data(flights)
flights %>% skimr::skim()
| Name | Piped data |
| Number of rows | 336776 |
| Number of columns | 19 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| numeric | 14 |
| POSIXct | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| carrier | 0 | 1.00 | 2 | 2 | 0 | 16 | 0 |
| tailnum | 2512 | 0.99 | 5 | 6 | 0 | 4043 | 0 |
| origin | 0 | 1.00 | 3 | 3 | 0 | 3 | 0 |
| dest | 0 | 1.00 | 3 | 3 | 0 | 105 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1.00 | 2013.00 | 0.00 | 2013 | 2013 | 2013 | 2013 | 2013 | ▁▁▇▁▁ |
| month | 0 | 1.00 | 6.55 | 3.41 | 1 | 4 | 7 | 10 | 12 | ▇▆▆▆▇ |
| day | 0 | 1.00 | 15.71 | 8.77 | 1 | 8 | 16 | 23 | 31 | ▇▇▇▇▆ |
| dep_time | 8255 | 0.98 | 1349.11 | 488.28 | 1 | 907 | 1401 | 1744 | 2400 | ▁▇▆▇▃ |
| sched_dep_time | 0 | 1.00 | 1344.25 | 467.34 | 106 | 906 | 1359 | 1729 | 2359 | ▁▇▇▇▃ |
| dep_delay | 8255 | 0.98 | 12.64 | 40.21 | -43 | -5 | -2 | 11 | 1301 | ▇▁▁▁▁ |
| arr_time | 8713 | 0.97 | 1502.05 | 533.26 | 1 | 1104 | 1535 | 1940 | 2400 | ▁▃▇▇▇ |
| sched_arr_time | 0 | 1.00 | 1536.38 | 497.46 | 1 | 1124 | 1556 | 1945 | 2359 | ▁▃▇▇▇ |
| arr_delay | 9430 | 0.97 | 6.90 | 44.63 | -86 | -17 | -5 | 14 | 1272 | ▇▁▁▁▁ |
| flight | 0 | 1.00 | 1971.92 | 1632.47 | 1 | 553 | 1496 | 3465 | 8500 | ▇▃▃▁▁ |
| air_time | 9430 | 0.97 | 150.69 | 93.69 | 20 | 82 | 129 | 192 | 695 | ▇▂▂▁▁ |
| distance | 0 | 1.00 | 1039.91 | 733.23 | 17 | 502 | 872 | 1389 | 4983 | ▇▃▂▁▁ |
| hour | 0 | 1.00 | 13.18 | 4.66 | 1 | 9 | 13 | 17 | 23 | ▁▇▇▇▅ |
| minute | 0 | 1.00 | 26.23 | 19.30 | 0 | 8 | 29 | 44 | 59 | ▇▃▆▃▅ |
Variable type: POSIXct
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| time_hour | 0 | 1 | 2013-01-01 05:00:00 | 2013-12-31 23:00:00 | 2013-07-03 10:00:00 | 6936 |
myData <-read_csv ("../00_data/myData.csv")
## Rows: 27 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): film, film_rating
## dbl (2): number, run_time
## date (1): release_date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
ncol_num
## [1] 14
count_ncol_num <- function(.data){
ncol_num <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
return(ncol_num)
}
flights%>% count_ncol_num()
## [1] 14
flights %>% .[1:10, -1:-13] %>% count_ncol_num()
## [1] 4
count_ncol_type <- function(.data, type_data= "numeric"){
if(type_data== "numeric"){
ncol_type <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
}else if(type_data== "character"){
ncol_type <- .data %>%
# Select a type of variables
select(where(is.character)) %>%
# Count columns
ncol()
}
return(ncol_num)
}
flights%>% count_ncol_type()
## [1] 14
flights%>% count_ncol_type(type_data = "character")
## [1] 14
flights%>% .[1:10,1:5]%>% count_ncol_type(type_data = "character")
## [1] 14
nrow_num <- flights %>%
# filter rows that meet a condition
filter(carrier == "DL") %>%
# Count rows
nrow()
nrow_num
## [1] 48110
count_num_flights_by_carrier<- function(.data, carrier_name){
nrow_num <- .data %>%
# filter rows that meet a condition
filter(carrier == carrier_name) %>%
# Count rows
nrow()
return(nrow_num)
}
flights%>% .[1:10, "carrier"]%>% count_num_flights_by_carrier(carrier_name = "AA")
## [1] 2
Create your own.
Use the filter() function to select rows that meet a condition. Refer to Chapter 5.2 Filter rows with filter()
frcol_num<- myData%>%
select(where(is.numeric))%>%
ncol()
frcol_num
## [1] 2
count_frcol_num <- function(.idk){
frcol_num <- .idk %>%
select(where(is.numeric)) %>%
ncol()
return(frcol_num)
}
myData%>% count_frcol_num()
## [1] 2
myData %>% .[6:16,2:5] %>% count_frcol_num()
## [1] 1
count_frcol_type <- function(.idk, type_data= "numeric"){
if(type_data== "numeric"){
frcol_type <- .idk %>%
select(where(is.numeric)) %>%
ncol()
}else if(type_data== "character"){
frcol_type <- .idk %>%
select(where(is.character)) %>%
ncol()
}
return(frcol_num)
}
myData%>% count_frcol_type()
## [1] 2
myData%>% count_frcol_type(type_data = "character")
## [1] 2
myData%>% .[6:16,2:5]%>% count_frcol_type(type_data = "character")
## [1] 2
frrow_num<- myData %>%
filter(film_rating == "G") %>%
nrow()
frrow_num
## [1] 13
count_num_myData_by_film_rating<- function(.idk, film_rating){
frrow_num <- .idk %>%
# filter rows that meet a condition
filter(film_rating == film_rating) %>%
# Count rows
nrow()
return(frrow_num)
}
myData%>% .[2:5, "film_rating"]%>% count_num_myData_by_film_rating(film_rating = "G")
## [1] 4