Import data

# excel file
data <- read_excel("../00_data/Salaries.xlsx")
data
## # A tibble: 397 × 6
##    rank      discipline yrs.since.phd yrs.service sex    salary
##    <chr>     <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof      B                     19          18 Male   139750
##  2 Prof      B                     20          16 Male   173200
##  3 AsstProf  B                      4           3 Male    79750
##  4 Prof      B                     45          39 Male   115000
##  5 Prof      B                     40          41 Male   141500
##  6 AssocProf B                      6           6 Male    97000
##  7 Prof      B                     30          23 Male   175000
##  8 Prof      B                     45          45 Male   147765
##  9 Prof      B                     21          20 Male   119250
## 10 Prof      B                     18          18 Female 129000
## # ℹ 387 more rows

Filter

filter(data, rank == "Prof")
## # A tibble: 266 × 6
##    rank  discipline yrs.since.phd yrs.service sex    salary
##    <chr> <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof  B                     19          18 Male   139750
##  2 Prof  B                     20          16 Male   173200
##  3 Prof  B                     45          39 Male   115000
##  4 Prof  B                     40          41 Male   141500
##  5 Prof  B                     30          23 Male   175000
##  6 Prof  B                     45          45 Male   147765
##  7 Prof  B                     21          20 Male   119250
##  8 Prof  B                     18          18 Female 129000
##  9 Prof  B                     20          18 Male   104800
## 10 Prof  B                     12           3 Male   117150
## # ℹ 256 more rows

Arrange

arrange(data,desc(yrs.since.phd))
## # A tibble: 397 × 6
##    rank      discipline yrs.since.phd yrs.service sex   salary
##    <chr>     <chr>              <dbl>       <dbl> <chr>  <dbl>
##  1 Prof      A                     56          57 Male   76840
##  2 Prof      B                     56          49 Male  186960
##  3 Prof      A                     54          49 Male   78162
##  4 Prof      A                     52          48 Male  107200
##  5 Prof      A                     51          51 Male   57800
##  6 AssocProf A                     49          49 Male   81800
##  7 Prof      A                     49          43 Male   72300
##  8 Prof      B                     49          60 Male  192253
##  9 Prof      A                     49          40 Male   88709
## 10 AssocProf B                     48          53 Male   90000
## # ℹ 387 more rows

Select columns

select(data, rank, salary, sex)
## # A tibble: 397 × 3
##    rank      salary sex   
##    <chr>      <dbl> <chr> 
##  1 Prof      139750 Male  
##  2 Prof      173200 Male  
##  3 AsstProf   79750 Male  
##  4 Prof      115000 Male  
##  5 Prof      141500 Male  
##  6 AssocProf  97000 Male  
##  7 Prof      175000 Male  
##  8 Prof      147765 Male  
##  9 Prof      119250 Male  
## 10 Prof      129000 Female
## # ℹ 387 more rows

Add columns

Summarize by groups