Load Packages
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(ggpubr)
library(effectsize)
Import Dataset
dataset <- read_excel("/Users/patel777/Desktop/Week6/A6R1.xlsx")
score <- dataset$HeadacheDays
group <- dataset$Medication
Descriptive Statistics
dataset %>%
group_by(Medication) %>%
summarise(
Mean = mean(HeadacheDays),
Median = median(HeadacheDays),
SD = sd(HeadacheDays),
N = n()
)
## # A tibble: 2 Ă— 5
## Medication Mean Median SD N
## <chr> <dbl> <dbl> <dbl> <int>
## 1 A 8.1 8 2.81 50
## 2 B 12.6 12.5 3.59 50
Histograms
hist(dataset$HeadacheDays[dataset$Medication == "A"],
main = "Histogram: Medication A",
xlab = "Headache Days",
col = "lightblue", border = "black", breaks = 20)

hist(dataset$HeadacheDays[dataset$Medication == "B"],
main = "Histogram: Medication B",
xlab = "Headache Days",
col = "lightgreen", border = "black", breaks = 20)

Normality Tests (Shapiro-Wilk)
shapiro.test(dataset$HeadacheDays[dataset$Medication == "A"])
##
## Shapiro-Wilk normality test
##
## data: dataset$HeadacheDays[dataset$Medication == "A"]
## W = 0.97852, p-value = 0.4913
shapiro.test(dataset$HeadacheDays[dataset$Medication == "B"])
##
## Shapiro-Wilk normality test
##
## data: dataset$HeadacheDays[dataset$Medication == "B"]
## W = 0.98758, p-value = 0.8741
Boxplot
ggboxplot(dataset, x = "Medication", y = "HeadacheDays",
color = "Medication", palette = "jco", add = "jitter")

Independent t-test
t.test(HeadacheDays ~ Medication, data = dataset, var.equal = TRUE)
##
## Two Sample t-test
##
## data: HeadacheDays by Medication
## t = -6.9862, df = 98, p-value = 3.431e-10
## alternative hypothesis: true difference in means between group A and group B is not equal to 0
## 95 percent confidence interval:
## -5.778247 -3.221753
## sample estimates:
## mean in group A mean in group B
## 8.1 12.6
Effect Size (Cohen’s d)
cohens_d_result <- cohens_d(HeadacheDays ~ Medication,
data = dataset, pooled_sd = TRUE)
cohens_d_result
## Cohen's d | 95% CI
## --------------------------
## -1.40 | [-1.83, -0.96]
##
## - Estimated using pooled SD.