.0000000
## 
##        too
## train_y       [,1]      [,2]
##    ham  0.11926606 0.3649322
##    spam 0.09405941 0.3940659
## 
##        took
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1500433
##    spam 0.05940594 0.2369702
## 
##        tools
## train_y       [,1]      [,2]
##    ham  0.05963303 0.5179932
##    spam 0.03465347 0.1833549
## 
##        top
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.09900990 0.4679786
## 
##        total
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2128895
##    spam 0.24257426 1.3769854
## 
##        totally
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.03465347 0.2519321
## 
##        track
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2676169
##    spam 0.05940594 0.2369702
## 
##        trade
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.04455446 0.3772050
## 
##        trading
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.178217822 1.47884613
## 
##        traffic
## train_y       [,1]      [,2]
##    ham  0.03669725 0.3573225
##    spam 0.02475248 0.2101437
## 
##        training
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2524978
##    spam 0.04455446 0.2695030
## 
##        transaction
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.21287129 0.9246393
## 
##        transfer
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.12871287 0.5583089
## 
##        transitionalen
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03960396 0.1955114
## 
##        tried
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2898019
##    spam 0.03960396 0.2609128
## 
##        trtd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.6049929
## 
##        true
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.05940594 0.2757814
## 
##        trust
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.08910891 0.4370642
## 
##        try
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3136234
##    spam 0.09405941 0.5241096
## 
##        trying
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3392664
##    spam 0.02970297 0.1972672
## 
##        tue
## train_y     [,1]     [,2]
##    ham  1.151376 2.345704
##    spam 1.000000 2.183156
## 
##        tuesday
## train_y       [,1]       [,2]
##    ham  0.04128440 0.22131197
##    spam 0.00990099 0.09925589
## 
##        turn
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04455446 0.2503630
## 
##        two
## train_y      [,1]      [,2]
##    ham  0.1697248 0.5112566
##    spam 0.1336634 0.6743011
## 
##        txtdogmaslashnullorg
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.4108911 4.27587
## 
##        type
## train_y       [,1]      [,2]
##    ham  0.07339450 0.3769003
##    spam 0.09405941 0.3812318
## 
##        typecheckbox
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.9850366
## 
##        typedhidden
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08910891 0.5105652
## 
##        typedsubmit
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.1833549
## 
##        typedtext
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.1633663 0.95576
## 
##        typehidden
## train_y      [,1]    [,2]
##    ham  0.0000000 0.00000
##    spam 0.1188119 1.00533
## 
##        uaa
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.039603960 0.21948796
## 
##        uid
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.02970297 0.1701884
## 
##        under
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2734383
##    spam 0.11386139 0.4013732
## 
##        understand
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.07920792 0.3363003
## 
##        une
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.6332378
## 
##        united
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2513230
##    spam 0.10891089 0.3705849
## 
##        universal
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.000000000 0.00000000
## 
##        university
## train_y       [,1]       [,2]
##    ham  0.09633028 0.68215254
##    spam 0.00990099 0.09925589
## 
##        unknown
## train_y      [,1]      [,2]
##    ham  0.2339450 0.5641715
##    spam 0.2524752 0.5906559
## 
##        unseen
## train_y       [,1]    [,2]
##    ham  0.07798165 0.49734
##    spam 0.00000000 0.00000
## 
##        unsolicited
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.08910891 0.3483868
## 
##        unspun
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        unsubscribe
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2712651
##    spam 0.16336634 0.4439136
## 
##        unsubscribed
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.2296332
## 
##        unsubscription
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.09900990 0.2994174
## 
##        until
## train_y       [,1]      [,2]
##    ham  0.03669725 0.1884502
##    spam 0.08910891 0.5660197
## 
##        update
## train_y       [,1]     [,2]
##    ham  0.04587156 0.356256
##    spam 0.00000000 0.000000
## 
##        upfront
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.01980198 0.281439
## 
##        upon
## train_y       [,1]      [,2]
##    ham  0.03211009 0.1766982
##    spam 0.08910891 0.4014652
## 
##        urgent
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.054455446 0.34842210
## 
##        url
## train_y       [,1]      [,2]
##    ham  0.26605505 0.4429104
##    spam 0.05445545 0.3338379
## 
##        urncontentclassesmessage
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.049504950 0.21745876
## 
##        usa
## train_y       [,1]      [,2]
##    ham  0.05045872 0.2580051
##    spam 0.04950495 0.3831329
## 
##        use
## train_y      [,1]      [,2]
##    ham  0.5229358 1.1079631
##    spam 0.2821782 0.8432224
## 
##        used
## train_y       [,1]      [,2]
##    ham  0.13761468 0.4889166
##    spam 0.06435644 0.3167258
## 
##        useful
## train_y        [,1]       [,2]
##    ham  0.022935780 0.15004333
##    spam 0.004950495 0.07035975
## 
##        user
## train_y       [,1]      [,2]
##    ham  0.10091743 0.3704513
##    spam 0.01980198 0.1716295
## 
##        useragent
## train_y      [,1]      [,2]
##    ham  0.1605505 0.3679607
##    spam 0.0000000 0.0000000
## 
##        userid
## train_y       [,1]      [,2]
##    ham  0.11009174 0.3137245
##    spam 0.01980198 0.1396654
## 
##        users
## train_y      [,1]      [,2]
##    ham  0.2064220 0.5667882
##    spam 0.2425743 0.6658472
## 
##        using
## train_y      [,1]      [,2]
##    ham  0.2385321 0.6353501
##    spam 0.1039604 0.3513785
## 
##        uswsffwsourceforgenet
## train_y       [,1]      [,2]
##    ham  0.12844037 0.3353495
##    spam 0.01980198 0.1396654
## 
##        uswsflistbsourceforgenet
## train_y       [,1]      [,2]
##    ham  0.13302752 0.3536655
##    spam 0.01980198 0.1396654
## 
##        uswsflistsourceforgenet
## train_y       [,1]      [,2]
##    ham  0.39908257 1.0609964
##    spam 0.05940594 0.4189962
## 
##        utc
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2228350
##    spam 0.12376238 0.3301284
## 
##        utilities
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.3724742
## 
##        valid
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.02970297 0.1701884
## 
##        valigncenter
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        valigndmiddle
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05445545 0.227478
## 
##        valigndtop
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.3384902
## 
##        valigntop
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.3910891 1.666324
## 
##        valuable
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1386139 0.5377251
## 
##        value
## train_y      [,1]      [,2]
##    ham  0.0412844 0.2213120
##    spam 0.1534653 0.7201526
## 
##        valued
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.04455446 0.206836
## 
##        valuedsubmit
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.03465347 0.1833549
## 
##        valueoption
## train_y        [,1]       [,2]
##    ham  0.000000000 0.00000000
##    spam 0.004950495 0.07035975
## 
##        vamm
## train_y       [,1]      [,2]
##    ham  0.27064220 0.7217238
##    spam 0.04455446 0.3201291
## 
##        various
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2498044
##    spam 0.01485149 0.1570158
## 
##        venture
## train_y       [,1]      [,2]
##    ham  0.06880734 1.0159282
##    spam 0.02475248 0.1849598
## 
##        verdana
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1039604 0.7221335
## 
##        version
## train_y      [,1]      [,2]
##    ham  0.2889908 0.6609363
##    spam 0.1584158 0.5033751
## 
##        very
## train_y      [,1]      [,2]
##    ham  0.1651376 0.6370115
##    spam 0.1534653 0.5382974
## 
##        via
## train_y       [,1]      [,2]
##    ham  0.06422018 0.2637982
##    spam 0.12871287 0.4817746
## 
##        video
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.034653465 0.32135771
## 
##        view
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2228350
##    spam 0.03465347 0.2313429
## 
##        viruses
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.069306931 0.33849023
## 
##        visit
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2128895
##    spam 0.18811881 0.5127794
## 
##        vous
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.07920792 1.125756
## 
##        vspace
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05445545 0.4483302
## 
##        wait
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.03960396 0.2194880
## 
##        waiting
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.039603960 0.21948796
## 
##        want
## train_y      [,1]      [,2]
##    ham  0.1467890 0.5651261
##    spam 0.4108911 0.9745417
## 
##        wanted
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.03960396 0.2194880
## 
##        war
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.01980198 0.1396654
## 
##        warranty
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.079207921 0.55866166
## 
##        was
## train_y      [,1]     [,2]
##    ham  0.8027523 2.007496
##    spam 0.5990099 2.277425
## 
##        washington
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1511662
##    spam 0.03960396 0.2194880
## 
##        way
## train_y      [,1]      [,2]
##    ham  0.2339450 0.6261167
##    spam 0.1980198 0.7126407
## 
##        wcdtd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.2369702
## 
##        web
## train_y      [,1]      [,2]
##    ham  0.2385321 1.5769017
##    spam 0.2326733 0.9089504
## 
##        webex
## train_y       [,1]     [,2]
##    ham  0.06880734 1.015928
##    spam 0.00000000 0.000000
## 
##        webmasterefiie
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.2475248 0.5885464
## 
##        webnotenet
## train_y       [,1]      [,2]
##    ham  0.05504587 0.3279559
##    spam 0.74752475 0.8467784
## 
##        website
## train_y       [,1]      [,2]
##    ham  0.05504587 0.4957862
##    spam 0.16336634 0.7778300
## 
##        wed
## train_y      [,1]     [,2]
##    ham  1.7889908 3.067815
##    spam 0.8316832 1.795901
## 
##        week
## train_y       [,1]      [,2]
##    ham  0.02293578 0.2239705
##    spam 0.11386139 0.4698957
## 
##        weeks
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.18811881 1.1820622
## 
##        weight
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.064356436 0.44700978
## 
##        welcome
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2560311
##    spam 0.01485149 0.1212589
## 
##        well
## train_y      [,1]      [,2]
##    ham  0.1238532 0.4165691
##    spam 0.2326733 0.7919507
## 
##        went
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.01980198 0.1716295
## 
##        were
## train_y      [,1]      [,2]
##    ham  0.2614679 0.8034956
##    spam 0.1435644 0.4507409
## 
##        west
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.02475248 0.1849598
## 
##        weve
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.029702970 0.26223098
## 
##        what
## train_y      [,1]      [,2]
##    ham  0.3532110 0.7793497
##    spam 0.3465347 1.2808241
## 
##        when
## train_y      [,1]      [,2]
##    ham  0.2385321 0.5327796
##    spam 0.2772277 1.0036631
## 
##        where
## train_y      [,1]      [,2]
##    ham  0.2247706 0.6922422
##    spam 0.1534653 0.5474617
## 
##        whether
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.05445545 0.3185867
## 
##        which
## train_y      [,1]      [,2]
##    ham  0.4678899 0.9983286
##    spam 0.3019802 0.7349796
## 
##        while
## train_y       [,1]      [,2]
##    ham  0.08715596 0.3417496
##    spam 0.14356436 0.6796130
## 
##        white
## train_y       [,1]      [,2]
##    ham  0.02293578 0.1781280
##    spam 0.09405941 0.6882557
## 
##        who
## train_y      [,1]     [,2]
##    ham  0.3899083 1.042546
##    spam 0.4950495 1.690617
## 
##        whole
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.05445545 0.3025677
## 
##        why
## train_y       [,1]      [,2]
##    ham  0.16972477 0.5627458
##    spam 0.09405941 0.3679503
## 
##        width
## train_y     [,1]     [,2]
##    ham  0.000000  0.00000
##    spam 3.217822 10.65899
## 
##        widtha
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.07425743 0.5080748
## 
##        widthd
## train_y     [,1]    [,2]
##    ham  0.000000 0.00000
##    spam 1.727723 5.77179
## 
##        widthdbfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04950495 0.5159397
## 
##        widthdfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.08415842 0.7315536
## 
##        widthdimg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.04455446 0.3201291
## 
##        widthdnbsptd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.01485149 0.1570158
## 
##        widthfont
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.5232395
## 
##        widthnbsptd
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.5774782
## 
##        will
## train_y      [,1]     [,2]
##    ham  0.4082569 1.299885
##    spam 1.5792079 3.513466
## 
##        williams
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.04950495 0.4082785
## 
##        window
## train_y        [,1]       [,2]
##    ham  0.133027523 0.90350623
##    spam 0.004950495 0.07035975
## 
##        windows
## train_y      [,1]      [,2]
##    ham  0.1146789 0.4080584
##    spam 0.1534653 0.4246308
## 
##        wish
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.32178218 0.631212
## 
##        with
## train_y     [,1]     [,2]
##    ham  6.766055 3.492631
##    spam 6.445545 3.604793
## 
##        within
## train_y       [,1]     [,2]
##    ham  0.02293578 0.178128
##    spam 0.29702970 1.070124
## 
##        without
## train_y      [,1]      [,2]
##    ham  0.1238532 0.4586896
##    spam 0.2128713 0.6977096
## 
##        women
## train_y       [,1]      [,2]
##    ham  0.06422018 0.5039060
##    spam 0.07425743 0.7258076
## 
##        wonderful
## train_y        [,1]       [,2]
##    ham  0.009174312 0.09556168
##    spam 0.039603960 0.21948796
## 
##        wont
## train_y       [,1]      [,2]
##    ham  0.03211009 0.2010941
##    spam 0.01980198 0.1396654
## 
##        word
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.04950495 0.2392458
## 
##        work
## train_y      [,1]      [,2]
##    ham  0.1330275 0.4247103
##    spam 0.2722772 1.0222031
## 
##        worked
## train_y       [,1]      [,2]
##    ham  0.05045872 0.3069469
##    spam 0.03465347 0.2709613
## 
##        working
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2853917
##    spam 0.09405941 0.3679503
## 
##        works
## train_y       [,1]      [,2]
##    ham  0.06422018 0.3785792
##    spam 0.08910891 0.4370642
## 
##        world
## train_y       [,1]      [,2]
##    ham  0.22477064 0.7558870
##    spam 0.08415842 0.5534573
## 
##        worlds
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3303002
##    spam 0.03960396 0.2793308
## 
##        worldwide
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1652621
##    spam 0.03465347 0.2087326
## 
##        worst
## train_y       [,1]     [,2]
##    ham  0.02752294 0.286685
##    spam 0.04455446 0.206836
## 
##        worth
## train_y       [,1]      [,2]
##    ham  0.03669725 0.2690350
##    spam 0.03465347 0.1833549
## 
##        would
## train_y      [,1]     [,2]
##    ham  0.5000000 1.184578
##    spam 0.3910891 1.046444
## 
##        wowie
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1237624 1.758994
## 
##        write
## train_y       [,1]      [,2]
##    ham  0.07339450 0.3769003
##    spam 0.04455446 0.2503630
## 
##        writes
## train_y      [,1]      [,2]
##    ham  0.1146789 0.3600629
##    spam 0.0000000 0.0000000
## 
##        writing
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.03960396 0.2609128
## 
##        wrong
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3697945
##    spam 0.01980198 0.1396654
## 
##        wrote
## train_y      [,1]     [,2]
##    ham  0.3990826 0.652114
##    spam 0.0000000 0.000000
## 
##        xacceptlanguage
## train_y       [,1]      [,2]
##    ham  0.08715596 0.2827126
##    spam 0.00000000 0.0000000
## 
##        xantiabuse
## train_y       [,1]      [,2]
##    ham  0.06880734 0.5838372
##    spam 0.00000000 0.0000000
## 
##        xapparentlyto
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        xauthenticationwarning
## train_y       [,1]      [,2]
##    ham  0.06880734 0.2537088
##    spam 0.05940594 0.2369702
## 
##        xbeenthere
## train_y      [,1]      [,2]
##    ham  0.6192661 0.4960632
##    spam 0.1336634 0.3411357
## 
##        xegroupsreturn
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.00000000 0.0000000
## 
##        xentcom
## train_y      [,1]     [,2]
##    ham  0.7706422 1.334636
##    spam 0.0000000 0.000000
## 
##        xhabeasswe
## train_y      [,1]     [,2]
##    ham  0.1238532 1.050907
##    spam 0.0000000 0.000000
## 
##        xinfo
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.05940594 0.3254322
## 
##        xkeywords
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05445545 0.227478
## 
##        xloop
## train_y       [,1]      [,2]
##    ham  0.09174312 0.2893273
##    spam 0.01485149 0.1212589
## 
##        xmailer
## train_y      [,1]     [,2]
##    ham  0.3073394 0.472313
##    spam 0.4702970 0.500357
## 
##        xmailmanversion
## train_y      [,1]      [,2]
##    ham  0.6192661 0.4960632
##    spam 0.1336634 0.3411357
## 
##        xmailscanner
## train_y       [,1]      [,2]
##    ham  0.07798165 0.2687598
##    spam 0.00000000 0.0000000
## 
##        xmimeautoconverted
## train_y       [,1]      [,2]
##    ham  0.02752294 0.1639779
##    spam 0.05445545 0.2274780
## 
##        xmimeole
## train_y       [,1]      [,2]
##    ham  0.08256881 0.2758628
##    spam 0.09405941 0.2926366
## 
##        xml
## train_y       [,1]     [,2]
##    ham  0.23394495 2.992363
##    spam 0.01980198 0.281439
## 
##        xmsmailpriority
## train_y      [,1]      [,2]
##    ham  0.0733945 0.2613831
##    spam 0.2178218 0.4137911
## 
##        xoriginalarrivaltime
## train_y       [,1]      [,2]
##    ham  0.01376147 0.1167674
##    spam 0.12376238 0.3301284
## 
##        xoriginaldate
## train_y       [,1]      [,2]
##    ham  0.24311927 0.4299538
##    spam 0.06435644 0.2459965
## 
##        xpriority
## train_y       [,1]      [,2]
##    ham  0.09633028 0.2957227
##    spam 0.31683168 0.4663971
## 
##        xsender
## train_y        [,1]       [,2]
##    ham  0.110091743 0.32808478
##    spam 0.004950495 0.07035975
## 
##        xsmall
## train_y [,1] [,2]
##    ham     0    0
##    spam    0    0
## 
##        xstatus
## train_y       [,1]     [,2]
##    ham  0.00000000 0.000000
##    spam 0.05445545 0.227478
## 
##        xvirusscanned
## train_y        [,1]       [,2]
##    ham  0.004587156 0.06772855
##    spam 0.049504950 0.23924581
## 
##        yahoo
## train_y       [,1]      [,2]
##    ham  0.15137615 0.5345423
##    spam 0.01485149 0.1570158
## 
##        year
## train_y       [,1]     [,2]
##    ham  0.08256881 0.501214
##    spam 0.22772277 1.011193
## 
##        years
## train_y      [,1]      [,2]
##    ham  0.2064220 0.6913255
##    spam 0.2425743 1.0393115
## 
##        yes
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2096880
##    spam 0.12376238 0.4778993
## 
##        yet
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2734383
##    spam 0.04455446 0.2503630
## 
##        york
## train_y       [,1]      [,2]
##    ham  0.02752294 0.2128895
##    spam 0.03465347 0.2087326
## 
##        you
## train_y     [,1]      [,2]
##    ham  1.201835  2.147895
##    spam 5.742574 11.225995
## 
##        youll
## train_y       [,1]      [,2]
##    ham  0.04587156 0.2306201
##    spam 0.11881188 0.4061010
## 
##        young
## train_y       [,1]      [,2]
##    ham  0.02752294 0.3450430
##    spam 0.03465347 0.4276363
## 
##        your
## train_y      [,1]      [,2]
##    ham  0.4587156 0.8372889
##    spam 3.8168317 5.7424936
## 
##        youre
## train_y       [,1]      [,2]
##    ham  0.08256881 0.3361051
##    spam 0.10891089 0.5259626
## 
##        yours
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.1089109 0.3278451
## 
##        yourself
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.12376238 0.3857276
## 
##        youve
## train_y       [,1]      [,2]
##    ham  0.01834862 0.1345175
##    spam 0.05445545 0.3484221
## 
##        yyyylocalhostnetnoteinccom
## train_y      [,1]      [,2]
##    ham  0.1422018 0.3500608
##    spam 0.0000000 0.0000000
## 
##        yyyylocalhostspamassassintaintorg
## train_y       [,1]      [,2]
##    ham  0.71559633 0.4521682
##    spam 0.01980198 0.1396654
## 
##        yyyyspamassassintaintorg
## train_y       [,1]      [,2]
##    ham  0.26146789 0.4404456
##    spam 0.01485149 0.1212589
## 
##        zowie
## train_y      [,1]     [,2]
##    ham  0.0000000 0.000000
##    spam 0.1237624 1.758994
## 
##        zzzzasonorg
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.4851485 0.5299744
## 
##        zzzzilugjmasonorg
## train_y       [,1]      [,2]
##    ham  0.00000000 0.0000000
##    spam 0.06930693 0.2546063
## 
##        zzzzjmasonorg
## train_y      [,1]      [,2]
##    ham  0.0000000 0.0000000
##    spam 0.3316832 0.5498857
## 
##        zzzzlocalhost
## train_y      [,1]      [,2]
##    ham  0.2477064 0.6603443
##    spam 1.8217822 0.5712174
## 
##        zzzzlocalhostnetnoteinccom
## train_y       [,1]     [,2]
##    ham  0.06422018 0.245709
##    spam 0.00000000 0.000000
## 
##        zzzzlocalhostspamassassintaintorg
## train_y       [,1]      [,2]
##    ham  0.05963303 0.2373507
##    spam 0.91089109 0.2856087
## 
##        zzzzspamassassintaintorg
## train_y       [,1]      [,2]
##    ham  0.09633028 0.3525880
##    spam 0.63861386 0.9426828
## 
##        zzzzteana
## train_y       [,1]      [,2]
##    ham  0.07798165 0.3303002
##    spam 0.00000000 0.0000000
## 
##        zzzzteanayahoogroupscom
## train_y     [,1]     [,2]
##    ham  0.293578 1.170314
##    spam 0.000000 0.000000

9 9. Evaluate on the Test Set

To evaluate the classifier, I predict the labels for the test set and compute a confusion matrix and overall accuracy.

test_pred <- predict(nb_model, newdata = test_x)

conf_mat <- table(
  Actual    = test_y,
  Predicted = test_pred
)
conf_mat
##       Predicted
## Actual ham spam
##   ham   80    2
##   spam  51   47
accuracy <- sum(test_pred == test_y) / length(test_y)
accuracy
## [1] 0.7055556

I also compute the misclassification rate:

error_rate <- 1 - accuracy
error_rate
## [1] 0.2944444

And simple precision and recall for the spam class, with safeguards in case a class is missing from the test set.

# Safely extract counts even if some cells are missing
get_cell <- function(cm, r, c) {
  if (r %in% rownames(cm) && c %in% colnames(cm)) {
    cm[r, c]
  } else {
    0
  }
}

tp <- get_cell(conf_mat, "spam", "spam")
fp <- get_cell(conf_mat, "ham",  "spam")
fn <- get_cell(conf_mat, "spam", "ham")

precision_spam <- ifelse(tp + fp > 0, tp / (tp + fp), NA_real_)
recall_spam    <- ifelse(tp + fn > 0, tp / (tp + fn), NA_real_)

precision_spam
## [1] 0.9591837
recall_spam
## [1] 0.4795918

10 10. Classify New Emails

Finally, I classify a few new example messages to see how the model behaves on text that was not part of the training data.

new_texts <- c(
  "Congratulations! You have won a free prize. Click here to claim now!!!",
  "Hi, just checking if we are still on for our meeting tomorrow.",
  "Limited time offer on cheap medications, no prescription needed."
)

new_corpus <- VCorpus(VectorSource(new_texts)) %>%
  tm_map(content_transformer(tolower)) %>%
  tm_map(removeNumbers) %>%
  tm_map(removePunctuation) %>%
  tm_map(stripWhitespace)

# Use the same frequent terms as in the training DTM
new_dtm <- DocumentTermMatrix(
  new_corpus,
  control = list(dictionary = Terms(dtm))
)

new_mat <- as.data.frame(as.matrix(new_dtm))

# Ensure columns align with training predictors
missing_cols <- setdiff(colnames(train_x), colnames(new_mat))
for (mc in missing_cols) {
  new_mat[[mc]] <- 0
}
new_mat <- new_mat[, colnames(train_x)]

new_pred <- predict(nb_model, newdata = new_mat)

tibble(
  text = new_texts,
  predicted_label = new_pred
)
## # A tibble: 3 × 2
##   text                                                           predicted_label
##   <chr>                                                          <fct>          
## 1 Congratulations! You have won a free prize. Click here to cla… ham            
## 2 Hi, just checking if we are still on for our meeting tomorrow. ham            
## 3 Limited time offer on cheap medications, no prescription need… ham

11 11. Discussion and Conclusion

By sampling a limited number of emails per class and restricting the vocabulary to frequent terms only, I was able to:

For future work, I could: