Import your data
# csv file
data <- readr::read_csv("../00_data/myData.csv")
## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date (3): BCDATE, SMTDATE, TERMDATE
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data
## # A tibble: 882 × 69
## EXPID PEAKID YEAR SEASON SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr>
## 1 EVER20101 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 2 EVER20102 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 3 EVER20103 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 4 AMAD20301 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 5 AMAD20302 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 6 AMAD20303 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 7 AMAD20304 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 8 AMAD20305 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 9 AMAD20306 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 10 AMAD20307 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …
Separating and Uniting
Separate a column
data_sep <- data %>%
separate(col = EXPID, into = c("EVER", "AMAD"))
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 882 rows [1, 2, 3, 4, 5,
## 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
data_sep
## # A tibble: 882 × 70
## EVER AMAD PEAKID YEAR SEASON SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr>
## 1 EVER… <NA> EVER 2020 1 Spring 2 China N Col… <NA>
## 2 EVER… <NA> EVER 2020 1 Spring 2 China N Col… <NA>
## 3 EVER… <NA> EVER 2020 1 Spring 2 China N Col… <NA>
## 4 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 5 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 6 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 7 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 8 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 9 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 10 AMAD… <NA> AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …
Unite two columns
data_unite <- data_sep %>%
unite(col = "EXPID", EVER:AMAD, sep = "/")
data_unite
## # A tibble: 882 × 69
## EXPID PEAKID YEAR SEASON SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr>
## 1 EVER20101/… EVER 2020 1 Spring 2 China N Col… <NA>
## 2 EVER20102/… EVER 2020 1 Spring 2 China N Col… <NA>
## 3 EVER20103/… EVER 2020 1 Spring 2 China N Col… <NA>
## 4 AMAD20301/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 5 AMAD20302/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 6 AMAD20303/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 7 AMAD20304/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 8 AMAD20305/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 9 AMAD20306/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## 10 AMAD20307/… AMAD 2020 3 Autumn 1 Nepal SW Ri… <NA>
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …
Missing Values
data %>%
complete(YEAR, SEASON)
## # A tibble: 886 × 69
## YEAR SEASON EXPID PEAKID SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
## 1 2020 1 EVER20101 EVER Spring 2 China N Col-N… <NA>
## 2 2020 1 EVER20102 EVER Spring 2 China N Col-N… <NA>
## 3 2020 1 EVER20103 EVER Spring 2 China N Col-N… <NA>
## 4 2020 2 <NA> <NA> <NA> NA <NA> <NA> <NA>
## 5 2020 3 AMAD20301 AMAD Autumn 1 Nepal SW Ridge <NA>
## 6 2020 3 AMAD20302 AMAD Autumn 1 Nepal SW Ridge <NA>
## 7 2020 3 AMAD20303 AMAD Autumn 1 Nepal SW Ridge <NA>
## 8 2020 3 AMAD20304 AMAD Autumn 1 Nepal SW Ridge <NA>
## 9 2020 3 AMAD20305 AMAD Autumn 1 Nepal SW Ridge <NA>
## 10 2020 3 AMAD20306 AMAD Autumn 1 Nepal SW Ridge <NA>
## # ℹ 876 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …