# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311904 -0.002935713  0.0366063094  0.052133319  4.992316e-02
## 2013-02-28  0.0058908646 -0.023105234 -0.0129695678  0.016175235  1.267805e-02
## 2013-03-28  0.0009849123 -0.010234881  0.0129695678  0.040258095  3.726818e-02
## 2013-04-30  0.0096391968  0.012084893  0.0489675280  0.001222641  1.903022e-02
## 2013-05-31 -0.0202138929 -0.049483761 -0.0306555009  0.041976291  2.333548e-02
## 2013-06-28 -0.0157787243 -0.054727904 -0.0271447168 -0.001403001 -1.343454e-02
## 2013-07-31  0.0026886907  0.013159477  0.0518604052  0.063541427  5.038559e-02
## 2013-08-30 -0.0082984709 -0.025705577 -0.0197460608 -0.034743670 -3.045099e-02
## 2013-09-30  0.0111435398  0.069588954  0.0753383432  0.063873814  3.115546e-02
## 2013-10-31  0.0082920963  0.040861232  0.0320815778  0.034233907  4.526684e-02
## 2013-11-29 -0.0025096201 -0.002594076  0.0054497641  0.041661087  2.920721e-02
## 2013-12-31 -0.0055834346 -0.004074591  0.0215280092  0.012892381  2.559585e-02
## 2014-01-31  0.0152917893 -0.090322548 -0.0534133570 -0.035775652 -3.588445e-02
## 2014-02-28  0.0037568433  0.033220424  0.0595050922  0.045257525  4.451025e-02
## 2014-03-31 -0.0014814593  0.038022304 -0.0046024936  0.013315395  8.261300e-03
## 2014-04-30  0.0081827825  0.007772314  0.0165295008 -0.023184110  6.927160e-03
## 2014-05-30  0.0117222219  0.029091192  0.0158284424  0.006205367  2.294166e-02
## 2014-06-30 -0.0005752718  0.023733942  0.0091652618  0.037718965  2.043426e-02
## 2014-07-31 -0.0025127238  0.013555576 -0.0263798134 -0.052009399 -1.352832e-02
## 2014-08-29  0.0114304353  0.027904608  0.0018003983  0.043657452  3.870477e-02
## 2014-09-30 -0.0061670716 -0.080856897 -0.0395982980 -0.061260399 -1.389227e-02
## 2014-10-31  0.0105840841  0.014096575 -0.0026548515  0.068874727  2.327752e-02
## 2014-11-28  0.0065493629 -0.015541327  0.0006253294  0.004773887  2.710150e-02
## 2014-12-31  0.0014752498 -0.040442123 -0.0407468963  0.025295676 -2.539736e-03
## 2015-01-30  0.0203147147 -0.006895513  0.0062265361 -0.054627724 -3.007747e-02
## 2015-02-27 -0.0089884866  0.043135963  0.0614506677  0.056914215  5.468242e-02
## 2015-03-31  0.0037406260 -0.015086123 -0.0143889544  0.010156543 -1.583023e-02
## 2015-04-30 -0.0032325023  0.066281292  0.0358167407 -0.018417803  9.785785e-03
## 2015-05-29 -0.0043840856 -0.041911272  0.0019527114  0.007509863  1.277416e-02
## 2015-06-30 -0.0108255093 -0.029746532 -0.0316789202  0.004171665 -2.052141e-02
## 2015-07-31  0.0085849619 -0.065177705  0.0201144955 -0.027375578  2.233828e-02
## 2015-08-31 -0.0033641537 -0.092512654 -0.0771525048 -0.047268519 -6.288698e-02
## 2015-09-30  0.0080814394 -0.031824886 -0.0451946717 -0.038464678 -2.584679e-02
## 2015-10-30  0.0006858202  0.061808343  0.0640258172  0.063590096  8.163513e-02
## 2015-11-30 -0.0038981663 -0.025560542 -0.0075558116  0.024414955  3.647900e-03
## 2015-12-31 -0.0019189923 -0.038947210 -0.0235950500 -0.052156928 -1.743350e-02
## 2016-01-29  0.0123295610 -0.051636550 -0.0567578778 -0.060306811 -5.106851e-02
## 2016-02-29  0.0088315891 -0.008211537 -0.0339140194  0.020605043 -8.265217e-04
## 2016-03-31  0.0087093157  0.121879019  0.0637458506  0.089910313  6.510043e-02
## 2016-04-29  0.0025456702  0.004079241  0.0219748433  0.021044553  3.933342e-03
## 2016-05-31  0.0001355991 -0.037628459 -0.0008557389  0.004397027  1.686834e-02
## 2016-06-30  0.0191671556  0.044582283 -0.0244916117  0.008292246  3.469931e-03
## 2016-07-29  0.0054293316  0.052442034  0.0390001532  0.049347920  3.582192e-02
## 2016-08-31 -0.0021564407  0.008798599  0.0053269298  0.011261562  1.196811e-03
## 2016-09-30  0.0005168282  0.024873105  0.0132791624  0.008614664  5.810719e-05
## 2016-10-31 -0.0082056256 -0.008312200 -0.0224037498 -0.038135029 -1.748914e-02
## 2016-11-30 -0.0259898860 -0.045162140 -0.0179746619  0.125246733  3.617624e-02
## 2016-12-30  0.0025382372 -0.002529523  0.0267032468  0.031491672  2.006898e-02
## 2017-01-31  0.0021262165  0.064431150  0.0323818240 -0.012144019  1.773664e-02
## 2017-02-28  0.0064376013  0.017257654  0.0118362680  0.013428646  3.853903e-02
## 2017-03-31 -0.0005528600  0.036189155  0.0318055161 -0.006532871  1.249196e-03
## 2017-04-28  0.0090292571  0.016866523  0.0239526422  0.005107452  9.877155e-03
## 2017-05-31  0.0068471818  0.028059785  0.0348099164 -0.022862425  1.401449e-02
## 2017-06-30 -0.0001822132  0.009223661  0.0029560003  0.029151954  6.354649e-03
## 2017-07-31  0.0033344043  0.056594326  0.0261878819  0.007481218  2.034594e-02
## 2017-08-31  0.0093688942  0.023244130 -0.0004482871 -0.027564273  2.913216e-03
## 2017-09-29 -0.0057324398 -0.000446055  0.0233429537  0.082321483  1.994921e-02
## 2017-10-31  0.0009780896  0.032278392  0.0166534419  0.005915982  2.329088e-02
## 2017-11-30 -0.0014836230 -0.003897316  0.0068700315  0.036913152  3.010775e-02
## 2017-12-29  0.0047402490  0.036925618  0.0133984801 -0.003731079  1.205508e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398437e-05 0.0001042130 0.0000417845 -7.811737e-05 -9.028743e-06
## EEM  1.042130e-04 0.0017547107 0.0010390166  6.437728e-04  6.795425e-04
## EFA  4.178450e-05 0.0010390166 0.0010642377  6.490299e-04  6.975410e-04
## IJS -7.811737e-05 0.0006437728 0.0006490299  1.565449e-03  8.290243e-04
## SPY -9.028743e-06 0.0006795425 0.0006975410  8.290243e-04  7.408305e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347493
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS        SPY
## [1,] 0.0003874334 0.009257143 0.005815634 0.005684466 0.00233025
rowSums(component_contribution)
## [1] 0.02347493
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl 
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311904 -0.002935713  0.0366063094  0.052133319  4.992316e-02
## 2013-02-28  0.0058908646 -0.023105234 -0.0129695678  0.016175235  1.267805e-02
## 2013-03-28  0.0009849123 -0.010234881  0.0129695678  0.040258095  3.726818e-02
## 2013-04-30  0.0096391968  0.012084893  0.0489675280  0.001222641  1.903022e-02
## 2013-05-31 -0.0202138929 -0.049483761 -0.0306555009  0.041976291  2.333548e-02
## 2013-06-28 -0.0157787243 -0.054727904 -0.0271447168 -0.001403001 -1.343454e-02
## 2013-07-31  0.0026886907  0.013159477  0.0518604052  0.063541427  5.038559e-02
## 2013-08-30 -0.0082984709 -0.025705577 -0.0197460608 -0.034743670 -3.045099e-02
## 2013-09-30  0.0111435398  0.069588954  0.0753383432  0.063873814  3.115546e-02
## 2013-10-31  0.0082920963  0.040861232  0.0320815778  0.034233907  4.526684e-02
## 2013-11-29 -0.0025096201 -0.002594076  0.0054497641  0.041661087  2.920721e-02
## 2013-12-31 -0.0055834346 -0.004074591  0.0215280092  0.012892381  2.559585e-02
## 2014-01-31  0.0152917893 -0.090322548 -0.0534133570 -0.035775652 -3.588445e-02
## 2014-02-28  0.0037568433  0.033220424  0.0595050922  0.045257525  4.451025e-02
## 2014-03-31 -0.0014814593  0.038022304 -0.0046024936  0.013315395  8.261300e-03
## 2014-04-30  0.0081827825  0.007772314  0.0165295008 -0.023184110  6.927160e-03
## 2014-05-30  0.0117222219  0.029091192  0.0158284424  0.006205367  2.294166e-02
## 2014-06-30 -0.0005752718  0.023733942  0.0091652618  0.037718965  2.043426e-02
## 2014-07-31 -0.0025127238  0.013555576 -0.0263798134 -0.052009399 -1.352832e-02
## 2014-08-29  0.0114304353  0.027904608  0.0018003983  0.043657452  3.870477e-02
## 2014-09-30 -0.0061670716 -0.080856897 -0.0395982980 -0.061260399 -1.389227e-02
## 2014-10-31  0.0105840841  0.014096575 -0.0026548515  0.068874727  2.327752e-02
## 2014-11-28  0.0065493629 -0.015541327  0.0006253294  0.004773887  2.710150e-02
## 2014-12-31  0.0014752498 -0.040442123 -0.0407468963  0.025295676 -2.539736e-03
## 2015-01-30  0.0203147147 -0.006895513  0.0062265361 -0.054627724 -3.007747e-02
## 2015-02-27 -0.0089884866  0.043135963  0.0614506677  0.056914215  5.468242e-02
## 2015-03-31  0.0037406260 -0.015086123 -0.0143889544  0.010156543 -1.583023e-02
## 2015-04-30 -0.0032325023  0.066281292  0.0358167407 -0.018417803  9.785785e-03
## 2015-05-29 -0.0043840856 -0.041911272  0.0019527114  0.007509863  1.277416e-02
## 2015-06-30 -0.0108255093 -0.029746532 -0.0316789202  0.004171665 -2.052141e-02
## 2015-07-31  0.0085849619 -0.065177705  0.0201144955 -0.027375578  2.233828e-02
## 2015-08-31 -0.0033641537 -0.092512654 -0.0771525048 -0.047268519 -6.288698e-02
## 2015-09-30  0.0080814394 -0.031824886 -0.0451946717 -0.038464678 -2.584679e-02
## 2015-10-30  0.0006858202  0.061808343  0.0640258172  0.063590096  8.163513e-02
## 2015-11-30 -0.0038981663 -0.025560542 -0.0075558116  0.024414955  3.647900e-03
## 2015-12-31 -0.0019189923 -0.038947210 -0.0235950500 -0.052156928 -1.743350e-02
## 2016-01-29  0.0123295610 -0.051636550 -0.0567578778 -0.060306811 -5.106851e-02
## 2016-02-29  0.0088315891 -0.008211537 -0.0339140194  0.020605043 -8.265217e-04
## 2016-03-31  0.0087093157  0.121879019  0.0637458506  0.089910313  6.510043e-02
## 2016-04-29  0.0025456702  0.004079241  0.0219748433  0.021044553  3.933342e-03
## 2016-05-31  0.0001355991 -0.037628459 -0.0008557389  0.004397027  1.686834e-02
## 2016-06-30  0.0191671556  0.044582283 -0.0244916117  0.008292246  3.469931e-03
## 2016-07-29  0.0054293316  0.052442034  0.0390001532  0.049347920  3.582192e-02
## 2016-08-31 -0.0021564407  0.008798599  0.0053269298  0.011261562  1.196811e-03
## 2016-09-30  0.0005168282  0.024873105  0.0132791624  0.008614664  5.810719e-05
## 2016-10-31 -0.0082056256 -0.008312200 -0.0224037498 -0.038135029 -1.748914e-02
## 2016-11-30 -0.0259898860 -0.045162140 -0.0179746619  0.125246733  3.617624e-02
## 2016-12-30  0.0025382372 -0.002529523  0.0267032468  0.031491672  2.006898e-02
## 2017-01-31  0.0021262165  0.064431150  0.0323818240 -0.012144019  1.773664e-02
## 2017-02-28  0.0064376013  0.017257654  0.0118362680  0.013428646  3.853903e-02
## 2017-03-31 -0.0005528600  0.036189155  0.0318055161 -0.006532871  1.249196e-03
## 2017-04-28  0.0090292571  0.016866523  0.0239526422  0.005107452  9.877155e-03
## 2017-05-31  0.0068471818  0.028059785  0.0348099164 -0.022862425  1.401449e-02
## 2017-06-30 -0.0001822132  0.009223661  0.0029560003  0.029151954  6.354649e-03
## 2017-07-31  0.0033344043  0.056594326  0.0261878819  0.007481218  2.034594e-02
## 2017-08-31  0.0093688942  0.023244130 -0.0004482871 -0.027564273  2.913216e-03
## 2017-09-29 -0.0057324398 -0.000446055  0.0233429537  0.082321483  1.994921e-02
## 2017-10-31  0.0009780896  0.032278392  0.0166534419  0.005915982  2.329088e-02
## 2017-11-30 -0.0014836230 -0.003897316  0.0068700315  0.036913152  3.010775e-02
## 2017-12-29  0.0047402490  0.036925618  0.0133984801 -0.003731079  1.205508e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead on a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", 
         x = NULL)

6 Rolling Component Contribution