obs <-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
A <-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
dat <- data.frame(A,B,C,obs)
dat
## A B C obs
## 1 -1 -1 -1 12
## 2 1 -1 -1 18
## 3 -1 1 -1 13
## 4 1 1 -1 16
## 5 -1 -1 1 17
## 6 1 -1 1 15
## 7 -1 1 1 20
## 8 1 1 1 15
## 9 -1 -1 -1 10
## 10 1 -1 -1 25
## 11 -1 1 -1 13
## 12 1 1 -1 24
## 13 -1 -1 1 19
## 14 1 -1 1 21
## 15 -1 1 1 17
## 16 1 1 1 23
Mod <- lm(obs~A*B*C*D,data = dat)
coef(Mod)
## (Intercept) A B C D
## 1.737500e+01 2.250000e+00 2.500000e-01 1.000000e+00 1.625000e+00
## A:B A:C B:C A:D B:D
## -3.750000e-01 -2.125000e+00 1.250000e-01 2.000000e+00 -6.595890e-16
## C:D A:B:C A:B:D A:C:D B:C:D
## -2.984437e-16 5.000000e-01 3.750000e-01 -1.250000e-01 -3.750000e-01
## A:B:C:D
## 5.000000e-01
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
halfnormal(Mod)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A A:C A:D D
COMMENT: From the plot, we know that the significant factors are A, D, AD and AC since they are far away from the normal line.
\[(\alpha \gamma )_{i,k}=0\]
\[ (\alpha \lambda ) _{i,j}=0 \]
\[ (\alpha \gamma )_{i,k}\neq 0 \]
\[ (\alpha \lambda ) _{i,j}\neq 0 \]
Since AD and AC are significant, A, C, D, AC, AD have to be considered as well.
Model2<- aov(obs~A+C+D+A*C+A*D,data=dat)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.00 49.846 3.46e-05 ***
## C 1 16.00 16.00 9.846 0.010549 *
## D 1 42.25 42.25 26.000 0.000465 ***
## A:C 1 72.25 72.25 44.462 5.58e-05 ***
## A:D 1 64.00 64.00 39.385 9.19e-05 ***
## Residuals 10 16.25 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Comment - Based on above values, the main effects A, D, AC, AD appear to be significant at alpha =0.05 since the p values are less than 0.05.
interaction.plot(A,D,obs,col = c("red","blue"))
interaction.plot(A,C,obs,col = c("red","blue"))
obs <-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
A <-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
dat <- data.frame(A,B,C,obs)
dat
Mod <- lm(obs~A*B*C*D,data = dat)
coef(Mod)
library(DoE.base)
halfnormal(Mod)
Model2<- aov(obs~A+C+D+A*C+A*D,data=dat)
summary(Model2)
interaction.plot(A,D,obs,col = c("red","blue"))
interaction.plot(A,C,obs,col = c("red","blue"))