Comenzamos con las librerias:

library(stats)
library(MASS)
library(dplyr)
library(ggplot2)
library(GGally)
library(car)
library(ISLR)
library(tidyverse)
library(vcd)
library(gmodels)
library(ggeffects)
library(ggplot2)
library(carData)

Base de datos

El objetivo es analizar que factores se relacionan con **la elección del tipo de programa (academico, vocacional o general) que los estudiantes cursan el bachillerato.

Consideramos los programas de bachillerato acádemico, vocacional

library(faraway)
## 
## Adjuntando el paquete: 'faraway'
## The following objects are masked from 'package:car':
## 
##     logit, vif
## The following object is masked from 'package:GGally':
## 
##     happy
data(hsb)
str(hsb)
## 'data.frame':    200 obs. of  11 variables:
##  $ id     : int  70 121 86 141 172 113 50 11 84 48 ...
##  $ gender : Factor w/ 2 levels "female","male": 2 1 2 2 2 2 2 2 2 2 ...
##  $ race   : Factor w/ 4 levels "african-amer",..: 4 4 4 4 4 4 1 3 4 1 ...
##  $ ses    : Factor w/ 3 levels "high","low","middle": 2 3 1 1 3 3 3 3 3 3 ...
##  $ schtyp : Factor w/ 2 levels "private","public": 2 2 2 2 2 2 2 2 2 2 ...
##  $ prog   : Factor w/ 3 levels "academic","general",..: 2 3 2 3 1 1 2 1 2 1 ...
##  $ read   : int  57 68 44 63 47 44 50 34 63 57 ...
##  $ write  : int  52 59 33 44 52 52 59 46 57 55 ...
##  $ math   : int  41 53 54 47 57 51 42 45 54 52 ...
##  $ science: int  47 63 58 53 53 63 53 39 58 50 ...
##  $ socst  : int  57 61 31 56 61 61 61 36 51 51 ...
summary(hsb)
##        id            gender              race         ses         schtyp   
##  Min.   :  1.00   female:109   african-amer: 20   high  :58   private: 32  
##  1st Qu.: 50.75   male  : 91   asian       : 11   low   :47   public :168  
##  Median :100.50                hispanic    : 24   middle:95                
##  Mean   :100.50                white       :145                            
##  3rd Qu.:150.25                                                            
##  Max.   :200.00                                                            
##        prog          read           write            math          science     
##  academic:105   Min.   :28.00   Min.   :31.00   Min.   :33.00   Min.   :26.00  
##  general : 45   1st Qu.:44.00   1st Qu.:45.75   1st Qu.:45.00   1st Qu.:44.00  
##  vocation: 50   Median :50.00   Median :54.00   Median :52.00   Median :53.00  
##                 Mean   :52.23   Mean   :52.77   Mean   :52.65   Mean   :51.85  
##                 3rd Qu.:60.00   3rd Qu.:60.00   3rd Qu.:59.00   3rd Qu.:58.00  
##                 Max.   :76.00   Max.   :67.00   Max.   :75.00   Max.   :74.00  
##      socst      
##  Min.   :26.00  
##  1st Qu.:46.00  
##  Median :52.00  
##  Mean   :52.41  
##  3rd Qu.:61.00  
##  Max.   :71.00

1Preparación de los Datos

hsb$id<- as.character(hsb$id)

Resumen Estadístico con los datos preparados

summary(hsb)
##       id               gender              race         ses         schtyp   
##  Length:200         female:109   african-amer: 20   high  :58   private: 32  
##  Class :character   male  : 91   asian       : 11   low   :47   public :168  
##  Mode  :character                hispanic    : 24   middle:95                
##                                  white       :145                            
##                                                                              
##                                                                              
##        prog          read           write            math          science     
##  academic:105   Min.   :28.00   Min.   :31.00   Min.   :33.00   Min.   :26.00  
##  general : 45   1st Qu.:44.00   1st Qu.:45.75   1st Qu.:45.00   1st Qu.:44.00  
##  vocation: 50   Median :50.00   Median :54.00   Median :52.00   Median :53.00  
##                 Mean   :52.23   Mean   :52.77   Mean   :52.65   Mean   :51.85  
##                 3rd Qu.:60.00   3rd Qu.:60.00   3rd Qu.:59.00   3rd Qu.:58.00  
##                 Max.   :76.00   Max.   :67.00   Max.   :75.00   Max.   :74.00  
##      socst      
##  Min.   :26.00  
##  1st Qu.:46.00  
##  Median :52.00  
##  Mean   :52.41  
##  3rd Qu.:61.00  
##  Max.   :71.00

2. Considerando las instrucciones para la separación de la base

datschac <- hsb[hsb$prog=="academic" ,]
datschac
##      id gender         race    ses  schtyp     prog read write math science
## 5   172   male        white middle  public academic   47    52   57      53
## 6   113   male        white middle  public academic   44    52   51      63
## 8    11   male     hispanic middle  public academic   34    46   45      39
## 10   48   male african-amer middle  public academic   57    55   52      50
## 12   60   male        white middle  public academic   57    65   51      63
## 13   95   male        white   high  public academic   73    60   71      61
## 14  104   male        white   high  public academic   54    63   57      55
## 15   38   male african-amer    low  public academic   45    57   50      31
## 17   76   male        white   high  public academic   47    52   51      50
## 19  114   male        white   high  public academic   68    65   62      55
## 23   41   male african-amer middle  public academic   50    40   45      55
## 24   20   male     hispanic   high  public academic   60    52   57      61
## 27  154   male        white   high  public academic   65    65   66      61
## 29  196   male        white   high private academic   44    38   49      39
## 32  103   male        white   high  public academic   76    52   64      64
## 33  192   male        white   high private academic   65    67   63      66
## 35  199   male        white   high private academic   52    59   50      61
## 37  200   male        white middle private academic   68    54   75      66
## 38   80   male        white   high  public academic   65    62   68      66
## 41  176   male        white middle private academic   47    47   41      42
## 42  177   male        white middle private academic   55    59   62      58
## 43  168   male        white middle  public academic   52    54   57      55
## 48  136   male        white middle  public academic   65    59   70      63
## 49  189   male        white middle private academic   47    59   63      53
## 50    7   male     hispanic middle  public academic   57    54   59      47
## 51   27   male        asian middle  public academic   53    61   61      57
## 52  128   male        white   high  public academic   39    33   38      47
## 54  183   male        white middle private academic   63    59   49      55
## 55  132   male        white middle  public academic   73    62   73      69
## 59  185   male        white middle private academic   63    57   55      58
## 61  181   male        white middle private academic   50    46   45      58
## 62  170   male        white   high  public academic   47    62   61      69
## 65  197   male        white   high private academic   50    42   50      36
## 67  171   male        white middle  public academic   60    54   60      55
## 69   81   male        white    low  public academic   63    43   59      65
## 72   97   male        white   high  public academic   60    54   58      58
## 73   68   male        white middle  public academic   73    67   71      63
## 76    5   male     hispanic    low  public academic   47    40   43      45
## 77  159   male        white   high  public academic   55    61   54      49
## 80   14   male     hispanic   high  public academic   47    41   54      42
## 81  127   male        white   high  public academic   63    59   57      55
## 83  174   male        white middle private academic   68    59   71      66
## 84    3   male     hispanic    low  public academic   63    65   48      63
## 86  146   male        white   high  public academic   55    62   64      63
## 87  102   male        white   high  public academic   52    41   51      53
## 90   94   male        white   high  public academic   55    49   61      61
## 91   24   male        asian middle  public academic   52    62   66      47
## 93   82 female        white   high  public academic   68    62   65      69
## 94    8 female     hispanic    low  public academic   39    44   52      44
## 97   57 female        white middle  public academic   71    65   72      66
## 98  100 female        white   high  public academic   63    65   71      69
## 100 194 female        white   high private academic   63    63   69      61
## 101  88 female        white   high  public academic   68    60   64      69
## 103  47 female african-amer    low  public academic   47    46   49      33
## 104 120 female        white   high  public academic   63    52   54      50
## 105 166 female        white middle  public academic   52    59   53      61
## 106  65 female        white middle  public academic   55    54   66      42
## 107 101 female        white   high  public academic   60    62   67      50
## 110 180 female        white   high private academic   71    65   69      58
## 112   4 female     hispanic    low  public academic   44    50   41      39
## 113 131 female        white   high  public academic   65    59   57      46
## 114 125 female        white    low  public academic   68    65   58      59
## 115  34 female     hispanic   high private academic   73    61   57      55
## 118  93 female        white   high  public academic   73    67   62      58
## 119 163 female        white    low  public academic   52    57   64      58
## 123  73 female        white middle  public academic   50    52   53      39
## 126 152 female        white   high  public academic   55    57   56      58
## 127 105 female        white middle  public academic   50    41   45      44
## 131 116 female        white middle  public academic   57    59   54      50
## 132  33 female        asian    low  public academic   57    65   72      54
## 135  77 female        white    low  public academic   61    59   49      44
## 136  61 female        white   high  public academic   76    63   60      67
## 137 190 female        white middle private academic   47    59   54      58
## 140  55 female african-amer middle private academic   52    49   49      44
## 142  90 female        white   high  public academic   42    54   50      50
## 144  17 female     hispanic middle  public academic   47    57   48      44
## 145 122 female        white middle  public academic   52    59   58      53
## 146 191 female        white   high private academic   47    52   43      48
## 148 182 female        white middle private academic   44    52   43      44
## 149   6 female     hispanic    low  public academic   47    41   46      40
## 150  46 female african-amer    low  public academic   45    55   44      34
## 151  43 female african-amer    low  public academic   47    37   43      42
## 152  96 female        white   high  public academic   65    54   61      58
## 156 139 female        white middle  public academic   68    59   61      55
## 160  39 female african-amer   high  public academic   66    67   67      61
## 161 147 female        white    low  public academic   47    62   53      53
## 162  74 female        white middle  public academic   57    50   50      51
## 163 198 female        white   high private academic   47    61   51      63
## 164 161 female        white    low  public academic   57    62   72      61
## 165 112 female        white middle  public academic   52    59   48      55
## 167 156 female        white middle  public academic   50    59   53      61
## 169 186 female        white middle private academic   57    62   63      55
## 174  26 female        asian   high  public academic   60    59   62      61
## 176 135 female        white    low  public academic   63    60   65      54
## 177  59 female        white middle  public academic   65    67   63      55
## 178  78 female        white middle  public academic   39    54   54      53
## 181  79 female        white middle  public academic   60    62   49      50
## 182 193 female        white middle private academic   44    49   48      39
## 184 160 female        white middle  public academic   55    65   55      50
## 186  23 female        asian    low  public academic   65    65   64      58
## 189 188 female        white   high private academic   63    62   56      55
## 190  52 female african-amer    low  public academic   50    46   53      53
## 194  30 female        asian   high  public academic   41    59   42      34
## 195 179 female        white middle private academic   47    65   60      50
## 200 137 female        white   high  public academic   63    65   65      53
##     socst
## 5      61
## 6      61
## 8      36
## 10     51
## 12     61
## 13     71
## 14     46
## 15     56
## 17     56
## 19     61
## 23     56
## 24     61
## 27     66
## 29     46
## 32     61
## 33     71
## 35     61
## 37     66
## 38     66
## 41     51
## 42     51
## 43     51
## 48     51
## 49     46
## 50     51
## 51     56
## 52     41
## 54     71
## 55     66
## 59     41
## 61     61
## 62     66
## 65     61
## 67     66
## 69     44
## 72     61
## 73     66
## 76     31
## 77     61
## 80     56
## 81     56
## 83     56
## 84     56
## 86     66
## 87     56
## 90     56
## 91     46
## 93     61
## 94     48
## 97     56
## 98     71
## 100    61
## 101    66
## 103    41
## 104    51
## 105    51
## 106    56
## 107    56
## 110    71
## 112    51
## 113    66
## 114    56
## 115    66
## 118    66
## 119    56
## 123    56
## 126    61
## 127    56
## 131    56
## 132    56
## 135    66
## 136    66
## 137    46
## 140    61
## 142    52
## 144    41
## 145    66
## 146    61
## 148    51
## 149    41
## 150    41
## 151    46
## 152    56
## 156    71
## 160    66
## 161    61
## 162    58
## 163    31
## 164    61
## 165    61
## 167    61
## 169    41
## 174    51
## 176    66
## 177    71
## 178    41
## 181    51
## 182    51
## 184    61
## 186    71
## 189    61
## 190    66
## 194    51
## 195    56
## 200    61
datschvo <- hsb[hsb$prog=="vocation" ,]
datschvo
##      id gender         race    ses  schtyp     prog read write math science
## 2   121 female        white middle  public vocation   68    59   53      63
## 4   141   male        white   high  public vocation   63    44   47      53
## 11   75   male        white middle  public vocation   60    46   51      53
## 22  143   male        white middle  public vocation   63    63   75      72
## 25   12   male     hispanic middle  public vocation   37    44   45      39
## 26   53   male african-amer middle  public vocation   34    37   46      39
## 28  178   male        white middle private vocation   47    57   57      58
## 34  150   male        white middle  public vocation   42    41   57      72
## 39   16   male     hispanic    low  public vocation   47    31   44      36
## 40  153   male        white middle  public vocation   39    31   40      39
## 47   49   male african-amer   high  public vocation   50    40   39      49
## 56   15   male     hispanic   high  public vocation   39    39   44      26
## 57   67   male        white    low  public vocation   37    37   42      33
## 58   22   male     hispanic middle  public vocation   42    39   39      56
## 60    9   male     hispanic middle  public vocation   48    49   52      44
## 66  140   male        white middle  public vocation   44    41   40      50
## 68  107   male        white    low  public vocation   47    39   47      42
## 70   18   male     hispanic middle  public vocation   50    33   49      44
## 75   56   male        white middle  public vocation   55    45   46      58
## 79  164   male        white middle  public vocation   31    36   46      39
## 82  165   male        white    low  public vocation   36    49   54      61
## 85   58   male        white middle  public vocation   55    41   40      44
## 88  117   male        white   high  public vocation   34    49   39      42
## 89  133   male        white middle  public vocation   50    31   40      34
## 99    1 female     hispanic    low  public vocation   34    44   40      39
## 108  89 female        white    low  public vocation   35    35   40      51
## 111 162 female        white middle  public vocation   57    52   40      61
## 116 106 female        white middle  public vocation   36    44   37      42
## 120  37 female african-amer    low  public vocation   41    47   40      39
## 124 151 female        white middle  public vocation   47    46   52      48
## 125  44 female african-amer    low  public vocation   47    62   45      34
## 129  91 female        white   high  public vocation   50    49   56      47
## 130  45 female african-amer    low  public vocation   34    35   41      29
## 133  66 female        white middle  public vocation   68    62   56      50
## 134  72 female        white middle  public vocation   42    54   47      47
## 138  42 female african-amer middle  public vocation   46    52   55      44
## 139   2 female     hispanic middle  public vocation   39    41   33      42
## 143 142 female        white middle  public vocation   47    42   52      39
## 147  83 female        white middle  public vocation   50    62   41      55
## 153 138 female        white middle  public vocation   43    57   40      50
## 157 110 female        white middle  public vocation   52    55   50      54
## 158 148 female        white middle  public vocation   42    57   51      47
## 166  69 female        white    low  public vocation   44    44   40      40
## 170  98 female        white    low  public vocation   57    60   51      53
## 172  13 female     hispanic middle  public vocation   47    46   39      47
## 179  64 female        white   high  public vocation   50    52   45      58
## 185  32 female        asian   high  public vocation   50    67   66      66
## 191 124 female        white    low  public vocation   42    54   41      42
## 193 184 female        white middle private vocation   50    52   53      55
## 197 145 female        white middle  public vocation   42    46   38      36
##     socst
## 2      61
## 4      56
## 11     61
## 22     66
## 25     46
## 26     31
## 28     46
## 34     31
## 39     36
## 40     51
## 47     47
## 56     42
## 57     32
## 58     46
## 60     51
## 66     26
## 68     26
## 70     36
## 75     51
## 79     46
## 82     36
## 85     41
## 88     56
## 89     31
## 99     41
## 108    33
## 111    56
## 116    41
## 120    51
## 124    46
## 125    46
## 129    46
## 130    26
## 133    51
## 134    46
## 138    56
## 139    41
## 143    51
## 147    31
## 153    51
## 157    61
## 158    61
## 166    31
## 170    37
## 172    61
## 179    36
## 185    56
## 191    41
## 193    56
## 197    46
data1 <-rbind(datschac, datschvo)
data1
##      id gender         race    ses  schtyp     prog read write math science
## 5   172   male        white middle  public academic   47    52   57      53
## 6   113   male        white middle  public academic   44    52   51      63
## 8    11   male     hispanic middle  public academic   34    46   45      39
## 10   48   male african-amer middle  public academic   57    55   52      50
## 12   60   male        white middle  public academic   57    65   51      63
## 13   95   male        white   high  public academic   73    60   71      61
## 14  104   male        white   high  public academic   54    63   57      55
## 15   38   male african-amer    low  public academic   45    57   50      31
## 17   76   male        white   high  public academic   47    52   51      50
## 19  114   male        white   high  public academic   68    65   62      55
## 23   41   male african-amer middle  public academic   50    40   45      55
## 24   20   male     hispanic   high  public academic   60    52   57      61
## 27  154   male        white   high  public academic   65    65   66      61
## 29  196   male        white   high private academic   44    38   49      39
## 32  103   male        white   high  public academic   76    52   64      64
## 33  192   male        white   high private academic   65    67   63      66
## 35  199   male        white   high private academic   52    59   50      61
## 37  200   male        white middle private academic   68    54   75      66
## 38   80   male        white   high  public academic   65    62   68      66
## 41  176   male        white middle private academic   47    47   41      42
## 42  177   male        white middle private academic   55    59   62      58
## 43  168   male        white middle  public academic   52    54   57      55
## 48  136   male        white middle  public academic   65    59   70      63
## 49  189   male        white middle private academic   47    59   63      53
## 50    7   male     hispanic middle  public academic   57    54   59      47
## 51   27   male        asian middle  public academic   53    61   61      57
## 52  128   male        white   high  public academic   39    33   38      47
## 54  183   male        white middle private academic   63    59   49      55
## 55  132   male        white middle  public academic   73    62   73      69
## 59  185   male        white middle private academic   63    57   55      58
## 61  181   male        white middle private academic   50    46   45      58
## 62  170   male        white   high  public academic   47    62   61      69
## 65  197   male        white   high private academic   50    42   50      36
## 67  171   male        white middle  public academic   60    54   60      55
## 69   81   male        white    low  public academic   63    43   59      65
## 72   97   male        white   high  public academic   60    54   58      58
## 73   68   male        white middle  public academic   73    67   71      63
## 76    5   male     hispanic    low  public academic   47    40   43      45
## 77  159   male        white   high  public academic   55    61   54      49
## 80   14   male     hispanic   high  public academic   47    41   54      42
## 81  127   male        white   high  public academic   63    59   57      55
## 83  174   male        white middle private academic   68    59   71      66
## 84    3   male     hispanic    low  public academic   63    65   48      63
## 86  146   male        white   high  public academic   55    62   64      63
## 87  102   male        white   high  public academic   52    41   51      53
## 90   94   male        white   high  public academic   55    49   61      61
## 91   24   male        asian middle  public academic   52    62   66      47
## 93   82 female        white   high  public academic   68    62   65      69
## 94    8 female     hispanic    low  public academic   39    44   52      44
## 97   57 female        white middle  public academic   71    65   72      66
## 98  100 female        white   high  public academic   63    65   71      69
## 100 194 female        white   high private academic   63    63   69      61
## 101  88 female        white   high  public academic   68    60   64      69
## 103  47 female african-amer    low  public academic   47    46   49      33
## 104 120 female        white   high  public academic   63    52   54      50
## 105 166 female        white middle  public academic   52    59   53      61
## 106  65 female        white middle  public academic   55    54   66      42
## 107 101 female        white   high  public academic   60    62   67      50
## 110 180 female        white   high private academic   71    65   69      58
## 112   4 female     hispanic    low  public academic   44    50   41      39
## 113 131 female        white   high  public academic   65    59   57      46
## 114 125 female        white    low  public academic   68    65   58      59
## 115  34 female     hispanic   high private academic   73    61   57      55
## 118  93 female        white   high  public academic   73    67   62      58
## 119 163 female        white    low  public academic   52    57   64      58
## 123  73 female        white middle  public academic   50    52   53      39
## 126 152 female        white   high  public academic   55    57   56      58
## 127 105 female        white middle  public academic   50    41   45      44
## 131 116 female        white middle  public academic   57    59   54      50
## 132  33 female        asian    low  public academic   57    65   72      54
## 135  77 female        white    low  public academic   61    59   49      44
## 136  61 female        white   high  public academic   76    63   60      67
## 137 190 female        white middle private academic   47    59   54      58
## 140  55 female african-amer middle private academic   52    49   49      44
## 142  90 female        white   high  public academic   42    54   50      50
## 144  17 female     hispanic middle  public academic   47    57   48      44
## 145 122 female        white middle  public academic   52    59   58      53
## 146 191 female        white   high private academic   47    52   43      48
## 148 182 female        white middle private academic   44    52   43      44
## 149   6 female     hispanic    low  public academic   47    41   46      40
## 150  46 female african-amer    low  public academic   45    55   44      34
## 151  43 female african-amer    low  public academic   47    37   43      42
## 152  96 female        white   high  public academic   65    54   61      58
## 156 139 female        white middle  public academic   68    59   61      55
## 160  39 female african-amer   high  public academic   66    67   67      61
## 161 147 female        white    low  public academic   47    62   53      53
## 162  74 female        white middle  public academic   57    50   50      51
## 163 198 female        white   high private academic   47    61   51      63
## 164 161 female        white    low  public academic   57    62   72      61
## 165 112 female        white middle  public academic   52    59   48      55
## 167 156 female        white middle  public academic   50    59   53      61
## 169 186 female        white middle private academic   57    62   63      55
## 174  26 female        asian   high  public academic   60    59   62      61
## 176 135 female        white    low  public academic   63    60   65      54
## 177  59 female        white middle  public academic   65    67   63      55
## 178  78 female        white middle  public academic   39    54   54      53
## 181  79 female        white middle  public academic   60    62   49      50
## 182 193 female        white middle private academic   44    49   48      39
## 184 160 female        white middle  public academic   55    65   55      50
## 186  23 female        asian    low  public academic   65    65   64      58
## 189 188 female        white   high private academic   63    62   56      55
## 190  52 female african-amer    low  public academic   50    46   53      53
## 194  30 female        asian   high  public academic   41    59   42      34
## 195 179 female        white middle private academic   47    65   60      50
## 200 137 female        white   high  public academic   63    65   65      53
## 2   121 female        white middle  public vocation   68    59   53      63
## 4   141   male        white   high  public vocation   63    44   47      53
## 11   75   male        white middle  public vocation   60    46   51      53
## 22  143   male        white middle  public vocation   63    63   75      72
## 25   12   male     hispanic middle  public vocation   37    44   45      39
## 26   53   male african-amer middle  public vocation   34    37   46      39
## 28  178   male        white middle private vocation   47    57   57      58
## 34  150   male        white middle  public vocation   42    41   57      72
## 39   16   male     hispanic    low  public vocation   47    31   44      36
## 40  153   male        white middle  public vocation   39    31   40      39
## 47   49   male african-amer   high  public vocation   50    40   39      49
## 56   15   male     hispanic   high  public vocation   39    39   44      26
## 57   67   male        white    low  public vocation   37    37   42      33
## 58   22   male     hispanic middle  public vocation   42    39   39      56
## 60    9   male     hispanic middle  public vocation   48    49   52      44
## 66  140   male        white middle  public vocation   44    41   40      50
## 68  107   male        white    low  public vocation   47    39   47      42
## 70   18   male     hispanic middle  public vocation   50    33   49      44
## 75   56   male        white middle  public vocation   55    45   46      58
## 79  164   male        white middle  public vocation   31    36   46      39
## 82  165   male        white    low  public vocation   36    49   54      61
## 85   58   male        white middle  public vocation   55    41   40      44
## 88  117   male        white   high  public vocation   34    49   39      42
## 89  133   male        white middle  public vocation   50    31   40      34
## 99    1 female     hispanic    low  public vocation   34    44   40      39
## 108  89 female        white    low  public vocation   35    35   40      51
## 111 162 female        white middle  public vocation   57    52   40      61
## 116 106 female        white middle  public vocation   36    44   37      42
## 120  37 female african-amer    low  public vocation   41    47   40      39
## 124 151 female        white middle  public vocation   47    46   52      48
## 125  44 female african-amer    low  public vocation   47    62   45      34
## 129  91 female        white   high  public vocation   50    49   56      47
## 130  45 female african-amer    low  public vocation   34    35   41      29
## 133  66 female        white middle  public vocation   68    62   56      50
## 134  72 female        white middle  public vocation   42    54   47      47
## 138  42 female african-amer middle  public vocation   46    52   55      44
## 139   2 female     hispanic middle  public vocation   39    41   33      42
## 143 142 female        white middle  public vocation   47    42   52      39
## 147  83 female        white middle  public vocation   50    62   41      55
## 153 138 female        white middle  public vocation   43    57   40      50
## 157 110 female        white middle  public vocation   52    55   50      54
## 158 148 female        white middle  public vocation   42    57   51      47
## 166  69 female        white    low  public vocation   44    44   40      40
## 170  98 female        white    low  public vocation   57    60   51      53
## 172  13 female     hispanic middle  public vocation   47    46   39      47
## 179  64 female        white   high  public vocation   50    52   45      58
## 185  32 female        asian   high  public vocation   50    67   66      66
## 191 124 female        white    low  public vocation   42    54   41      42
## 193 184 female        white middle private vocation   50    52   53      55
## 197 145 female        white middle  public vocation   42    46   38      36
##     socst
## 5      61
## 6      61
## 8      36
## 10     51
## 12     61
## 13     71
## 14     46
## 15     56
## 17     56
## 19     61
## 23     56
## 24     61
## 27     66
## 29     46
## 32     61
## 33     71
## 35     61
## 37     66
## 38     66
## 41     51
## 42     51
## 43     51
## 48     51
## 49     46
## 50     51
## 51     56
## 52     41
## 54     71
## 55     66
## 59     41
## 61     61
## 62     66
## 65     61
## 67     66
## 69     44
## 72     61
## 73     66
## 76     31
## 77     61
## 80     56
## 81     56
## 83     56
## 84     56
## 86     66
## 87     56
## 90     56
## 91     46
## 93     61
## 94     48
## 97     56
## 98     71
## 100    61
## 101    66
## 103    41
## 104    51
## 105    51
## 106    56
## 107    56
## 110    71
## 112    51
## 113    66
## 114    56
## 115    66
## 118    66
## 119    56
## 123    56
## 126    61
## 127    56
## 131    56
## 132    56
## 135    66
## 136    66
## 137    46
## 140    61
## 142    52
## 144    41
## 145    66
## 146    61
## 148    51
## 149    41
## 150    41
## 151    46
## 152    56
## 156    71
## 160    66
## 161    61
## 162    58
## 163    31
## 164    61
## 165    61
## 167    61
## 169    41
## 174    51
## 176    66
## 177    71
## 178    41
## 181    51
## 182    51
## 184    61
## 186    71
## 189    61
## 190    66
## 194    51
## 195    56
## 200    61
## 2      61
## 4      56
## 11     61
## 22     66
## 25     46
## 26     31
## 28     46
## 34     31
## 39     36
## 40     51
## 47     47
## 56     42
## 57     32
## 58     46
## 60     51
## 66     26
## 68     26
## 70     36
## 75     51
## 79     46
## 82     36
## 85     41
## 88     56
## 89     31
## 99     41
## 108    33
## 111    56
## 116    41
## 120    51
## 124    46
## 125    46
## 129    46
## 130    26
## 133    51
## 134    46
## 138    56
## 139    41
## 143    51
## 147    31
## 153    51
## 157    61
## 158    61
## 166    31
## 170    37
## 172    61
## 179    36
## 185    56
## 191    41
## 193    56
## 197    46
str(data1)
## 'data.frame':    155 obs. of  11 variables:
##  $ id     : chr  "172" "113" "11" "48" ...
##  $ gender : Factor w/ 2 levels "female","male": 2 2 2 2 2 2 2 2 2 2 ...
##  $ race   : Factor w/ 4 levels "african-amer",..: 4 4 3 1 4 4 4 1 4 4 ...
##  $ ses    : Factor w/ 3 levels "high","low","middle": 3 3 3 3 3 1 1 2 1 1 ...
##  $ schtyp : Factor w/ 2 levels "private","public": 2 2 2 2 2 2 2 2 2 2 ...
##  $ prog   : Factor w/ 3 levels "academic","general",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ read   : int  47 44 34 57 57 73 54 45 47 68 ...
##  $ write  : int  52 52 46 55 65 60 63 57 52 65 ...
##  $ math   : int  57 51 45 52 51 71 57 50 51 62 ...
##  $ science: int  53 63 39 50 63 61 55 31 50 55 ...
##  $ socst  : int  61 61 36 51 61 71 46 56 56 61 ...
levels(data1$prog)
## [1] "academic" "general"  "vocation"
view(data1$prog)

3 Planteando la pregunta y el contraste que lo representa

se relacionan con **la elección del tipo de programa (academico, vocacional ) que los estudiantes cursan el bachillerato.

¿Que factores se relacionan con la elección del tipo de programa (acádemico, vocacional) que los estudiantes cursan en bachillerato?

4.Análisis Exploratorio

Variable cuantitativa

Lectura

Ahora si consideramos la puntuación del lectura del estudiante tenemos el contraste de hipoteis

\(H_{0}:\) La puntuación de lectura promedio de los estudiantes de bachillerato academico es igual a la puntuación de lectura promedio de los estudiantes de bachillerato vocacional

\(H_{1}:\)La puntuación de lectura promedio de los estudiantes de bachillerato academico es diferente a la puntuación de lectura promedio de los estudiantes de bachillerato vocacional

o bien, sean :

\(\mu_{1}:\) Puntuación promedio de lectura de los estudiantes de bachillerato academico

\(\mu_{2}:\) Puntuacion promedio de lectura de los estudiantes de bachillerato vocacional

entonces el contrate de hipotesis es:

\(H_0: \mu_{1} = \mu_{2}\)

\(H_{1}: \mu_{1}\neq \mu_{2}\)

t.test(data1$read ~ data1$prog)
## 
##  Welch Two Sample t-test
## 
## data:  data1$read by data1$prog
## t = 6.3481, df = 103.19, p-value = 5.922e-09
## alternative hypothesis: true difference in means between group academic and group vocation is not equal to 0
## 95 percent confidence interval:
##   6.84970 13.07411
## sample estimates:
## mean in group academic mean in group vocation 
##                56.1619                46.2000

Se tiene un \(p-valor = 5.922e-09\) siendo Menor al nivel de \(0.05\) de significancia SE RECHAZA LA HIPOTESIS NULA , por lo que se tiene suficiente evidencia en los datos que nos haga rechazar el supuesto de que el la puntuación de lectura promedio de los estudiantes de bachillerato academico, difiere de forma significativa de la puntuación de lectura promedio de los estudiantes de bachillerato voacional.

Gráficamente

boxplot(read ~ prog, data = data1,
        main = "Distribución de puntuación promedio de los estudiantes ",
        xlab = "Tipo de programa ",
        ylab = "Puntuación",
        col = c("blue", "purple"),
        border = "gray40")

Notemos que los estudiabntes del¿ bachillerato academico tienen una puntuación de lectura mas alta que los de programa de vocación.

Escritura

Ahora si consideramos la puntuación del escritura del estudiante tenemos el contraste de hipoteis

\(H_{0}:\) La puntuación de lescritura promedio de los estudiantes de bachillerato academico es igual a la puntuación de escritura promedio de los estudiantes de bachillerato vocacional

\(H_{1}:\)La puntuación de escritura promedio de los estudiantes de bachillerato academico es diferente a la puntuación de escritura promedio de los estudiantes de bachillerato vocacional

\(H_0: \mu_{1} = \mu_{2}\)

\(H_{1}: \mu_{1}\neq \mu_{2}\)

t.test(data1$write ~ data1$prog)
## 
##  Welch Two Sample t-test
## 
## data:  data1$write by data1$prog
## t = 6.2115, df = 84.034, p-value = 1.924e-08
## alternative hypothesis: true difference in means between group academic and group vocation is not equal to 0
## 95 percent confidence interval:
##   6.456665 12.537620
## sample estimates:
## mean in group academic mean in group vocation 
##               56.25714               46.76000

Se tiene un \(p-valor = 1.924e-08\) siendo Menor al nivel de \(0.05\) de significancia SE RECHAZA LA HIPOTESIS NULA , por lo que se tiene suficiente evidencia en los datos que nos haga rechazar el supuesto de que el la puntuación de escritura promedio de los estudiantes de bachillerato academico, difiere de forma significativa de la puntuacion de escritura promedio de los estudiantes de bachillerato voacional.

Gráficamente

boxplot(write~ prog, data = data1,
        main = "Distribución de puntuación promedio de los estudiantes ",
        xlab = "Tipo de programa ",
        ylab = "Puntuación",
        col = c("blue", "purple"),
        border = "gray40")

Notemos que el promedio de puntuacion de escritura es mas en los estudiantes del programa academico que los alumnos con el tipo de programa vocation.

Matematicas

Ahora si consideramos la puntuación del matematicas del estudiante tenemos el contraste de hipoteis

\(H_{0}:\) La puntuación de m,atematicas promedio de los estudiantes de bachillerato academico es igual a la puntuación de matematicas promedio de los estudiantes de bachillerato vocacional

\(H_{1}:\)La puntuación de matematicas promedio de los estudiantes de bachillerato academico es diferente a la puntuación de matematicas promedio de los estudiantes de bachillerato vocacional

\(H_0: \mu_{1} = \mu_{2}\)

\(H_{1}: \mu_{1}\neq \mu_{2}\)

t.test(data1$math ~ data1$prog)
## 
##  Welch Two Sample t-test
## 
## data:  data1$math by data1$prog
## t = 7.3086, df = 105.05, p-value = 5.506e-11
## alternative hypothesis: true difference in means between group academic and group vocation is not equal to 0
## 95 percent confidence interval:
##   7.515365 13.111302
## sample estimates:
## mean in group academic mean in group vocation 
##               56.73333               46.42000

Se tiene un \(p-valor = 5.506e-11\) siendo Menor al nivel de \(0.05\) de significancia SE RECHAZA LA HIPOTESIS NULA , por lo que se tiene suficiente evidencia en los datos que nos haga rechazar el supuesto de que el la puntuación de matematicas promedio de los estudiantes de bachillerato academico, difiere de forma significativa de la puntuacion de matematicas promedio de los estudiantes de bachillerato voacional.

Gráficamente

boxplot(math~ prog, data = data1,
        main = "Distribución de puntuación promedio de los estudiantes ",
        xlab = "Tipo de programa ",
        ylab = "Puntuación",
        col = c("blue", "purple"),
        border = "gray40")

Notemos que la puntuación de matematicas de los estudiantes del programa academic es diferente a la puntuación promedio de los estudiantes con programa vocatión.

Ciencia

Ahora si consideramos la puntuación del Ciencia del estudiante tenemos el contraste de hipoteis

\(H_{0}:\) La puntuación de ciencia promedio de los estudiantes de bachillerato academico es igual a la puntuación de ciencia promedio de los estudiantes de bachillerato vocacional

\(H_{1}:\)La puntuación de ciencias promedio de los estudiantes de bachillerato academico es diferente a la puntuación de ciencia promedio de los estudiantes de bachillerato vocacional

\(H_0: \mu_{1} = \mu_{2}\)

\(H_{1}: \mu_{1}\neq \mu_{2}\)

t.test(data1$science ~ data1$prog)
## 
##  Welch Two Sample t-test
## 
## data:  data1$science by data1$prog
## t = 3.8446, df = 86.544, p-value = 0.00023
## alternative hypothesis: true difference in means between group academic and group vocation is not equal to 0
## 95 percent confidence interval:
##  3.177959 9.982041
## sample estimates:
## mean in group academic mean in group vocation 
##                  53.80                  47.22

Se tiene un \(p-valor = 0.00023\) siendo Menor al nivel de \(0.05\) de significancia SE RECHAZA LA HIPOTESIS NULA , por lo que se tiene suficiente evidencia en los datos que nos haga rechazar el supuesto de que el la puntuación de ciencias promedio de los estudiantes de bachillerato academico, difiere de forma significativa de la puntuacion de ciencias promedio de los estudiantes de bachillerato voacional.

Gráficamente

boxplot(science~ prog, data = data1,
        main = "Distribución de puntuación promedio de los estudiantes ",
        xlab = "Tipo de programa ",
        ylab = "Puntuación",
        col = c("blue", "purple"),
        border = "gray40")

Notemos que la puntución de ciencias promedio de los estudiantes de programa academic, es mayor a los estudiantes del programa vocation.

Ciencias Sociales

Ahora si consideramos la puntuación del matematicas del estudiante tenemos el contraste de hipoteis

\(H_{0}:\) La puntuación de ciencias sociales promedio de los estudiantes de bachillerato academico es igual a la puntuación de ciencias sociales promedio de los estudiantes de bachillerato vocacional

\(H_{1}:\)La puntuación de ciencias sociales promedio de los estudiantes de bachillerato academico es diferente a la puntuación de ciencias sociales promedio de los estudiantes de bachillerato vocacional

\(H_0: \mu_{1} = \mu_{2}\)

\(H_{1}: \mu_{1}\neq \mu_{2}\)

t.test(data1$socst ~ data1$prog)
## 
##  Welch Two Sample t-test
## 
## data:  data1$socst by data1$prog
## t = 6.6603, df = 84.712, p-value = 2.59e-09
## alternative hypothesis: true difference in means between group academic and group vocation is not equal to 0
## 95 percent confidence interval:
##   8.18969 15.16079
## sample estimates:
## mean in group academic mean in group vocation 
##               56.69524               45.02000

Se tiene un \(p-valor = 02.59e-09\) siendo Menor al nivel de \(0.05\) de significancia SE RECHAZA LA HIPOTESIS NULA , por lo que se tiene suficiente evidencia en los datos que nos haga rechazar el supuesto de que el la puntuación de ciencias sociales promedio de los estudiantes de bachillerato academico, difiere de forma significativa de la puntuacion de ciencias sociales promedio de los estudiantes de bachillerato voacional.

Gráficamente

boxplot(socst~ prog, data = data1,
        main = "Distribución de puntuación promedio de los estudiantes ",
        xlab = "Tipo de programa ",
        ylab = "Puntuación",
        col = c("blue", "purple"),
        border = "gray40")

Notemos que hay diferencia en la puntuacion promedio de ciencias sociales de los estudiantes de los diferentes tipos de programas.

De acuerdo con el p-valor ninguna variable cuantitativa es esta relacionada con la la eleccion del tipo de programa

Variables cualitativas

Para las variables cualitativas se plantean los siguientes contrastes de hipótesis:

Variable genero

\(H_{0}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ es \ independiente \ del \ sexo \ del \ estudiante\)

\(H_{1}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ NO \ es \ independiente \ del \ sexo \ del \ estudiante\)

CrossTable(data1$gender,data1$prog,chisq = TRUE,prop.c=FALSE, prop.chisq = FALSE,prop.t = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  155 
## 
##  
##              | data1$prog 
## data1$gender |  academic |  vocation | Row Total | 
## -------------|-----------|-----------|-----------|
##       female |        58 |        27 |        85 | 
##              |     0.682 |     0.318 |     0.548 | 
## -------------|-----------|-----------|-----------|
##         male |        47 |        23 |        70 | 
##              |     0.671 |     0.329 |     0.452 | 
## -------------|-----------|-----------|-----------|
## Column Total |       105 |        50 |       155 | 
## -------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  0.02096439     d.f. =  1     p =  0.884876 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  4.853752e-31     d.f. =  1     p =  1 
## 
## 

Tomando en cuenta nuestra prueba, tenemos un $p-valor= 0.884876 $ siendo MAYOR a \(0.05\), es decir NO se tiene evidencia estadististicamente significativa para RECHAZAR LA HIPÓTESIS NULA, es decir, La eleccion del tipo de programa del estudiante NO ES DEPENDIENTE del sexo del estudiante.

Variable raza

\(H_{0}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ es \ independiente \ a la \ raza\ del \ estudiante\)

\(H_{1}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ NO \ es \ independiente \ a la \ raza \ del \ estudiante\)

CrossTable(data1$race,data1$prog,chisq = TRUE,prop.c=FALSE, prop.chisq = FALSE,prop.t = FALSE)
## Warning in chisq.test(t, correct = FALSE, ...): Chi-squared approximation may
## be incorrect
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  155 
## 
##  
##              | data1$prog 
##   data1$race |  academic |  vocation | Row Total | 
## -------------|-----------|-----------|-----------|
## african-amer |         9 |         6 |        15 | 
##              |     0.600 |     0.400 |     0.097 | 
## -------------|-----------|-----------|-----------|
##        asian |         6 |         1 |         7 | 
##              |     0.857 |     0.143 |     0.045 | 
## -------------|-----------|-----------|-----------|
##     hispanic |        11 |         9 |        20 | 
##              |     0.550 |     0.450 |     0.129 | 
## -------------|-----------|-----------|-----------|
##        white |        79 |        34 |       113 | 
##              |     0.699 |     0.301 |     0.729 | 
## -------------|-----------|-----------|-----------|
## Column Total |       105 |        50 |       155 | 
## -------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  3.17548     d.f. =  3     p =  0.3653529 
## 
## 
## 

Tomando en cuenta nuestra prueba, tenemos un $p-valor= 0.3653529 $ siendo MAYOR a \(0.05\), es decir NO se tiene evidencia estadististicamente significativa para RECHAZAR LA HIPÓTESIS NULA, es decir, La eleccion del tipo de programa del estudiante ES INDPENDIENTE de LA RAZA del estudiante.

Variable clase socioeconomica

\(H_{0}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ es \ independiente \ a la \ clase socioeconomica \ del \ estudiante\)

\(H_{1}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ NO \ es \ independiente \ del \ a la \ clase socioeconomica del \ estudiante\)

CrossTable(data1$ses,data1$prog,chisq = TRUE,prop.c=FALSE, prop.chisq = FALSE,prop.t = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  155 
## 
##  
##              | data1$prog 
##    data1$ses |  academic |  vocation | Row Total | 
## -------------|-----------|-----------|-----------|
##         high |        42 |         7 |        49 | 
##              |     0.857 |     0.143 |     0.316 | 
## -------------|-----------|-----------|-----------|
##          low |        19 |        12 |        31 | 
##              |     0.613 |     0.387 |     0.200 | 
## -------------|-----------|-----------|-----------|
##       middle |        44 |        31 |        75 | 
##              |     0.587 |     0.413 |     0.484 | 
## -------------|-----------|-----------|-----------|
## Column Total |       105 |        50 |       155 | 
## -------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  10.66006     d.f. =  2     p =  0.004843916 
## 
## 
## 

Tomando en cuenta nuestra prueba, tenemos un $p-valor = 0.004843916 $ siendo menor a \(0.05\), es decir se tiene evidencia estadististicamente significativa para RECHAZAR LA HIPÓTESIS NULA, es decir, La ELECCION DEL PROGRAMA ES DEPENDIENTE de la clase socioecnomica del estudiante.

Variable tipo de escuela

\(H_{0}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ es \ independiente \ del \ tipo de escuale \ del \ estudiante\)

\(H_{1}: La \ elecciión \ tipo \ de \ programa \ del \ estudiante \ NO \ es \ independiente \ del \ tipo de escuela \ del \ estudiante\)

CrossTable(data1$schtyp,data1$prog,chisq = TRUE,prop.c=FALSE, prop.chisq = FALSE,prop.t = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  155 
## 
##  
##              | data1$prog 
## data1$schtyp |  academic |  vocation | Row Total | 
## -------------|-----------|-----------|-----------|
##      private |        24 |         2 |        26 | 
##              |     0.923 |     0.077 |     0.168 | 
## -------------|-----------|-----------|-----------|
##       public |        81 |        48 |       129 | 
##              |     0.628 |     0.372 |     0.832 | 
## -------------|-----------|-----------|-----------|
## Column Total |       105 |        50 |       155 | 
## -------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  8.627396     d.f. =  1     p =  0.003311446 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  7.329512     d.f. =  1     p =  0.006783145 
## 
## 

Tomando en cuenta nuestra prueba, tenemos un $p-valor = 0.003311446 $ siendo menor a \(0.05\), es decir se tiene evidencia estadististicamente significativa para RECHAZAR LA HIPÓTESIS NULA, es decir, La ELECCION DEL PROGRAMA ES DEPENDIENTE del tipo de escuela del estudiante.

EN RESUMEN

De acuerdo con el p-valor el clase socioeconomica del estudiante así como su el tipo de escuela esta relacionada con la eleccion del tipo de programa

5.MODELO LOGISTICO BINOMIAL

El modelo logístico que se estima está dado en la siguiente instrucción:

# modelo logistico simple
modelo <- glm(prog ~ ses + schtyp,
               data = data1, family = binomial)
modelo
## 
## Call:  glm(formula = prog ~ ses + schtyp, family = binomial, data = data1)
## 
## Coefficients:
##  (Intercept)        seslow     sesmiddle  schtyppublic  
##       -3.648         1.105         1.548         2.083  
## 
## Degrees of Freedom: 154 Total (i.e. Null);  151 Residual
## Null Deviance:       194.9 
## Residual Deviance: 172.5     AIC: 180.5

SIGNIFICANCIA DEL MODELO GLOBAL

deviance.modelo<-modelo$deviance
deviance.base<-modelo$null.deviance
chi<-deviance.base - deviance.modelo
gl_chi <- modelo$df.null - modelo$df.residual
sig.chi <- 1-pchisq(chi, df= gl_chi)

cat("Deviance del Modelo:", deviance.modelo, "\n",
    "Deviance base:", deviance.base, "\n",
    "Estadístico Ji-cuadrado:", chi, "\n",
    "Grados de libertad:", gl_chi, "\n",
    "p-valor:", sig.chi, "\n")
## Deviance del Modelo: 172.4898 
##  Deviance base: 194.9278 
##  Estadístico Ji-cuadrado: 22.43802 
##  Grados de libertad: 3 
##  p-valor: 5.287853e-05

Notemos que el $pvalor =5.287853e-05 $ es MENOR al nivel de significancia \(0.0\) por lo que el modelo ES SIGNIFICATIVO GLOBAL

Significancia de cada variable

library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(modelo, type= "text")
## 
## =============================================
##                       Dependent variable:    
##                   ---------------------------
##                              prog            
## ---------------------------------------------
## seslow                      1.105**          
##                             (0.556)          
##                                              
## sesmiddle                  1.548***          
##                             (0.484)          
##                                              
## schtyppublic               2.083***          
##                             (0.780)          
##                                              
## Constant                   -3.648***         
##                             (0.854)          
##                                              
## ---------------------------------------------
## Observations                  155            
## Log Likelihood              -86.245          
## Akaike Inf. Crit.           180.490          
## =============================================
## Note:             *p<0.1; **p<0.05; ***p<0.01

Notemos que todas las variables son significativas.

$H_0: _{i} = 0 $

\(H_{1}: \beta_{1}\neq0\)

anova(modelo)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: prog
## 
## Terms added sequentially (first to last)
## 
## 
##        Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
## NULL                     154     194.93            
## ses     2   11.648       152     183.28 0.002955 **
## schtyp  1   10.790       151     172.49 0.001021 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notemos que todas las variables con un p-valor<0.05, es decir todas las variables son significativas.

7 SUMMARY DEL MODELO

summary(modelo)
## 
## Call:
## glm(formula = prog ~ ses + schtyp, family = binomial, data = data1)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -3.6476     0.8540  -4.271 1.94e-05 ***
## seslow         1.1051     0.5556   1.989  0.04669 *  
## sesmiddle      1.5480     0.4844   3.196  0.00140 ** 
## schtyppublic   2.0830     0.7799   2.671  0.00757 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 194.93  on 154  degrees of freedom
## Residual deviance: 172.49  on 151  degrees of freedom
## AIC: 180.49
## 
## Number of Fisher Scoring iterations: 5

El modelo logistico es el siguente

$Academico = -3.6476+ 1.1051seslow + 1.5480sesmiddle +2.0830*schtyppublic $

Veamos que todas las variables son significativas, los positivos, Para interpretar una variable cualitativa se necesita ser más cuidadoso, por ejemplo la calse socioconomica, con las variables baja y media que son las que estan en el modelo , implica que ser de clase baja y media , aumenta la probabilidad de elegir la el programa de bachillerato academico.

Para el tipo de escuela, notemos que ser de escuekla publica aumenta la probabilidad de elegir el progrma de bachillerato academico.

USO DEL MODELO

Carlitos

$Academico = -3.6476+ 1.1051seslow + 1.5480sesmiddle +2.0830*schtyppublic $

Tomando en cuenta la que carlitos es un alumno de clase media y va en escuela publica

\(P(Y=1)=\dfrac{1}{1+e^{-Y}}=\dfrac{1}{1+e^{-(-3.6476+ + 1.5480*1 +2.0830*1)}}\)=0.38

La probabilidad de que carlitos sea un estudiantes de clase media y quiie vaya en escuela publica, tiene una probabilidad de 38% de que elija el programa academico.

9 Probabilidades estimadas y predicciones

Calculamos la probabilidad de elegir el programa academico de cada estudiante así como la probabilidad de no eliha el programa academico

data2<- data.frame(data1, modelo$fitted.values)
head(data2)
##     id gender         race    ses schtyp     prog read write math science socst
## 5  172   male        white middle public academic   47    52   57      53    61
## 6  113   male        white middle public academic   44    52   51      63    61
## 8   11   male     hispanic middle public academic   34    46   45      39    36
## 10  48   male african-amer middle public academic   57    55   52      50    51
## 12  60   male        white middle public academic   57    65   51      63    61
## 13  95   male        white   high public academic   73    60   71      61    71
##    modelo.fitted.values
## 5             0.4958290
## 6             0.4958290
## 8             0.4958290
## 10            0.4958290
## 12            0.4958290
## 13            0.1729767
data1$ProbEstimSob <- as.numeric(modelo$fitted.values)
head(data1)
##     id gender         race    ses schtyp     prog read write math science socst
## 5  172   male        white middle public academic   47    52   57      53    61
## 6  113   male        white middle public academic   44    52   51      63    61
## 8   11   male     hispanic middle public academic   34    46   45      39    36
## 10  48   male african-amer middle public academic   57    55   52      50    51
## 12  60   male        white middle public academic   57    65   51      63    61
## 13  95   male        white   high public academic   73    60   71      61    71
##    ProbEstimSob
## 5     0.4958290
## 6     0.4958290
## 8     0.4958290
## 10    0.4958290
## 12    0.4958290
## 13    0.1729767
NO_aca<-1-data1$ProbEstimSob
data1$ProbFrac<-NO_aca
data1$Odd<- (data1$ProbEstimSob)/(data1$ProbFrac)
head(data1)
##     id gender         race    ses schtyp     prog read write math science socst
## 5  172   male        white middle public academic   47    52   57      53    61
## 6  113   male        white middle public academic   44    52   51      63    61
## 8   11   male     hispanic middle public academic   34    46   45      39    36
## 10  48   male african-amer middle public academic   57    55   52      50    51
## 12  60   male        white middle public academic   57    65   51      63    61
## 13  95   male        white   high public academic   73    60   71      61    71
##    ProbEstimSob  ProbFrac       Odd
## 5     0.4958290 0.5041710 0.9834539
## 6     0.4958290 0.5041710 0.9834539
## 8     0.4958290 0.5041710 0.9834539
## 10    0.4958290 0.5041710 0.9834539
## 12    0.4958290 0.5041710 0.9834539
## 13    0.1729767 0.8270233 0.2091557

10 Eficiencia de predicción

library(gmodels)

#CrossTable(data1$prog, predict.modelo, prop.chisq = FALSE,
          # prop.c = FALSE, prop.r = FALSE)

11 Obtener la curva ROC}

library(Epi)
ROC(data=data1, form= prog ~ ses + schtyp )

Corte optimo para maximizar el modelo es 0.173

Con una sensinibilidad de 82%

##13 Que representa las Razon odd en un modelo de regresion logistica binomial

La razón odd representa cuánto cambia la probabilidad relativa de que ocurra un evento cuando una variable independiente aumenta en una unidad o cambia de categoría.

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.