-2 8 42 112 230 408 658
Unit 6: Counting, Combinations and Permutations
2025-10-21
+ +
+#+ --> + +
+ +
+++ +++
+#+ --> + +
+++ +++
5 dot pattern 9-dot pattern
Each cell with one or no neighbors dies, as if by solitude.
++ ++
# --> .Each cell with four or more neighbors dies, as if by overpopulation.
++ ++
#+ --> .+
+ ++ Each cell with two or three neighbors survives.
+ +
#+ --> #+ For a space that is empty or unpopulated: Each cell with three neighbors becomes populated.
+ +
+ --> #+
+ +\[a_n = a_{n-1} + d\]
\[a_n = a_1 + d(n-1)\]
\[\small s_n = \sum \left(a_1 + a_1 + \cdots + a_n\right)= \frac{n (a_1 + a_n)}{2}\]
\[x_n = a(r^{n-1})= r x_{n-1}\]
\[s_n = \sum \left(x_1 + x_2+ \cdots x_n\right)= \frac{a(1-r^n) }{(1-r)}\]
\[s_n = \sum \left(x_1 + x_2+ \cdots + x_n\right)= \frac{a}{(1-r)}\]
\[x = a_0 + a_1 x+ a_2 x^2+ ... + a_{n}x^n\]
\[y=2x^3-4x\]
-2 8 42 112 230 408 658
Calculate derivative differentials to determine power of the polynomial
x y Diff Diff2 Diff3
1 -2
> 10
2 8 > 24
> 34 > 12
3 42 > 36
> 70 > 12
4 112 > 48
> 118 > 12
5 230 > 60
> 178 > 12
6 408 > 72
> 250
7 658Set up to determine the coefficients
\[\eqalign{ x:& &ax^3 + bx^2 + cx + d &=& y\\ 1:& &a + b + c + d &=& -2\\ 2:& & 8a + 4b + 2c +d &=&8\\ 3:& & 27a + 9b + 3c + d&=&42\\ 4:& & 64a + 16b + 4c + d&=&112\\ }\]
\[\left[\matrix{1&1&1&1&|& -2\\ 8 & 4 & 2 & 1 &|&8\\ 27 & 9 & 3& 1&|&42\\ 64 & 16 & 4 & 1&|&112\\ }\right]\]
\[\left[\matrix{1&1&1&1&|& -2\\ 0 & 1 & \frac{3}{2} & \frac{7}{4}&|&-6\\ 0 & 0 & 1& \frac{11}{6}&|&-4\\ 0 & 0 & 0 & 1&|&0\\ }\right]\]
\[\left[\matrix{1&0&0&0&|& 2\\ 0 & 1 & 0 & 0&|&0\\ 0 & 0 & 1& 0&|&-4\\ 0 & 0 & 0 & 1&|&0\\ }\right]\]
\[y=2x^3-4x\]
\[\int_1^7 2x^3 - 4x dx= 1102\]
an arrangement of objects in a specific order.
Order matters: each permutation represents a different permutation.
Permutations of \(n\) Objects Taken \(n\) at a Time
\[P(n,n) = n!\]
\[P(n,k)= \frac{n!}{(n-k)!}\]
The number of ways to arrange \(n\) objects where there are \(n_1\) identical objects of type 1, \(n_2\) identical objects of type 2, and so on.
\[\frac{n!}{n_1! n_2! \dots n_r!}\]
Example: Choosing runs like \({1, 2, 3}\), \({2,1,3}\) and \({3,1,2}\) out of a set of 100 numbers
\[C(n, k) = \binom{n}{k} = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!}\]
\[\small\matrix{ Feature & Permutations & Combinations\\ \hline \hbox{Order}&\hbox{Matters (Arrangement)}&\hbox{Doesn't Matter (Selection)}\\ \hbox{Question}&\hbox{How many arrangements?}&\hbox{How many groups/subsets?}\\ \hbox{Formula} & P(n, k) = \frac{n!}{(n-k)!} & C(n, k) = \frac{n!}{k!(n-k)!}\\ \hbox{Result}&\hbox{Generally larger number}&\hbox{Generally smaller number}\\ \hbox{Mnemonic}&\hbox{Position (or Placement)}&\hbox{Committee (or Choose)}\\ }\]
Distribution of \(n\) items among \(k\) bins
We need n stars (the objects)
We need k-1 bars (to create k bins)
Total positions: n + k - 1
The number of ways =
\[\binom{n+k-1}{k-1} = \binom{n+k-1}{n}\]
Example: 3 cookies distribute among 2 children
***|
**|*
*|**
|***\[\binom{3+2-1}{2-1}= \binom{4}{1}= \frac{4!}{3!1!}=4\]
There are 10 pigeons and 9 holes:
There is at least one hole with 1 or more pigeons.
If there are \(P\) individuals in the group and \(k\) boxes:
There are at least one box that will contain at least \(\left\lceil \frac{P}{k}\right\rceil\) objects
5 pairs of chopstick are thrown into a drawer and mixed up. With the draw of each chopstick what is the probability that a match is made?
\[\eqalign{Draw&&Permutation&&Sum&\quad Acc &Sum&&10000\\ 1& & \frac{0}{10} &=& 0.000 && 0.000\\ 2& & \frac{10\times 1}{10\times9} &=& 0.111&& 0.111 &&1126\\ 3 & & \frac{10\times 8\times 2}{10\times9\times 8} &=& 0.222&& 0.333& \\ 4 & & \frac{10\times 8\times 6\times3}{10\times9\times 8\times7} &=& 0.286 && 0.508\\ 5 & & \frac{10\times 8\times 6\times4\times 4}{10\times9\times 8\times7\times 6} &=& 0.254&& 0.762\\ 6 & & \frac{10\times 8\times 6\times4\times 2\times 5}{10\times9\times 8\times7\times 6\times 5} &=& 0.127&&1.000\\}\]
How many chopsticks do you need to pick before you definitely have a matching pair?
\[\tiny \matrix{ Sticks & Unpaired&&Calc & Not & Single & Doble & Triple \\ Picked & Permut& &Fraction & Paired & Pairs & Pairs & Pairs \\ 0 &\frac{10}{10}&=&1.000 &10000\pm 0.0 & 0& 0 & 0 \\ 1 &\frac{10}{10}&=&1.000 &10000\pm 0.0 &0 & 0 & 0 \\ 2 &\frac{10\cdot8}{10\cdot9}&=&0.889 &8890.8\pm24.7&1109.2\pm24.7& 0 & 0 \\ 3 &\frac{10\cdot8\cdot6}{10\cdot9\cdot8}&=&0.667 &6644.0\pm51.1&3358.0\pm51.1 & 0 & 0 \\ 4 &\frac{10\cdot8\cdot6\cdot4}{10\cdot9\cdot8\cdot7}&=&0.381 &3810.6\pm74.6 & 5718.2\pm66.6 &471.2\pm 26.3 & 0 \\ 5 &\frac{10\cdot8\cdot6\cdot4\cdot2}{10\cdot9\cdot8\cdot7\cdot6}&=&0.127 &1292.2\pm 18.3 & 6311.0\pm 65.3 & 2396.9\pm67.1 & 0 \\ 6 &\frac{10\cdot8\cdot6\cdot4\cdot2\cdot0}{10\cdot9\cdot8\cdot7\cdot6\cdot5}&=&0 & 0\pm 0& 3812\pm 51.9 & 5692.6\pm 28.7 & 495.4\pm 32.8\\ }\]
| p0 | p1 | p2 | p3 | p4 | paired | unpaired | NA |
|---|---|---|---|---|---|---|---|
| 10000 | 0 | 0 | 0 | 0 | 0 | 10000 | 0 |
| 8868 | 1132 | 0 | 0 | 0 | 1132 | 8868 | 0 |
| 6620 | 3380 | 0 | 0 | 0 | 3380 | 6620 | 0 |
| 3772 | 5761 | 467 | 0 | 0 | 6228 | 3772 | 0 |
| 1178 | 6466 | 2356 | 0 | 0 | 8822 | 1178 | 0 |
| 0 | 3783 | 5733 | 484 | 0 | 10000 | 0 | 0 |
Simulation of 10000 tries
\[\eqalign{ R&=& |x_2 - x_1|&=&4&&\#\ Hortizonal\ Moves\\ U &=& |y_2 - y_1|&=&2&&\#\ Vertical\ Moves\\ L&=& R + U &=& 6 &&\#\ Moves\ in\ the\ Shortest\ path\\ }\]
Number of Paths
\[N= {R+U\choose U} = {R + U\choose R} = \frac{6!}{4!2!} = \frac{6\cdot5}{2!}=15\]
a = Node.new(0)
b = Node.new(72)
c = Node.new(144)
d = Node.new(216)
e = Node.new(288)
f = Node.new(nil)
a.neighbors([b,c,d,e,f])
b.neighbors([a,c,d,e])
c.neighbors([a,b,d,e])
d.neighbors([a,b,c,e])
e.neighbors([a,b,c,d])
f.neighbors([a])
Connectivity Matrix:
a matrix to map connections to the next
\[\matrix{&\tiny a &\tiny b&\tiny c &\tiny d&\tiny e &\tiny f\\ \tiny a &0&1&1&1&1&1\\ \tiny b &1&0&1&1&1&0\\ \tiny c &1&1&0&1&1&0\\ \tiny d &1&1&1&0&1&0\\ \tiny e &1&1&1&1&0&0\\ \tiny f &1&0&0&0&0&0\\ }\]
[,1] [,2] [,3] [,4]
[1,] 0 1 1 1
[2,] 1 0 1 0
[3,] 1 1 0 1
[4,] 1 0 1 0
[,1] [,2] [,3] [,4]
[1,] 3 1 2 1
[2,] 1 2 1 2
[3,] 2 1 3 1
[4,] 1 2 1 2
Assign colors to vertices ensuring no two connected vertices share the same color—a concept called proper coloring.
Start by coloring the vertex with the highest degree.
Continue coloring other vertices, using the fewest colors possible without violating the adjacency rule.
The chromatic number is the total number of unique colors used once all vertices are colored properly.
The chromatic number of a wheel graph is 3 if the number of vertices is even, and 4 if the number of vertices is odd.
The chromatic number of a star graph is 2
Planar if:
\[v-e+f = 2\] *
\[\forall v\ge 3:\left\{\begin{matrix} e\le 3v-6 &\qquad planar\\ e\gt 3 v-6 &\qquad nonplanar\\ \end{matrix}\right.\]
\[\begin{matrix} shape & v & e & f & eulers & Modified\\ butterfly & 5 & 6 & 3 & 2 & 6\lt9\\ K_4 & 4 & 6 & 4 & 2 & 6 = 6\\ K_5 & 5 & 10 & 6& 1 &10 \gt 9\\ K3,3 & 6 & 9 & 6 &3 &9 \gt 12\\ \end{matrix}\]
class Node
attr_accessors :value, :leftnode; :rightnode
def initialize(value,left,right)
@value = value
@leftnode = left
@rightnode = right
end
def to_s
@value.to_s
end
end
def add_node(root, value)
if root.nil?
return Node.new(value)
end
if value < root.value
root.left = add_node(root.left, value)
else
root.right = add_node(root.right, value)
end
root
end
def print_tree(node)
return if node.nil?
print_tree(node.left)
puts node.value
print_tree(node.right)
end
def depth_first_search(node)
return if node.nil?
# Process the current node
puts node.value
# Recursively search the left subtree
depth_first_search(node.left)
# Recursively search the right subtree
depth_first_search(node.right)
end
def breadth_first_search(root)
return if root.nil?
queue = [root]
until queue.empty?
node = queue.shift
puts node.value
queue << node.left if node.left
queue << node.right if node.right
end
end
Objects
. (dot): Matches any single character except newline.
[] : Matches any one character inside the brackets; can specify ranges like [a-z].
| : Logical OR operator, matches either the expression before or after the |.
() : Groups expressions and captures the matched portion.
\\ : Escape character to treat special characters as literals or introduce special sequences.
Position
^ : Matches the beginning of a string.
$ : Matches the end of a string.
Recurrence
* : Matches zero or more occurrences of the preceding element (greedy).
+ : Matches one or more occurrences of the preceding element (greedy).
? : Matches zero or one occurrence of the preceding element (makes quantifiers lazy when used after them).
{n} : Matches exactly n occurrences of the preceding element.
{n,} : Matches n or more occurrences of the preceding element.
{n,m} : Matches between n and m occurrences of the preceding element.
https://rubular.com/
[,1] [,2] [,3] [,4]
[1,] 1 0 1 0
[2,] 0 1 0 1
[3,] 0 1 0 1
[4,] 1 0 1 1
IT221