library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
yield <- c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
dat <- data.frame(A,B,C,D,yield)
dat
## A B C D yield
## 1 -1 -1 -1 -1 12
## 2 1 -1 -1 -1 18
## 3 -1 1 -1 -1 13
## 4 1 1 -1 -1 16
## 5 -1 -1 1 -1 17
## 6 1 -1 1 -1 15
## 7 -1 1 1 -1 20
## 8 1 1 1 -1 15
## 9 -1 -1 -1 1 10
## 10 1 -1 -1 1 25
## 11 -1 1 -1 1 13
## 12 1 1 -1 1 24
## 13 -1 -1 1 1 19
## 14 1 -1 1 1 21
## 15 -1 1 1 1 17
## 16 1 1 1 1 23
mod<- lm(yield~A*B*C*D)
coef(mod)
## (Intercept) A B C D
## 1.737500e+01 2.250000e+00 2.500000e-01 1.000000e+00 1.625000e+00
## A:B A:C B:C A:D B:D
## -3.750000e-01 -2.125000e+00 1.250000e-01 2.000000e+00 -6.595890e-16
## C:D A:B:C A:B:D A:C:D B:C:D
## -2.984437e-16 5.000000e-01 3.750000e-01 -1.250000e-01 -3.750000e-01
## A:B:C:D
## 5.000000e-01
halfnormal(mod)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A A:C A:D D
From the Half normal plot, we can able to see clearly the significant factor A, D, AD, AC
model_sig <- lm(yield~A+D+A:C+A:D, data=dat)
model_sig
##
## Call:
## lm.default(formula = yield ~ A + D + A:C + A:D, data = dat)
##
## Coefficients:
## (Intercept) A D A:C A:D
## 17.375 2.250 1.625 -2.125 2.000
anova(model_sig)
## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.000 27.628 0.0002700 ***
## D 1 42.25 42.250 14.411 0.0029629 **
## A:C 1 72.25 72.250 24.643 0.0004259 ***
## A:D 1 64.00 64.000 21.829 0.0006801 ***
## Residuals 11 32.25 2.932
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#As our significant level 0.05 Factor A, D, AC and AD this is confirm that all values are A, D, AC , AD < .05 so those are significant
library(DoE.base)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
yield <- c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
dat <- data.frame(A,B,C,D,yield)
dat
mod<- lm(yield~A*B*C*D)
coef(mod)
halfnormal(mod)
model_sig <- lm(yield~A+D+A:C+A:D, data=dat)
model_sig
anova(model_sig)