library(dplyr)
library(ggplot2)
# Load the data
summary_slopes <- read.csv("/Users/deneyo/Downloads/summary_slopes.csv")
cera_filtered <- summary_slopes %>%
filter(Site == "Cera", Sensor != "Air")
# Stacked bar plot for Irvine only
ggplot(
cera_filtered,
aes(x = Sensor, fill = wetness)
) +
geom_bar(position = "stack") +
scale_x_discrete(labels = c(
"Lower" = "Downstream",
"Middle" = "Middle Stream",
"Upper" = "Upstream"
))

labs(
title = "Sensor Counts by Wetness (CERA)",
x = "Sensor",
y = "Count",
fill = "Wetness"
) +
theme_minimal()
## NULL
library(dplyr)
library(ggplot2)
# Load data
summary_slopes <- read.csv("/Users/deneyo/Downloads/summary_slopes.csv")
# ---- Filter data for Piney and remove Air sensor ----
piney_filtered <- summary_slopes %>%
filter(Site == "Piney", Sensor != "Air")
# ---- Stacked bar plot ----
ggplot(
piney_filtered,
aes(x = Sensor, fill = wetness)
) +
geom_bar(position = "stack") +
scale_x_discrete(labels = c(
"Lower" = "Downstream",
"Middle" = "Middle Stream",
"Upper" = "Upstream"
)) +
labs(
title = "Sensor Counts by Wetness (Piney)",
x = "Sensor",
y = "Count",
fill = "Wetness"
) +
theme_minimal()

# ---- Wetness summary calculations (optional output) ----
wetness_summary <- piney_filtered %>%
group_by(Site, Sensor) %>%
summarize(
wet_count = sum(wetness == "wet", na.rm = TRUE),
total_obs = n(),
wet_prop = wet_count / total_obs,
.groups = "drop"
)
wetness_summary
## # A tibble: 3 × 5
## Site Sensor wet_count total_obs wet_prop
## <chr> <chr> <int> <int> <dbl>
## 1 Piney Lower 43 64 0.672
## 2 Piney Middle 55 64 0.859
## 3 Piney Upper 54 64 0.844
library(dplyr)
library(ggplot2)
# Load the data
summary_slopes <- read.csv("/Users/deneyo/Downloads/summary_slopes.csv")
irvine_filtered <- summary_slopes %>%
filter(Site == "Irvine", Sensor != "Air")
# Stacked bar plot for Irvine only
ggplot(
irvine_filtered,
aes(x = Sensor, fill = wetness)
) +
geom_bar(position = "stack") +
scale_x_discrete(labels = c(
"Lower" = "Downstream",
"Middle" = "Middle Stream",
"Upper" = "Upstream"
))

labs(
title = "Sensor Counts by Wetness (Irvine)",
x = "Sensor",
y = "Count",
fill = "Wetness"
) +
theme_minimal()
## NULL
# Load the data
summary_slopes <- read.csv("/Users/deneyo/Downloads/summary_slopes.csv")
library(dplyr)
library(ggplot2)
howardc_filtered <- summary_slopes %>%
filter(Site == "Howard County", Sensor != "Air")
# Stacked bar plot for Irvine only
ggplot(
howardc_filtered,
aes(x = Sensor, fill = wetness)
) +
geom_bar(position = "stack") +
scale_x_discrete(labels = c(
"Lower" = "Downstream",
"Middle" = "Middle Stream",
"Upper" = "Upstream"
))

labs(
title = "Sensor Counts by Wetness (Howard County Conservency)",
x = "Sensor",
y = "Count",
fill = "Wetness"
) +
theme_minimal()
## NULL