Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)
data <- read_excel("../00_data/NHLDATA.xlsx")
data
## # A tibble: 8,474 × 9
##    player_id first_name last_name   birth_date          birth_city birth_country
##        <dbl> <chr>      <chr>       <dttm>              <chr>      <chr>        
##  1   8467867 Bryan      Adams       1977-03-20 00:00:00 Fort St. … CAN          
##  2   8445176 Donald     Audette     1969-09-23 00:00:00 Laval      CAN          
##  3   8460014 Eric       Bertrand    1975-04-16 00:00:00 St-Ephrem  CAN          
##  4   8460510 Jason      Botterill   1976-05-19 00:00:00 Edmonton   CAN          
##  5   8459596 Andrew     Brunette    1973-08-24 00:00:00 Sudbury    CAN          
##  6   8445733 Kelly      Buchberger  1966-12-02 00:00:00 Langenburg CAN          
##  7   8460573 Hnat       Domenichel… 1976-02-17 00:00:00 Edmonton   CAN          
##  8   8459450 Shean      Donovan     1975-01-22 00:00:00 Timmins    CAN          
##  9   8446675 Nelson     Emerson     1967-08-17 00:00:00 Hamilton   CAN          
## 10   8446823 Ray        Ferraro     1964-08-23 00:00:00 Trail      CAN          
## # ℹ 8,464 more rows
## # ℹ 3 more variables: birth_state_province <chr>, birth_year <dbl>,
## #   birth_month <dbl>

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows

Create your own function

# Double values in columns
double_by_vector <- function(x, factor) {x * factor}
10 %>% double_by_vector(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x =., .f = ~double_by_vector(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_vector , factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

reg_coeff_tbl <- mtcars %>%
    
    # Split it into a list of data frames
    split(.$cyl) %>%
   
     # Repeat regression over each group
    map(~lm(formula = mpg ~ wt, data = .)) %>%
    
    # Extract coeffiecients from regression results
    map(broom:: tidy, conf.int = TRUE) %>%

    # convert to tibble
    bind_rows(.id = "cyl") %>%

    # Filter for wt coefficients
    filter(term == "wt")
reg_coeff_tbl %>%
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>% 
    
    ggplot(aes(x = estimate, y = cyl)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

# Example: Multiply player goals by a factor for each numeric column
# First, select numeric columns
numeric_data <- data %>% select(where(is.numeric))

# Create a function to multiply values
multiply_by_factor <- function(x, factor) {
  x * factor
}

# Apply function to all numeric columns using map_dfr
numeric_data_multiplied <- numeric_data %>% map_dfr(~multiply_by_factor(.x, factor = 2))

numeric_data_multiplied
## # A tibble: 8,474 × 3
##    player_id birth_year birth_month
##        <dbl>      <dbl>       <dbl>
##  1  16935734       3954           6
##  2  16890352       3938          18
##  3  16920028       3950           8
##  4  16921020       3952          10
##  5  16919192       3946          16
##  6  16891466       3932          24
##  7  16921146       3952           4
##  8  16918900       3950           2
##  9  16893350       3934          16
## 10  16893646       3928          16
## # ℹ 8,464 more rows