Abstract

Obesity significantly impacts musculoskeletal health and alters walking biomechanics. This study aimed to quantify the influence of obesity on knee angle changes during various walking tasks and identify associated anthropometric predictors. We analyzed motion sensor data from 35 participants (12 normal-weight, 23 obese) performing six distinct walking tasks (e.g., preferred speed, obstacle negotiation). Knee angle difference (InitialPeak) was the primary outcome. Exploratory data analysis (EDA), including correlation analysis and Variance Inflation Factor (VIF) assessment, guided variable selection. Linear Mixed-Effects Models (LMM), Generalized Additive Mixed Models (GAMM), and Bayesian Mixed Models were developed, incorporating fixed effects for group, demographics, and selected body measurements, with random intercepts for participant and task. Model performance was compared using ANOVA and 5-fold cross-validation (RMSE, R²). Two-sample t-tests compared knee angle differences between groups for each task. EDA and t-tests revealed significantly reduced knee angle differences in the obese group across most tasks (p < 0.05), suggesting less knee flexion. The final LMM demonstrated the best fit and predictive performance (Avg CV RMSE \(\approx\) 2.59, Avg CV R² \(\approx\) 0.68), identifying significant associations between knee angle difference and Shoulder Breadth (positive), Chest Breadth (negative), Lower Thigh Circumference (negative), Shank Circumference (negative), and A Body Shape Index (ABSI, negative). Significant variability was attributed to both participant and task random effects. In conclusion, obesity is associated with reduced knee flexion during walking, and specific body dimensions beyond BMI contribute significantly to these biomechanical alterations.

Introduction

Obesity is a growing public health concern worldwide, with well-documented impacts on musculoskeletal health and mobility. Excess body weight alters biomechanical loading patterns during everyday activities, increasing the risk of joint degeneration and chronic musculoskeletal conditions. In particular, deviations in walking mechanics—such as reduced knee flexion and altered foot–ground contact—have been observed in individuals with obesity, suggesting a potential pathway by which obesity contributes to long-term joint dysfunction and osteoarthritis.

Knee angle during gait is a critical marker of walking stance and limb mechanics. This project aims to quantify how obesity influences knee-angle trajectories across a series of controlled walking conditions. Thirty-five participants (12 normal-weight, 23 obese) underwent six distinct walking tasks—ranging from preferred and fast speeds to obstacle approaches and crossings at two heights—while equipped with motion sensors on the upper leg, lower leg, and shoes. By comparing knee-angle profiles between obese and non-obese groups, we seek to identify the association between knee angles and people’s body measurements.

In this report, we will mainly talk about the EDA of the dataset, the models used to assess the relationship and interpret our models’ results to reach a final conclusion.

Data Description

## 'data.frame':    2025 obs. of  52 variables:
##  $ Subject      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ studyid      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ age          : int  36 36 36 36 36 36 36 36 36 36 ...
##  $ Group        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Class        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ BS           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sex          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ BMI          : num  20.1 20.1 20.1 20.1 20.1 ...
##  $ Race         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ height_m     : num  1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 ...
##  $ weight_kg    : num  55.3 55.3 55.3 55.3 55.3 ...
##  $ leg_l_l      : num  92 92 92 92 92 92 92 92 92 92 ...
##  $ leg_l_r      : num  93 93 93 93 93 93 93 93 93 93 ...
##  $ leg_l        : num  92.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 ...
##  $ DST          : int  22 22 22 22 22 22 22 22 22 22 ...
##  $ Stroop       : int  119 119 119 119 119 119 119 119 119 119 ...
##  $ Stroop_Effect: num  483 483 483 483 483 ...
##  $ PA           : num  7.12 7.12 7.12 7.12 7.12 ...
##  $ Task         : chr  "PRF" "PRF" "PRF" "PRF" ...
##  $ Trial        : int  1 2 3 4 1 2 3 4 1 2 ...
##  $ Speed        : num  1.29 1.32 1.32 1.32 1.55 1.51 1.57 1.53 1.4 1.35 ...
##  $ Initial      : num  4.5 3.63 3.22 3.95 6.88 ...
##  $ Peak         : num  10.4 11.8 10.1 12.8 16.3 ...
##  $ InitialPeak  : num  5.9 8.21 6.93 8.83 9.47 ...
##  $ Min          : num  1.4 1.51 1.59 2.34 1.5 ...
##  $ MinPeak      : num  9 10.33 8.56 10.44 14.84 ...
##  $ Stiffness    : num  0.1153 0.1114 0.0969 0.0902 0.1088 ...
##  $ MomentPeak   : num  0.518 0.738 0.553 0.705 0.748 ...
##  $ kneeMrange   : num  0.75 0.925 0.647 0.771 0.992 ...
##  $ head_cir     : num  56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 ...
##  $ neck_cir     : num  36 36 36 36 36 36 36 36 36 36 ...
##  $ SH_B         : num  34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 ...
##  $ SH_D         : num  19 19 19 19 19 19 19 19 19 19 ...
##  $ CH_B         : num  26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 ...
##  $ CH_D         : num  18 18 18 18 18 18 18 18 18 18 ...
##  $ WA_B         : num  23 23 23 23 23 23 23 23 23 23 ...
##  $ WA_D         : num  19 19 19 19 19 19 19 19 19 19 ...
##  $ HIP_B        : num  29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 ...
##  $ HIP_D        : num  20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 ...
##  $ ASIS         : num  21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 ...
##  $ waist_cir    : num  76 76 76 76 76 76 76 76 76 76 ...
##  $ hip_cir      : num  90 90 90 90 90 90 90 90 90 90 ...
##  $ thigh_cir    : num  49 49 49 49 49 49 49 49 49 49 ...
##  $ L_thigh_cir  : num  35 35 35 35 35 35 35 35 35 35 ...
##  $ shank_cir    : num  29 29 29 29 29 29 29 29 29 29 ...
##  $ ankle_cir    : num  21 21 21 21 21 21 21 21 21 21 ...
##  $ W.H.ratio    : num  0.844 0.844 0.844 0.844 0.844 ...
##  $ ABSI         : num  79.8 79.8 79.8 79.8 79.8 ...
##  $ Hip.Index    : num  50.2 50.2 50.2 50.2 50.2 ...
##  $ biceps_cir   : num  26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 ...
##  $ forearm_cir  : num  23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 ...
##  $ wrist_cir    : num  15 15 15 15 15 15 15 15 15 15 ...

The main dataset used is “BodyShape.csv”. It contains the body shape measures, such as BMI, hip circumference, waist hip ratio, cognitive test scores, physical activity scores and the knee angle before and after conducting the task and the difference between those two measures for all 38 participants. However, there are many repeated measures for each participants, which means that linear mixed effect model would be a good baseline model to start with. Next, we will perform EDA to select the important variables related to knee angles.

EDA

Based on the histogram, for normal people, the knee angle difference is mostly centered around 10 degrees, for obese people, the knee angle difference is more right tailed, there are more observations distributed around 0 to 5 degrees; for boxplot, the median of obese people is slightly lower than normal people. Both plots have showed that the knee angle difference is smaller for obese group, meaning they tend to bend less their knees during the six walking stances. From the correlation plot above, InitialPeak does not have high correlation with any of the body measurements, also, many of the body measurements are highly correlated with each other, and they are also tend to correlate with Group, Body Shape, BMI and weight. We could further use VIF value to test for the multicollinearity.

## Warning in summary.lm(object, ...): essentially perfect fit: summary may be
## unreliable
##           age         Group         Class            BS           Sex 
##      6.847906     71.981158     99.320093     39.180965     41.588461 
##           BMI          Race      height_m     weight_kg         leg_l 
##   1722.631669      8.040939    146.804583     60.103351     30.476475 
##           DST        Stroop Stroop_Effect            PA         Speed 
##      6.176927      6.628922      8.074536      6.408408      3.649911 
##       Initial          Peak           Min       MinPeak     Stiffness 
##      2.962855    397.294243    191.851953    309.612294      1.528218 
##    MomentPeak    kneeMrange      neck_cir          SH_B          SH_D 
##     31.754977     24.552982     19.213967      9.284384     34.179679 
##          CH_B          CH_D          WA_B          WA_D         HIP_B 
##     16.135450     36.112680     36.035933     46.457726     27.415390 
##         HIP_D          ASIS     waist_cir       hip_cir     thigh_cir 
##     44.179809     10.930804   8221.128851   4914.450223     37.235729 
##   L_thigh_cir     shank_cir     ankle_cir     W.H.ratio          ABSI 
##     16.264640     36.981547     24.051762   2683.961251     47.511878 
##     Hip.Index 
##     17.390758

The values above are the values of VIF, and it is clear that most of the body measurement are high correlated with each other since many of the VIF values are far exceeding 10. We will try to remove some of the variables to see if VIF values change.

## Warning in summary.lm(object, ...): essentially perfect fit: summary may be
## unreliable
##           age         Group           Sex          Race         leg_l 
##      1.778794      9.995250      4.502893      2.044137      1.990723 
##           DST        Stroop Stroop_Effect            PA         Speed 
##      1.840140      2.299483      1.970921      2.141428      2.775249 
##       Initial          Peak           Min       MinPeak     Stiffness 
##      2.066236    376.571767    183.235431    293.522531      1.382954 
##    MomentPeak    kneeMrange      neck_cir          SH_B          CH_B 
##     15.834178     13.863525      6.013996      3.475902      4.883854 
##          WA_B         HIP_D          ASIS     shank_cir     ankle_cir 
##      6.438265      8.361000      4.826496      6.084880      5.056890 
##          ABSI 
##      2.166755

As the results shown above, after removing leg_l_l, leg_l_r, BMI, waist_cir, hip_cir, thigh_cir, height_m, weight_kg, W.H.ratio, Hip.Index, WA_B, WA_D, BS, SH_D and CH_D, most of the VIF become lower than 10, thus, we will try include those variables in the later modeling part.

## Warning: Removed 35 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 35 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).

Based on the boxplot shown above, both groups bent their knees the most when they walk fast, and for all six tasks, people in normal group tend to have greater knee angle difference than the obese group.

Modeling

Model 1: Stiffness

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
m1 <- lmer(Stiffness
 ~ Group+age+Sex+leg_l+factor(Race)+Speed+(1|Subject), data=df_ocha)
summary(m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: -907
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9665 -0.3449 -0.0514  0.2412  7.5620 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0008135 0.02852 
##  Residual             0.0022595 0.04753 
## Number of obs: 316, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.1681510  0.1106580 30.1045116   1.520 0.139057    
## Group         -0.0493628  0.0119549 34.0119545  -4.129 0.000223 ***
## age           -0.0003212  0.0011196 30.0054534  -0.287 0.776185    
## Sex           -0.0068679  0.0126947 31.2235143  -0.541 0.592346    
## leg_l         -0.0025199  0.0012226 34.6351666  -2.061 0.046865 *  
## factor(Race)1  0.0044978  0.0177343 30.7382226   0.254 0.801478    
## factor(Race)2 -0.0027812  0.0190236 31.6727677  -0.146 0.884694    
## factor(Race)3  0.0620342  0.0220575 30.0662388   2.812 0.008580 ** 
## factor(Race)4 -0.0207480  0.0234337 32.1396041  -0.885 0.382521    
## Speed          0.1199637  0.0374844 96.3207775   3.200 0.001859 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.154                                                        
## age         -0.333 -0.159                                                 
## Sex         -0.265 -0.124  0.155                                          
## leg_l       -0.850  0.007  0.044  0.250                                   
## factor(Rc)1 -0.312 -0.025  0.210  0.078  0.168                            
## factor(Rc)2 -0.158 -0.140  0.042 -0.054  0.107  0.697                     
## factor(Rc)3 -0.172 -0.018  0.147 -0.158  0.085  0.623  0.581              
## factor(Rc)4 -0.158 -0.141  0.286  0.011  0.134  0.630  0.572  0.530       
## Speed       -0.048  0.325 -0.007 -0.206 -0.386 -0.081 -0.129 -0.084 -0.324
r2 <- r.squaredGLMM(m1)
print(r2)
##            R2m       R2c
## [1,] 0.3499206 0.5220073
# 95% Confidence Intervals for fixed effects (beta coefficients)
ci <- confint(m1, level = 0.95, method = "Wald")  # Or method = "profile"
print(ci)
##                      2.5 %        97.5 %
## .sig01                  NA            NA
## .sigma                  NA            NA
## (Intercept)   -0.048734724  0.3850367507
## Group         -0.072793897 -0.0259316706
## age           -0.002515443  0.0018731165
## Sex           -0.031749097  0.0180133730
## leg_l         -0.004916195 -0.0001236388
## factor(Race)1 -0.030260757  0.0392562820
## factor(Race)2 -0.040066691  0.0345043824
## factor(Race)3  0.018802251  0.1052660789
## factor(Race)4 -0.066677205  0.0251811302
## Speed          0.046495685  0.1934316826

Model 2: Peak Knee Angle

m2 <- lmer(Peak ~ Group+age+Sex+leg_l+factor(Race)+Speed+(1|Subject), data=df_ocha)
summary(m2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: 1728.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2386 -0.5189 -0.0003  0.5459  3.2864 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 47.571   6.897   
##  Residual              9.011   3.002   
## Number of obs: 320, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)    31.31210   23.04943  32.82898   1.358  0.18357   
## Group          -7.89471    2.36898  33.99827  -3.333  0.00209 **
## age             0.09579    0.23355  32.79857   0.410  0.68437   
## Sex             0.28180    2.60212  33.19242   0.108  0.91441   
## leg_l          -0.37482    0.23820  34.75462  -1.574  0.12466   
## factor(Race)1   4.47890    3.67233  32.93183   1.220  0.23127   
## factor(Race)2   3.28497    3.90084  33.12185   0.842  0.40576   
## factor(Race)3   5.81778    4.59115  32.87893   1.267  0.21400   
## factor(Race)4   2.93366    4.69906  33.96851   0.624  0.53660   
## Speed          10.74321    3.26295 309.73554   3.292  0.00111 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.139                                                        
## age         -0.346 -0.152                                                 
## Sex         -0.276 -0.067  0.158                                          
## leg_l       -0.925  0.111  0.058  0.197                                   
## factor(Rc)1 -0.311 -0.010  0.209  0.067  0.149                            
## factor(Rc)2 -0.153 -0.113  0.039 -0.097  0.061  0.697                     
## factor(Rc)3 -0.164 -0.008  0.151 -0.179  0.051  0.616  0.582              
## factor(Rc)4 -0.175 -0.058  0.292 -0.047  0.034  0.630  0.565  0.526       
## Speed       -0.016  0.136 -0.004 -0.083 -0.176 -0.036 -0.057 -0.038 -0.143
r2 <- r.squaredGLMM(m2)
print(r2)
##            R2m       R2c
## [1,] 0.2939976 0.8875669
# 95% Confidence Intervals for fixed effects (beta coefficients)
ci <- confint(m2, level = 0.95, method = "Wald")  # Or method = "profile"
print(ci)
##                     2.5 %      97.5 %
## .sig01                 NA          NA
## .sigma                 NA          NA
## (Intercept)   -13.8639569 76.48814913
## Group         -12.5378238 -3.25158676
## age            -0.3619623  0.55354298
## Sex            -4.8182547  5.38185077
## leg_l          -0.8416808  0.09204852
## factor(Race)1  -2.7187324 11.67653253
## factor(Race)2  -4.3605326 10.93047347
## factor(Race)3  -3.1807110 14.81626585
## factor(Race)4  -6.2763286 12.14364946
## Speed           4.3479526 17.13846986

Model 3: Initial_Peak Knee Angle Difference

m3 <- lmer(InitialPeak ~ Group+age+Sex+leg_l+factor(Race)+Speed+(1|Subject), data=df_ocha)
summary(m3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: 1641.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5822 -0.5404 -0.0084  0.5320  3.3135 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 28.267   5.317   
##  Residual              6.993   2.644   
## Number of obs: 320, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)    32.90428   17.83756  32.90707   1.845   0.0741 .
## Group          -4.23194    1.83790  34.35008  -2.303   0.0275 *
## age            -0.09573    0.18073  32.86892  -0.530   0.5999  
## Sex            -1.22712    2.01532  33.35248  -0.609   0.5467  
## leg_l          -0.32931    0.18508  35.26961  -1.779   0.0838 .
## factor(Race)1  -0.88518    2.84260  33.03525  -0.311   0.7575  
## factor(Race)2   1.76001    3.02073  33.27321   0.583   0.5641  
## factor(Race)3   0.93362    3.55340  32.96651   0.263   0.7944  
## factor(Race)4   3.54444    3.64533  34.29586   0.972   0.3377  
## Speed           3.61349    2.83404 309.13468   1.275   0.2033  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.140                                                        
## age         -0.346 -0.152                                                 
## Sex         -0.276 -0.070  0.158                                          
## leg_l       -0.921  0.105  0.058  0.200                                   
## factor(Rc)1 -0.311 -0.011  0.209  0.067  0.150                            
## factor(Rc)2 -0.153 -0.115  0.039 -0.095  0.064  0.697                     
## factor(Rc)3 -0.165 -0.009  0.151 -0.178  0.053  0.616  0.582              
## factor(Rc)4 -0.174 -0.063  0.292 -0.044  0.040  0.630  0.565  0.526       
## Speed       -0.018  0.153 -0.004 -0.093 -0.196 -0.041 -0.064 -0.042 -0.160
r2 <- r.squaredGLMM(m3)
print(r2)
##            R2m      R2c
## [1,] 0.1962431 0.840597
# 95% Confidence Intervals for fixed effects (beta coefficients)
ci <- confint(m3, level = 0.95, method = "Wald")  # Or method = "profile"
print(ci)
##                    2.5 %      97.5 %
## .sig01                NA          NA
## .sigma                NA          NA
## (Intercept)   -2.0567035 67.86525986
## Group         -7.8341465 -0.62972424
## age           -0.4499564  0.25848990
## Sex           -5.1770816  2.72283163
## leg_l         -0.6920718  0.03344188
## factor(Race)1 -6.4565701  4.68620291
## factor(Race)2 -4.1605190  7.68053716
## factor(Race)3 -6.0309024  7.89815144
## factor(Race)4 -3.6002804 10.68916366
## Speed         -1.9411228  9.16810667
# Calculate marginal and conditional R²
r2 <- r.squaredGLMM(m3)
print(r2)
##            R2m      R2c
## [1,] 0.1962431 0.840597

Since SH_B(Shoulder Breadth), CH_B(Chest Breadth), L_thigh_cir(lower thigh circumference), shank_cir(shank circumference) and ABSI(a body shape index) are the only statistically significant variables based on the model output above. We can try only including those variables as fixed effects and check the performance using ANOVA later.

Model 4: Moment Peak

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: -221.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0062 -0.5365  0.0146  0.4610  3.7335 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.07176  0.2679  
##  Residual             0.01691  0.1300  
## Number of obs: 317, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)     1.370046   0.898091  32.839880   1.526  0.13671   
## Group          -0.280158   0.092589  34.357529  -3.026  0.00467 **
## age            -0.003064   0.009099  32.801396  -0.337  0.73846   
## Sex             0.041257   0.101502  33.326176   0.406  0.68700   
## leg_l          -0.015660   0.009316  35.172220  -1.681  0.10164   
## factor(Race)1   0.119234   0.143128  32.974367   0.833  0.41081   
## factor(Race)2   0.129976   0.152110  33.222597   0.854  0.39895   
## factor(Race)3   0.177360   0.178896  32.891192   0.991  0.32872   
## factor(Race)4   0.156998   0.183530  34.225968   0.855  0.39826   
## Speed           0.434376   0.142493 306.452066   3.048  0.00250 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.140                                                        
## age         -0.346 -0.152                                                 
## Sex         -0.276 -0.071  0.158                                          
## leg_l       -0.921  0.105  0.058  0.200                                   
## factor(Rc)1 -0.311 -0.011  0.209  0.068  0.151                            
## factor(Rc)2 -0.153 -0.115  0.039 -0.095  0.064  0.697                     
## factor(Rc)3 -0.164 -0.009  0.151 -0.178  0.053  0.616  0.582              
## factor(Rc)4 -0.174 -0.063  0.292 -0.044  0.040  0.630  0.565  0.526       
## Speed       -0.019  0.155 -0.005 -0.096 -0.195 -0.042 -0.064 -0.042 -0.160
##            R2m       R2c
## [1,] 0.2873167 0.8641043
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.115697  1        1.056265
## age          1.217995  1        1.103628
## Sex          1.191604  1        1.091606
## leg_l        1.133858  1        1.064828
## factor(Race) 1.406133  4        1.043526
## Speed        1.125107  1        1.060711
##                     2.5 %       97.5 %
## .sig01                 NA           NA
## .sigma                 NA           NA
## (Intercept)   -0.39017942  3.130271104
## Group         -0.46162806 -0.098687795
## age           -0.02089863  0.014770392
## Sex           -0.15768359  0.240197104
## leg_l         -0.03391946  0.002599896
## factor(Race)1 -0.16129203  0.399759957
## factor(Race)2 -0.16815358  0.428105646
## factor(Race)3 -0.17326881  0.527989259
## factor(Race)4 -0.20271403  0.516709075
## Speed          0.15509352  0.713657706

Model 5: Moment Range

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: -183.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6766 -0.5267 -0.0202  0.5343  3.6786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.05062  0.2250  
##  Residual             0.02020  0.1421  
## Number of obs: 317, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    8.816e-01  7.626e-01  3.270e+01   1.156 0.256022    
## Group         -2.721e-01  7.916e-02  3.490e+01  -3.437 0.001537 ** 
## age            1.721e-04  7.725e-03  3.265e+01   0.022 0.982364    
## Sex           -2.121e-02  8.638e-02  3.339e+01  -0.245 0.807576    
## leg_l         -9.231e-03  7.991e-03  3.600e+01  -1.155 0.255652    
## factor(Race)1  8.854e-02  1.216e-01  3.290e+01   0.728 0.471738    
## factor(Race)2  6.678e-02  1.294e-01  3.328e+01   0.516 0.609177    
## factor(Race)3  7.214e-02  1.519e-01  3.277e+01   0.475 0.638074    
## factor(Race)4  1.909e-01  1.568e-01  3.463e+01   1.218 0.231539    
## Speed          5.080e-01  1.500e-01  2.887e+02   3.388 0.000803 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.141                                                        
## age         -0.345 -0.152                                                 
## Sex         -0.274 -0.079  0.158                                          
## leg_l       -0.910  0.088  0.057  0.208                                   
## factor(Rc)1 -0.311 -0.014  0.209  0.070  0.154                            
## factor(Rc)2 -0.153 -0.119  0.040 -0.090  0.071  0.697                     
## factor(Rc)3 -0.165 -0.012  0.151 -0.175  0.058  0.617  0.582              
## factor(Rc)4 -0.171 -0.076  0.291 -0.035  0.056  0.630  0.566  0.526       
## Speed       -0.024  0.192 -0.006 -0.118 -0.239 -0.052 -0.079 -0.051 -0.197
##            R2m       R2c
## [1,] 0.3258733 0.8076806
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.131453  1        1.063698
## age          1.218573  1        1.103890
## Sex          1.197164  1        1.094150
## leg_l        1.157478  1        1.075861
## factor(Race) 1.430137  4        1.045736
## Speed        1.192566  1        1.092046
##                     2.5 %       97.5 %
## .sig01                 NA           NA
## .sigma                 NA           NA
## (Intercept)   -0.61301350  2.376204202
## Group         -0.42721251 -0.116928723
## age           -0.01496843  0.015312575
## Sex           -0.19050227  0.148091881
## leg_l         -0.02489388  0.006431865
## factor(Race)1 -0.14981080  0.326881082
## factor(Race)2 -0.18681729  0.320380617
## factor(Race)3 -0.22564647  0.369925647
## factor(Race)4 -0.11637019  0.498255682
## Speed          0.21408693  0.801934117
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange

## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange

##  116  165  173  216  217  218  220  221  222  223  224  272  273  275  276  279 
##   14   17   25   28   29   30   32   33   34   35   36   38   39   41   42   45 
##  365  367  368  369  372  373  641  827 1007 1054 1381 1487 1490 1492 1638 1696 
##   54   56   57   58   61   62  101  130  154  168  211  224  227  229  249  261 
## 1938 1977 
##  302  303
## 
## ====================
## Model: m2 
## ====================
## 최대 Cook's distance:
##   Index: 200  Value: 0.2036968 
## 
## 상위 5개 Cook's distance (Index / Value):
##   Index     CookD
## 1   200 0.2036968
## 2   205 0.1696459
## 3   261 0.1692407
## 4   300 0.1166685
## 5   201 0.1152959
## 
## ====================
## Model: m3 
## ====================
## 최대 Cook's distance:
##   Index: 201  Value: 0.2417491 
## 
## 상위 5개 Cook's distance (Index / Value):
##   Index     CookD
## 1   201 0.2417491
## 2   205 0.2128716
## 3   200 0.2050525
## 4    12 0.1306174
## 5   283 0.1218922
## 
## ====================
## Model: m4 
## ====================
## 최대 Cook's distance:
##   Index: 261  Value: 0.262505 
## 
## 상위 5개 Cook's distance (Index / Value):
##   Index     CookD
## 1   261 0.2625050
## 2    93 0.1746152
## 3   203 0.1696880
## 4   211 0.1436317
## 5   195 0.1344602
## 
## ====================
## Model: m5 
## ====================
## 최대 Cook's distance:
##   Index: 261  Value: 0.2483553 
## 
## 상위 5개 Cook's distance (Index / Value):
##   Index     CookD
## 1   261 0.2483553
## 2     7 0.1509047
## 3   195 0.1378127
## 4   211 0.1323426
## 5   203 0.1311426
## 영향치 인덱스:
##  116  165  173  216  217  218  220  221  222  223  224  272  273  275  276  279 
##   14   17   25   28   29   30   32   33   34   35   36   38   39   41   42   45 
##  365  367  368  369  372  373  641  827 1007 1054 1381 1487 1490 1492 1638 1696 
##   54   56   57   58   61   62  101  130  154  168  211  224  227  229  249  261 
## 1938 1977 
##  302  303
## 
## 영향치 관측치 데이터:
##         Stiffness Group age Sex  leg_l factor(Race) Speed Subject
## 116   0.136036991     0  28   1  87.75            2  1.21       3
## 165   0.182624955     0  21   1  92.50            1  1.41       4
## 173   0.204310777     0  21   1  92.50            1  1.50       4
## 216   0.064440277     0  26   1  90.00            3  1.40       5
## 217   0.034949795     0  26   1  90.00            3  1.36       5
## 218   0.518037248     0  26   1  90.00            3  1.46       5
## 220   0.073798491     0  26   1  90.00            3  1.45       5
## 221   0.066178078     0  26   1  90.00            3  1.41       5
## 222   0.351057793     0  26   1  90.00            3  1.44       5
## 223   0.077144127     0  26   1  90.00            3  1.63       5
## 224   0.079147965     0  26   1  90.00            3  1.47       5
## 272   0.206098619     0  26   0  82.50            1  1.28       6
## 273   0.085550706     0  26   0  82.50            1  1.23       6
## 275   0.090767956     0  26   0  82.50            1  1.25       6
## 276   0.274885982     0  26   0  82.50            1  1.27       6
## 279   0.322678873     0  26   0  82.50            1  1.30       6
## 365   0.087542304     0  24   1  87.00            3  1.35       8
## 367   0.097144372     0  24   1  87.00            3  1.36       8
## 368   0.475717040     0  24   1  87.00            3  1.34       8
## 369   0.452519157     0  24   1  87.00            3  1.42       8
## 372   0.050722268     0  24   1  87.00            3  1.33       8
## 373   0.118854902     0  24   1  87.00            3  1.32       8
## 641   0.079923268     0  22   1  86.75            2  1.78      13
## 827  -0.042630135     1  19   1  95.00            3  1.28      17
## 1007  0.254859448     1  25   1  77.75            3  1.14      21
## 1054 -0.053429730     1  35   1  84.50            2  1.06      22
## 1381  0.111084669     1  37   1  90.00            0  1.32      29
## 1487  0.139220896     1  23   1 100.00            1  1.47      31
## 1490  0.166469109     1  23   1 100.00            1  1.39      31
## 1492 -0.000601481     1  23   1 100.00            1  1.40      31
## 1638 -0.082538884     1  38   0  86.25            2  1.11      34
## 1696  0.096320039     1  27   1  87.75            2  1.36      35
## 1938  0.134492460     1  29   0  90.00            1  1.15      40
## 1977  0.116302334     1  32   1  87.50            3  1.17      41
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: -907
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9665 -0.3449 -0.0514  0.2412  7.5620 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0008135 0.02852 
##  Residual             0.0022595 0.04753 
## Number of obs: 316, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.1681510  0.1106580 30.1045116   1.520 0.139057    
## Group         -0.0493628  0.0119549 34.0119545  -4.129 0.000223 ***
## age           -0.0003212  0.0011196 30.0054534  -0.287 0.776185    
## Sex           -0.0068679  0.0126947 31.2235143  -0.541 0.592346    
## leg_l         -0.0025199  0.0012226 34.6351666  -2.061 0.046865 *  
## factor(Race)1  0.0044978  0.0177343 30.7382226   0.254 0.801478    
## factor(Race)2 -0.0027812  0.0190236 31.6727677  -0.146 0.884694    
## factor(Race)3  0.0620342  0.0220575 30.0662388   2.812 0.008580 ** 
## factor(Race)4 -0.0207480  0.0234337 32.1396041  -0.885 0.382521    
## Speed          0.1199637  0.0374844 96.3207775   3.200 0.001859 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.154                                                        
## age         -0.333 -0.159                                                 
## Sex         -0.265 -0.124  0.155                                          
## leg_l       -0.850  0.007  0.044  0.250                                   
## factor(Rc)1 -0.312 -0.025  0.210  0.078  0.168                            
## factor(Rc)2 -0.158 -0.140  0.042 -0.054  0.107  0.697                     
## factor(Rc)3 -0.172 -0.018  0.147 -0.158  0.085  0.623  0.581              
## factor(Rc)4 -0.158 -0.141  0.286  0.011  0.134  0.630  0.572  0.530       
## Speed       -0.048  0.325 -0.007 -0.206 -0.386 -0.081 -0.129 -0.084 -0.324
## 영향치 인덱스:
##  116  165  173  216  217  218  220  221  222  223  224  272  273  275  276  279 
##   14   17   25   28   29   30   32   33   34   35   36   38   39   41   42   45 
##  365  367  368  369  372  373  641  827 1007 1054 1381 1487 1490 1492 1638 1696 
##   54   56   57   58   61   62  101  130  154  168  211  224  227  229  249  261 
## 1938 1977 
##  302  303
## 
## 영향치 관측치 내용(df_ocha 기준):
##      Subject studyid age Group Class BS Sex      BMI Race height_m weight_kg
## 115        3       3  28     0     0  0   1 20.57653    2    1.650   56.0196
## 164        4       4  21     0     0  0   1 21.23567    1    1.720   62.8236
## 172        4       4  21     0     0  0   1 21.23567    1    1.720   62.8236
## 215        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 216        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 217        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 219        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 220        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 221        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 222        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 223        5       5  26     0     0  0   1 22.03837    3    1.670   61.4628
## 271        6       6  26     0     0  0   0 21.36102    1    1.690   61.0092
## 272        6       6  26     0     0  0   0 21.36102    1    1.690   61.0092
## 274        6       6  26     0     0  0   0 21.36102    1    1.690   61.0092
## 275        6       6  26     0     0  0   0 21.36102    1    1.690   61.0092
## 278        6       6  26     0     0  0   0 21.36102    1    1.690   61.0092
## 326        7       7  26     0     0  0   0 24.11522    0    1.775   75.9780
## 366        8       8  24     0     0  0   1 24.75517    3    1.630   65.7720
## 367        8       8  24     0     0  0   1 24.75517    3    1.630   65.7720
## 368        8       8  24     0     0  0   1 24.75517    3    1.630   65.7720
## 371        8       8  24     0     0  0   1 24.75517    3    1.630   65.7720
## 372        8       8  24     0     0  0   1 24.75517    3    1.630   65.7720
## 640       13      13  22     0     0  0   1 21.63454    2    1.635   57.8340
## 826       17       2  19     1     1  2   1 30.11415    3    1.740   91.1736
## 965       20       5  25     1     1  1   0 32.36631    1    1.670   90.2664
## 1053      22       7  35     1     1  1   1 31.51368    2    1.645   85.2768
## 1379      29      14  37     1     2  1   1 35.24519    0    1.675   98.8848
## 1440      30      15  31     1     1  2   1 33.50482    1    1.670   93.4416
## 1488      31      16  23     1     1  2   1 34.80018    1    1.765  108.4104
## 1490      31      16  23     1     1  2   1 34.80018    1    1.765  108.4104
## 1591      33      18  21     1     2  1   0 37.35529    1    1.700  107.9568
## 1694      35      20  27     1     1  2   1 33.44444    2    1.620   87.7716
## 1934      40      25  29     1     1  1   0 34.98061    1    1.710  102.2868
## 1935      40      25  29     1     1  1   0 34.98061    1    1.710  102.2868
##      leg_l_l leg_l_r  leg_l DST Stroop Stroop_Effect     PA Task Trial Speed
## 115     87.5    88.0  87.75  23    120       126.615  9.750 OCHA     2  1.24
## 164     93.0    92.0  92.50  24    117        74.185  9.250 OCHA     1  1.47
## 172     93.0    92.0  92.50  24    117        74.185  9.250 OCHA     9  1.53
## 215     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     1  1.50
## 216     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     2  1.40
## 217     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     3  1.36
## 219     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     5  1.46
## 220     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     6  1.45
## 221     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     7  1.41
## 222     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     8  1.44
## 223     89.0    91.0  90.00  21    120        47.935  8.000 OCHA     9  1.63
## 271     83.0    82.0  82.50  16    120       237.135  7.625 OCHA     1  1.28
## 272     83.0    82.0  82.50  16    120       237.135  7.625 OCHA     2  1.28
## 274     83.0    82.0  82.50  16    120       237.135  7.625 OCHA     4  1.30
## 275     83.0    82.0  82.50  16    120       237.135  7.625 OCHA     5  1.25
## 278     83.0    82.0  82.50  16    120       237.135  7.625 OCHA     8  1.30
## 326     93.5    94.0  93.75  18    120       110.335  8.000 OCHA     8  1.60
## 366     88.0    86.0  87.00  26    118        50.565  9.125 OCHA     2  1.33
## 367     88.0    86.0  87.00  26    118        50.565  9.125 OCHA     3  1.36
## 368     88.0    86.0  87.00  26    118        50.565  9.125 OCHA     4  1.34
## 371     88.0    86.0  87.00  26    118        50.565  9.125 OCHA     7  1.27
## 372     88.0    86.0  87.00  26    118        50.565  9.125 OCHA     8  1.33
## 640     86.5    87.0  86.75  25    119       235.100  9.125 OCHA     5  1.60
## 826     94.0    96.0  95.00  14    119       452.035 10.625 OCHA     2  1.32
## 965     88.0    86.0  87.00  28    119       352.965  7.375 OCHA     5  1.08
## 1053    83.5    85.5  84.50  17    118       296.135  6.750 OCHA     5  1.02
## 1379    90.5    89.5  90.00  19    118       314.315  7.750 OCHA     5  1.41
## 1440    90.5    89.5  90.00  20    119       129.315  7.625 OCHA     9  1.26
## 1488   101.0    99.0 100.00  22    117       163.865  5.500 OCHA     2  1.41
## 1490   101.0    99.0 100.00  22    117       163.865  5.500 OCHA     4  1.39
## 1591    80.5    81.0  80.75  25    118       212.950  6.875 OCHA     8  1.26
## 1694    87.5    88.0  87.75  18    120        76.465  6.375 OCHA     2  1.36
## 1934    90.5    89.5  90.00  27    120       406.700  6.500 OCHA     5  1.25
## 1935    90.5    89.5  90.00  27    120       406.700  6.500 OCHA     6  1.15
##        Initial      Peak InitialPeak       Min   MinPeak   Stiffness MomentPeak
## 115   9.175464 16.009724    6.834260  0.455854 15.553870 0.073637589   0.723195
## 164  17.715038 22.466850    4.751812  1.843585 20.623265 0.110255958   0.853889
## 172  17.685530 22.821281    5.135751  2.472993 20.348288 0.153571540   0.918187
## 215  16.197014 21.529213    5.332199 -1.968023 23.497236 0.132135747   0.446350
## 216  11.556826 11.692035    0.135209 -1.657075 13.349110 0.064440277   0.349575
## 217  10.690295  5.755368   -4.934927 -0.982431  6.737799 0.034949795   0.143231
## 219  15.316833 20.155354    4.838521  0.878796 19.276558 0.173324264   0.526523
## 220  12.940715 16.350256    3.409541 -1.357867 17.708123 0.073798491   0.537022
## 221   9.427518  9.009793   -0.417725 -1.454494 10.464287 0.066178078   0.293274
## 222  14.909432 15.732693    0.823261  0.554453 15.178240 0.351057793   0.420379
## 223  12.603979 13.343647    0.739668  0.119079 13.224568 0.077144127   0.445633
## 271  14.231660 19.688225    5.456565  9.109503 10.578722 0.137211933   0.566892
## 272  12.403412 14.654442    2.251030  5.912299  8.742143 0.206098619   0.279914
## 274  13.796951 18.553205    4.756254  8.626437  9.926768 0.102409452   0.356648
## 275  14.069253 20.631458    6.562205 10.552197 10.079261 0.090767956   0.414597
## 278  15.724159 22.201521    6.477362 12.926221  9.275300 0.104453979   0.487971
## 326  11.528237 18.710653    7.182416  3.653500 15.057153 0.126703033   0.768804
## 366  21.074718 28.220461    7.145743 -0.346061 28.566522 0.162517221   0.908558
## 367  13.441177 20.861546    7.420369  0.208837 20.652709 0.097144372   0.849207
## 368  16.833082 17.830923    0.997841  0.588718 17.242205 0.475717040   0.625646
## 371  19.056789 23.221504    4.164715  0.421220 22.800284 0.202264223   0.890341
## 372  14.226321 23.948938    9.722617  4.015524 19.933414 0.050722268   0.645357
## 640  19.336845 22.175987    2.839142  9.271103 12.904884 0.162558859   1.009598
## 826  10.077677 13.184644    3.106967  5.673627  7.511017 0.002558751   0.469243
## 965   7.311799 13.158663    5.846864  3.824940  9.333723 0.051680825   0.442332
## 1053  7.634773  9.146136    1.511363  7.949317  1.196819 0.000337270   0.082703
## 1379 12.764028 17.671484    4.907456 16.663019  1.008465 0.059496081   0.360399
## 1440  4.549724  0.559313   -3.990411  0.178167  0.381146 0.043617116   0.044075
## 1488  7.219712 -2.257428   -9.477140 -2.561201  0.303773 0.065780432  -0.023526
## 1490 11.412565 -2.973567  -14.386132 -3.245015  0.271448 0.166469109  -0.003345
## 1591  8.340804 13.712532    5.371728 -2.980036 16.692568 0.033602686   0.461303
## 1694  1.376832  2.133925    0.757093  0.596095  1.537830 0.017721956   0.073103
## 1934 17.105021 20.363249    3.258228  4.498713 15.864536 0.059837698   0.525876
## 1935 15.250969  7.421558   -7.829411  3.285512  4.136046          NA   0.099427
##      kneeMrange head_cir neck_cir SH_B SH_D CH_B CH_D WA_B WA_D HIP_B HIP_D
## 115    0.782259       NA     33.2 23.0 17.0 28.3 22.2 24.2 18.0  31.0  22.5
## 164    1.029662     54.8     33.0 24.6 16.1 28.0 18.0 27.2 18.4  34.5  20.3
## 172    1.060826     54.8     33.0 24.6 16.1 28.0 18.0 27.2 18.4  34.5  20.3
## 215    0.669863     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 216    0.619831     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 217    0.350666     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 219    0.968210     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 220    0.723871     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 221    0.485294     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 222    0.689116     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 223    0.655012     55.5     32.0 32.0 14.0 27.5 21.0 26.0 17.0  35.0  22.2
## 271    0.637930     58.0     38.0 35.5 15.8 30.2 18.3 26.8 17.2  32.4  21.0
## 272    0.444167     58.0     38.0 35.5 15.8 30.2 18.3 26.8 17.2  32.4  21.0
## 274    0.491933     58.0     38.0 35.5 15.8 30.2 18.3 26.8 17.2  32.4  21.0
## 275    0.610645     58.0     38.0 35.5 15.8 30.2 18.3 26.8 17.2  32.4  21.0
## 278    0.620854     58.0     38.0 35.5 15.8 30.2 18.3 26.8 17.2  32.4  21.0
## 326    0.993161     58.0     38.0 38.6 20.1 34.0 22.1 29.0 22.0  34.0  24.1
## 366    1.047587     56.0     32.0 32.6 13.0 29.5 23.0 34.0 22.0  39.0  23.0
## 367    0.833722     56.0     32.0 32.6 13.0 29.5 23.0 34.0 22.0  39.0  23.0
## 368    0.704887     56.0     32.0 32.6 13.0 29.5 23.0 34.0 22.0  39.0  23.0
## 371    0.937494     56.0     32.0 32.6 13.0 29.5 23.0 34.0 22.0  39.0  23.0
## 372    0.650540     56.0     32.0 32.6 13.0 29.5 23.0 34.0 22.0  39.0  23.0
## 640    0.942383     56.0     33.5 32.6 14.0 27.4 19.7 27.4 20.2  37.4  22.2
## 826    0.349515     56.0     39.0 35.0 19.5 33.0 25.1 34.5 25.6  41.4  25.1
## 965    0.542559     61.0     38.0 37.5 23.7 34.3 27.2 34.4 29.5  35.5  28.4
## 1053   0.073638     58.0     35.8 36.7 20.0 34.0 28.2 36.0 30.0  41.0  26.1
## 1379   0.468078     60.5     38.5 36.9 21.5 26.9 32.3 37.6 31.5  40.6  30.5
## 1440   0.214325     59.0     39.0 35.2 19.5 34.5 28.7 32.5 26.5  42.3  30.5
## 1488   0.304822     53.5     38.0 39.5 20.4 33.5 30.5 39.0 30.1  48.0  29.0
## 1490   0.351063     53.5     38.0 39.5 20.4 33.5 30.5 39.0 30.1  48.0  29.0
## 1591   0.525356     57.0     39.6 39.9 22.0 35.6 28.9 39.9 31.7  41.9  29.6
## 1694   0.305646     56.0     36.0 35.0 18.6 34.2 27.9 33.1 25.9  42.0  28.5
## 1934   0.637468     54.2     39.1 36.9 21.9 36.0 26.4 39.1 33.1  39.1  26.3
## 1935   0.311668     54.2     39.1 36.9 21.9 36.0 26.4 39.1 33.1  39.1  26.3
##      ASIS waist_cir hip_cir thigh_cir L_thigh_cir shank_cir ankle_cir W.H.ratio
## 115  23.8      73.0    92.8      54.5        33.5      35.0      19.2 0.7866379
## 164  26.8      77.5    97.0      56.0        41.0      33.5      21.0 0.7989691
## 172  26.8      77.5    97.0      56.0        41.0      33.5      21.0 0.7989691
## 215  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 216  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 217  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 219  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 220  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 221  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 222  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 223  23.5      73.5   102.0      59.0        38.5      37.5      21.0 0.7205882
## 271  24.4      76.0    91.6      53.5        37.0      34.0      21.0 0.8296943
## 272  24.4      76.0    91.6      53.5        37.0      34.0      21.0 0.8296943
## 274  24.4      76.0    91.6      53.5        37.0      34.0      21.0 0.8296943
## 275  24.4      76.0    91.6      53.5        37.0      34.0      21.0 0.8296943
## 278  24.4      76.0    91.6      53.5        37.0      34.0      21.0 0.8296943
## 326  25.0      87.0    99.0      58.5        41.5      37.5      24.0 0.8787879
## 366  25.5      80.0   105.0      64.5        43.0      37.0      22.0 0.7619048
## 367  25.5      80.0   105.0      64.5        43.0      37.0      22.0 0.7619048
## 368  25.5      80.0   105.0      64.5        43.0      37.0      22.0 0.7619048
## 371  25.5      80.0   105.0      64.5        43.0      37.0      22.0 0.7619048
## 372  25.5      80.0   105.0      64.5        43.0      37.0      22.0 0.7619048
## 640  22.5      73.5    97.5      57.0        39.0      33.5      22.0 0.7538462
## 826  26.0      95.0   115.0      71.0        58.0      41.0      23.0 0.8260870
## 965  27.0     108.0   111.5      64.0        41.0      38.5      22.5 0.9686099
## 1053 28.9     101.0   112.5      69.4        45.2      43.0      23.0 0.8977778
## 1379 31.1     104.5   117.5      71.5        42.5      39.0      23.0 0.8893617
## 1440 28.2      92.6   116.0      75.0        51.0      45.0      24.0 0.7982759
## 1488 28.2     112.0   132.0      74.5        50.5      42.2      23.4 0.8484848
## 1490 28.2     112.0   132.0      74.5        50.5      42.2      23.4 0.8484848
## 1591 30.9     115.0   119.0      74.5        50.0      43.0      22.5 0.9663866
## 1694 25.6      91.5   118.5      73.6        44.0      42.0      22.9 0.7721519
## 1934 32.4     118.8   111.5      66.5        44.5      43.5      24.0 1.0654709
## 1935 32.4     118.8   111.5      66.5        44.5      43.5      24.0 1.0654709
##          ABSI Hip.Index biceps_cir forearm_cir wrist_cir
## 115  75.68320  64.90350         NA          NA        NA
## 164  77.05962  65.02650       25.0        24.0      15.5
## 172  77.05962  65.02650       25.0        24.0      15.5
## 215  72.35627  68.47486         NA          NA        NA
## 216  72.35627  68.47486         NA          NA        NA
## 217  72.35627  68.47486         NA          NA        NA
## 219  72.35627  68.47486         NA          NA        NA
## 220  72.35627  68.47486         NA          NA        NA
## 221  72.35627  68.47486         NA          NA        NA
## 222  72.35627  68.47486         NA          NA        NA
## 223  72.35627  68.47486         NA          NA        NA
## 271  75.93738  49.35313         NA          NA        NA
## 272  75.93738  49.35313         NA          NA        NA
## 274  75.93738  49.35313         NA          NA        NA
## 275  75.93738  49.35313         NA          NA        NA
## 278  75.93738  49.35313         NA          NA        NA
## 326  78.23348  49.34007         NA          NA        NA
## 366  73.77099  67.71294         NA          NA        NA
## 367  73.77099  67.71294         NA          NA        NA
## 368  73.77099  67.71294         NA          NA        NA
## 371  73.77099  67.71294         NA          NA        NA
## 372  73.77099  67.71294         NA          NA        NA
## 640  74.03379  66.96113       26.7        19.0      15.0
## 826  74.40496  64.65635         NA          NA        NA
## 965  82.28804  51.23983       35.0        27.8      16.0
## 1053 78.92944  64.19533       37.5        29.0      17.0
## 1379 75.11193  62.78126       33.0        26.2      16.0
## 1440 68.94687  63.63553       37.2        26.5      16.0
## 1488 79.09056  68.57418       38.2        26.5      16.5
## 1490 79.09056  68.57418       38.2        26.5      16.5
## 1591 78.92936  61.22935       36.2        26.8      16.1
## 1694 69.25444  66.36993       31.0        28.7      16.2
## 1934 84.93763  58.98894       33.0        28.0      17.0
## 1935 84.93763  58.98894       33.0        28.0      17.0
## 
## ========== 기존 모형 m1 ==========
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha
## 
## REML criterion at convergence: -907
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9665 -0.3449 -0.0514  0.2412  7.5620 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0008135 0.02852 
##  Residual             0.0022595 0.04753 
## Number of obs: 316, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.1681510  0.1106580 30.1045116   1.520 0.139057    
## Group         -0.0493628  0.0119549 34.0119545  -4.129 0.000223 ***
## age           -0.0003212  0.0011196 30.0054534  -0.287 0.776185    
## Sex           -0.0068679  0.0126947 31.2235143  -0.541 0.592346    
## leg_l         -0.0025199  0.0012226 34.6351666  -2.061 0.046865 *  
## factor(Race)1  0.0044978  0.0177343 30.7382226   0.254 0.801478    
## factor(Race)2 -0.0027812  0.0190236 31.6727677  -0.146 0.884694    
## factor(Race)3  0.0620342  0.0220575 30.0662388   2.812 0.008580 ** 
## factor(Race)4 -0.0207480  0.0234337 32.1396041  -0.885 0.382521    
## Speed          0.1199637  0.0374844 96.3207775   3.200 0.001859 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.154                                                        
## age         -0.333 -0.159                                                 
## Sex         -0.265 -0.124  0.155                                          
## leg_l       -0.850  0.007  0.044  0.250                                   
## factor(Rc)1 -0.312 -0.025  0.210  0.078  0.168                            
## factor(Rc)2 -0.158 -0.140  0.042 -0.054  0.107  0.697                     
## factor(Rc)3 -0.172 -0.018  0.147 -0.158  0.085  0.623  0.581              
## factor(Rc)4 -0.158 -0.141  0.286  0.011  0.134  0.630  0.572  0.530       
## Speed       -0.048  0.325 -0.007 -0.206 -0.386 -0.081 -0.129 -0.084 -0.324
## 
## ========== 영향치 제거 후 모형 m1_new ==========
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocha_clean
## 
## REML criterion at convergence: -899
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7381 -0.3631 -0.0396  0.2722  6.7506 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.001314 0.03625 
##  Residual             0.001466 0.03829 
## Number of obs: 283, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.985e-01  1.303e-01  2.706e+01   1.523  0.13930    
## Group         -6.223e-02  1.388e-02  3.039e+01  -4.482 9.77e-05 ***
## age           -3.062e-05  1.307e-03  2.599e+01  -0.023  0.98148    
## Sex           -8.468e-03  1.482e-02  2.767e+01  -0.571  0.57238    
## leg_l         -2.619e-03  1.410e-03  3.143e+01  -1.857  0.07264 .  
## factor(Race)1  6.833e-03  2.064e-02  2.647e+01   0.331  0.74319    
## factor(Race)2  2.163e-03  2.207e-02  2.714e+01   0.098  0.92264    
## factor(Race)3  8.747e-02  2.627e-02  2.816e+01   3.329  0.00244 ** 
## factor(Race)4 -1.422e-02  2.704e-02  2.831e+01  -0.526  0.60302    
## Speed          1.024e-01  3.736e-02  1.447e+02   2.742  0.00688 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.153                                                        
## age         -0.334 -0.158                                                 
## Sex         -0.279 -0.101  0.158                                          
## leg_l       -0.877  0.045  0.051  0.245                                   
## factor(Rc)1 -0.308 -0.023  0.207  0.076  0.166                            
## factor(Rc)2 -0.149 -0.139  0.042 -0.066  0.092  0.696                     
## factor(Rc)3 -0.165 -0.042  0.148 -0.157  0.077  0.607  0.572              
## factor(Rc)4 -0.159 -0.117  0.288 -0.004  0.103  0.629  0.572  0.517       
## Speed       -0.034  0.275 -0.012 -0.181 -0.336 -0.080 -0.125 -0.077 -0.289
## 
## 고정효과 계수 비교 (fixef):
##                    original       cleaned
## (Intercept)    0.1681510133  1.984584e-01
## Group         -0.0493627836 -6.223169e-02
## age           -0.0003211635 -3.062416e-05
## Sex           -0.0068678621 -8.468317e-03
## leg_l         -0.0025199170 -2.619107e-03
## factor(Race)1  0.0044977623  6.832909e-03
## factor(Race)2 -0.0027811545  2.163071e-03
## factor(Race)3  0.0620341648  8.746717e-02
## factor(Race)4 -0.0207480374 -1.422256e-02
## Speed          0.1199636837  1.024405e-01
## 
## 랜덤효과 분산/표준편차 비교 (VarCorr):
##  Groups   Name        Std.Dev.
##  Subject  (Intercept) 0.028522
##  Residual             0.047535
##  Groups   Name        Std.Dev.
##  Subject  (Intercept) 0.036245
##  Residual             0.038291

## $m1
##  116  165  173  216  217  218  220  221  222  223  224  272  273  275  276  279 
##   14   17   25   28   29   30   32   33   34   35   36   38   39   41   42   45 
##  365  367  368  369  372  373  641  827 1007 1054 1381 1487 1490 1492 1638 1696 
##   54   56   57   58   61   62  101  130  154  168  211  224  227  229  249  261 
## 1938 1977 
##  302  303 
## 
## $m2
##   37   38   40   41   42   70   71   72   73   74   75  116  168  170  215  217 
##    1    2    4    5    6    7    8    9   10   11   12   15   21   23   28   30 
##  219  221  223  272  273  276  278  279  366  368  373  426  484  487  532  534 
##   32   34   36   39   40   43   45   46   56   58   63   66   76   79   81   83 
##  537  539  584  589  590  591  642  643  698  828  829  963 1008 1049 1050 1052 
##   86   88   89   94   95   96  103  104  112  132  133  152  156  164  165  167 
## 1054 1179 1180 1231 1276 1278 1279 1280 1330 1331 1333 1335 1379 1381 1487 1536 
##  169  182  183  186  193  195  196  197  200  201  203  205  211  213  226  233 
## 1537 1585 1586 1587 1589 1590 1694 1695 1696 1697 1748 1793 1800 1831 1833 1834 
##  234  243  244  245  247  248  261  262  263  264  272  275  282  283  285  286 
## 1836 1885 1887 1888 1890 1932 1934 1935 1936 1979 1983 2023 
##  288  292  294  295  297  300  302  303  304  309  313  318 
## 
## $m3
##   40   42   70   72   74   75  114  215  217  219  272  273  276  279  320  368 
##    4    6    7    9   11   12   13   28   30   32   39   40   43   46   48   58 
##  369  372  426  429  531  534  585  588  589  591  637  693  784  785  828  829 
##   59   62   66   69   80   83   90   93   94   96   98  107  126  127  132  133 
##  871  872  920  923  924  926  962 1007 1050 1051 1052 1053 1054 1144 1179 1180 
##  135  136  142  145  146  148  151  155  165  166  167  168  169  179  182  183 
## 1181 1276 1278 1280 1330 1331 1332 1333 1335 1376 1438 1487 1489 1490 1584 1585 
##  184  193  195  197  200  201  202  203  205  208  222  226  228  229  242  243 
## 1586 1589 1590 1591 1638 1694 1695 1696 1697 1744 1745 1747 1748 1793 1794 1796 
##  244  247  248  249  251  261  262  263  264  268  269  271  272  275  276  278 
## 1800 1831 1834 1884 1885 1888 1890 1932 1934 1935 1936 1977 1980 1983 2019 2023 
##  282  283  286  291  292  295  297  300  302  303  304  307  310  313  314  318 
## 
## $m4
##   42   71   72   75  166  167  168  170  173  217  218  219  220  271  272  273 
##    6    7    8   11   18   19   20   22   25   29   30   31   32   37   38   39 
##  276  279  322  324  326  366  369  371  425  426  429  480  487  532  534  537 
##   42   45   49   51   53   55   58   60   64   65   68   71   78   80   82   85 
##  539  584  587  588  589  591  642  643  691  698  755  876  962 1008 1049 1050 
##   87   88   91   92   93   95  102  103  104  111  121  139  150  155  163  164 
## 1052 1054 1093 1095 1141 1142 1144 1177 1178 1179 1231 1234 1276 1278 1279 1280 
##  166  168  170  172  175  176  178  179  180  181  184  187  191  193  194  195 
## 1282 1330 1331 1333 1335 1376 1378 1379 1381 1492 1539 1585 1587 1693 1694 1695 
##  197  198  199  201  203  206  208  209  211  229  234  241  243  258  259  260 
## 1696 1697 1698 1747 1793 1795 1800 1835 1885 1888 1890 1932 1934 1935 1936 1937 
##  261  262  263  268  272  274  279  284  289  292  294  297  299  300  301  302 
## 1979 1983 2022 2023 
##  306  310  314  315 
## 
## $m5
##   39   71   72   73   75  116  117  166  167  168  170  173  217  219  273  276 
##    3    7    8    9   11   14   15   18   19   20   22   25   29   31   39   42 
##  321  322  324  326  366  371  372  424  425  426  478  480  481  483  486  487 
##   48   49   51   53   55   60   61   63   64   65   69   71   72   74   77   78 
##  532  534  537  539  584  586  587  588  589  591  638  640  642  698  756  829 
##   80   82   85   87   88   90   91   92   93   95   98  100  102  111  122  132 
##  871  876  961  964 1007 1053 1093 1094 1141 1142 1144 1177 1178 1181 1231 1234 
##  134  139  149  152  154  167  170  171  175  176  178  179  180  182  184  187 
## 1276 1278 1279 1280 1282 1330 1331 1334 1335 1376 1378 1379 1381 1492 1538 1585 
##  191  193  194  195  197  198  199  202  203  206  208  209  211  229  233  241 
## 1587 1645 1693 1694 1695 1696 1697 1698 1793 1795 1800 1888 1890 1930 1932 1935 
##  243  256  258  259  260  261  262  263  272  274  279  292  294  295  297  300 
## 1936 1938 1979 1982 1983 2023 
##  301  303  306  309  310  315
## [1] 0.04495882
## [1] 0.03566365
## [1] 0.009295174
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocma
## 
## REML criterion at convergence: -675.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7770 -0.1668 -0.0287  0.1198 15.5932 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.001679 0.04097 
##  Residual             0.005538 0.07442 
## Number of obs: 333, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)    0.243104   0.159478 28.680794   1.524   0.1384  
## Group         -0.021142   0.018216 33.921789  -1.161   0.2539  
## age           -0.001657   0.001636 29.940795  -1.013   0.3193  
## Sex            0.002347   0.018805 31.803643   0.125   0.9015  
## leg_l         -0.003164   0.001829 32.918215  -1.729   0.0931 .
## factor(Race)1 -0.004752   0.026022 30.766230  -0.183   0.8563  
## factor(Race)2 -0.009588   0.028184 32.275682  -0.340   0.7359  
## factor(Race)3  0.046923   0.033066 32.260805   1.419   0.1655  
## factor(Race)4 -0.032420   0.034208 31.405019  -0.948   0.3505  
## Speed          0.122298   0.061005 58.129489   2.005   0.0497 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.343 -0.115                                                 
## Sex         -0.256 -0.173  0.148                                          
## leg_l       -0.819 -0.084  0.012  0.272                                   
## factor(Rc)1 -0.300 -0.071  0.202  0.077  0.185                            
## factor(Rc)2 -0.150 -0.194  0.031 -0.040  0.148  0.707                     
## factor(Rc)3 -0.170 -0.078  0.130 -0.137  0.125  0.623  0.589              
## factor(Rc)4 -0.163 -0.178  0.258  0.016  0.156  0.648  0.597  0.542       
## Speed       -0.037  0.424  0.068 -0.257 -0.460 -0.139 -0.213 -0.152 -0.317
##            R2m       R2c
## [1,] 0.1305934 0.3328304
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.334711  1        1.155297
## age          1.226769  1        1.107596
## Sex          1.260472  1        1.122708
## leg_l        1.377301  1        1.173585
## factor(Race) 1.520138  4        1.053745
## Speed        1.822107  1        1.349854
##                      2.5 %      97.5 %
## .sig01                  NA          NA
## .sigma                  NA          NA
## (Intercept)   -0.069467707 0.555676267
## Group         -0.056844574 0.014560295
## age           -0.004862571 0.001549222
## Sex           -0.034510032 0.039203635
## leg_l         -0.006749356 0.000421868
## factor(Race)1 -0.055754943 0.046250917
## factor(Race)2 -0.064827886 0.045651499
## factor(Race)3 -0.017885866 0.111731638
## factor(Race)4 -0.099465490 0.034626235
## Speed          0.002731428 0.241864756

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_ocma
## 
## REML criterion at convergence: 1754
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8025 -0.4568 -0.0136  0.4597  4.1276 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 43.167   6.570   
##  Residual              7.636   2.763   
## Number of obs: 335, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    32.04400   21.90239  32.71203   1.463 0.153000    
## Group          -6.12311    2.28556  35.56299  -2.679 0.011108 *  
## age             0.09897    0.22223  32.85080   0.445 0.658975    
## Sex             0.55191    2.48442  33.60643   0.222 0.825543    
## leg_l          -0.43230    0.22924  35.98358  -1.886 0.067423 .  
## factor(Race)1   3.89158    3.49656  33.04263   1.113 0.273751    
## factor(Race)2   1.72786    3.72157  33.45423   0.464 0.645452    
## factor(Race)3   3.92657    4.38213  33.29505   0.896 0.376663    
## factor(Race)4   1.75308    4.47827  34.11665   0.391 0.697888    
## Speed          13.60971    3.90845 312.40208   3.482 0.000568 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.138                                                        
## age         -0.348 -0.142                                                 
## Sex         -0.274 -0.081  0.155                                          
## leg_l       -0.912  0.080  0.050  0.206                                   
## factor(Rc)1 -0.309 -0.020  0.206  0.070  0.156                            
## factor(Rc)2 -0.151 -0.125  0.036 -0.090  0.074  0.698                     
## factor(Rc)3 -0.163 -0.022  0.148 -0.172  0.062  0.616  0.584              
## factor(Rc)4 -0.174 -0.072  0.286 -0.041  0.046  0.633  0.570  0.529       
## Speed       -0.017  0.215  0.031 -0.118 -0.235 -0.066 -0.101 -0.076 -0.156
##            R2m       R2c
## [1,] 0.2797752 0.8917411
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.140346  1        1.067870
## age          1.218417  1        1.103819
## Sex          1.197424  1        1.094269
## leg_l        1.153339  1        1.073936
## factor(Race) 1.398714  4        1.042836
## Speed        1.182570  1        1.087460
##                     2.5 %      97.5 %
## .sig01                 NA          NA
## .sigma                 NA          NA
## (Intercept)   -10.8838933 74.97190157
## Group         -10.6027207 -1.64350836
## age            -0.3365890  0.53453757
## Sex            -4.3174678  5.42128804
## leg_l          -0.8816069  0.01701569
## factor(Race)1  -2.9615427 10.74470207
## factor(Race)2  -5.5662720  9.02199837
## factor(Race)3  -4.6622457 12.51539204
## factor(Race)4  -7.0241660 10.53033549
## Speed           5.9492791 21.27013929
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocma
## 
## REML criterion at convergence: 1654.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5028 -0.6029  0.0246  0.5634  3.9744 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 20.925   4.574   
##  Residual              5.888   2.426   
## Number of obs: 335, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)    36.29142   15.34295  32.13016   2.365   0.0242 *
## Group          -3.67121    1.61824  35.86173  -2.269   0.0294 *
## age            -0.03308    0.15577  32.33571  -0.212   0.8331  
## Sex            -1.57323    1.74657  33.33052  -0.901   0.3742  
## leg_l          -0.40762    0.16254  36.36619  -2.508   0.0167 *
## factor(Race)1  -0.47560    2.45270  32.58570  -0.194   0.8475  
## factor(Race)2   1.03015    2.61481  33.14662   0.394   0.6961  
## factor(Race)3   0.54649    3.07709  32.95053   0.178   0.8601  
## factor(Race)4   4.10047    3.15419  33.96234   1.300   0.2024  
## Speed           5.88568    3.28415 272.36615   1.792   0.0742 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.138                                                        
## age         -0.347 -0.137                                                 
## Sex         -0.272 -0.092  0.153                                          
## leg_l       -0.900  0.057  0.046  0.215                                   
## factor(Rc)1 -0.308 -0.026  0.205  0.072  0.160                            
## factor(Rc)2 -0.150 -0.134  0.034 -0.084  0.083  0.699                     
## factor(Rc)3 -0.163 -0.029  0.146 -0.167  0.070  0.617  0.584              
## factor(Rc)4 -0.172 -0.086  0.282 -0.033  0.061  0.634  0.572  0.531       
## Speed       -0.020  0.255  0.037 -0.142 -0.279 -0.079 -0.121 -0.091 -0.186
##            R2m       R2c
## [1,] 0.2514878 0.8356408
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.163710  1        1.078754
## age          1.219002  1        1.104084
## Sex          1.204506  1        1.097500
## leg_l        1.181201  1        1.086831
## factor(Race) 1.414827  4        1.044330
## Speed        1.262440  1        1.123583
##                    2.5 %      97.5 %
## .sig01                NA          NA
## .sigma                NA          NA
## (Intercept)    6.2197925 66.36305079
## Group         -6.8429083 -0.49951485
## age           -0.3383809  0.27221647
## Sex           -4.9964437  1.84997522
## leg_l         -0.7261874 -0.08904589
## factor(Race)1 -5.2827950  4.33159581
## factor(Race)2 -4.0947916  6.15508822
## factor(Race)3 -5.4844897  6.57747155
## factor(Race)4 -2.0816331 10.28257178
## Speed         -0.5511378 12.32250606
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocma
## 
## REML criterion at convergence: -304.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1521 -0.5369  0.0324  0.4651  3.3323 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.06877  0.2622  
##  Residual             0.01365  0.1168  
## Number of obs: 334, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     1.660299   0.875348  32.440663   1.897 0.066798 .  
## Group          -0.234420   0.091591  35.535959  -2.559 0.014891 *  
## age            -0.004765   0.008883  32.593975  -0.536 0.595298    
## Sex            -0.022416   0.099382  33.419479  -0.226 0.822921    
## leg_l          -0.019295   0.009187  35.944338  -2.100 0.042797 *  
## factor(Race)1   0.074859   0.139792  32.805712   0.536 0.595913    
## factor(Race)2   0.055816   0.148835  33.244940   0.375 0.710026    
## factor(Race)3   0.142513   0.175227  33.074881   0.813 0.421860    
## factor(Race)4   0.057045   0.179203  33.949476   0.318 0.752188    
## Speed           0.583468   0.163914 304.532912   3.560 0.000431 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.138                                                        
## age         -0.347 -0.141                                                 
## Sex         -0.274 -0.084  0.155                                          
## leg_l       -0.909  0.074  0.049  0.209                                   
## factor(Rc)1 -0.309 -0.021  0.206  0.070  0.157                            
## factor(Rc)2 -0.151 -0.127  0.035 -0.089  0.076  0.698                     
## factor(Rc)3 -0.163 -0.023  0.148 -0.171  0.064  0.616  0.584              
## factor(Rc)4 -0.174 -0.075  0.285 -0.039  0.049  0.633  0.570  0.529       
## Speed       -0.018  0.226  0.032 -0.124 -0.246 -0.070 -0.106 -0.080 -0.164
##            R2m       R2c
## [1,] 0.2864611 0.8818439
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.146100  1        1.070560
## age          1.218561  1        1.103885
## Sex          1.199272  1        1.095113
## leg_l        1.159648  1        1.076870
## factor(Race) 1.402389  4        1.043178
## Speed        1.201180  1        1.095983
##                     2.5 %       97.5 %
## .sig01                 NA           NA
## .sigma                 NA           NA
## (Intercept)   -0.05535237  3.375950169
## Group         -0.41393456 -0.054904735
## age           -0.02217499  0.012644854
## Sex           -0.21720229  0.172369709
## leg_l         -0.03730156 -0.001287955
## factor(Race)1 -0.19912800  0.348846673
## factor(Race)2 -0.23589519  0.347527967
## factor(Race)3 -0.20092521  0.485950330
## factor(Race)4 -0.29418675  0.408276552
## Speed          0.26220318  0.904733006
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocma
## 
## REML criterion at convergence: -255.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6421 -0.5404  0.0224  0.4714  3.7929 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.04485  0.2118  
##  Residual             0.01689  0.1300  
## Number of obs: 334, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     1.298079   0.714223  32.310765   1.817   0.0784 .  
## Group          -0.198259   0.075978  36.702658  -2.609   0.0130 *  
## age            -0.005585   0.007255  32.577214  -0.770   0.4469    
## Sex            -0.087035   0.081547  33.764069  -1.067   0.2934    
## leg_l          -0.015517   0.007635  37.175027  -2.032   0.0493 *  
## factor(Race)1   0.024027   0.114310  32.877396   0.210   0.8348    
## factor(Race)2  -0.021167   0.122014  33.542989  -0.173   0.8633    
## factor(Race)3   0.009514   0.143520  33.325882   0.066   0.9475    
## factor(Race)4   0.038418   0.147446  34.437870   0.261   0.7960    
## Speed           0.826062   0.169928 235.271217   4.861 2.13e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.138                                                        
## age         -0.347 -0.135                                                 
## Sex         -0.271 -0.100  0.152                                          
## leg_l       -0.890  0.039  0.043  0.222                                   
## factor(Rc)1 -0.307 -0.031  0.205  0.074  0.164                            
## factor(Rc)2 -0.150 -0.140  0.034 -0.080  0.090  0.700                     
## factor(Rc)3 -0.163 -0.034  0.145 -0.164  0.076  0.617  0.585              
## factor(Rc)4 -0.171 -0.096  0.279 -0.027  0.072  0.635  0.575  0.532       
## Speed       -0.023  0.282  0.041 -0.158 -0.307 -0.089 -0.134 -0.101 -0.206
##           R2m      R2c
## [1,] 0.370058 0.827641
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.182394  1        1.087380
## age          1.219496  1        1.104308
## Sex          1.210365  1        1.100166
## leg_l        1.202476  1        1.096575
## factor(Race) 1.427064  4        1.045455
## Speed        1.324292  1        1.150779
##                     2.5 %        97.5 %
## .sig01                 NA            NA
## .sigma                 NA            NA
## (Intercept)   -0.10177210  2.6979305101
## Group         -0.34717405 -0.0493444656
## age           -0.01980416  0.0086341483
## Sex           -0.24686472  0.0727948764
## leg_l         -0.03048199 -0.0005526187
## factor(Race)1 -0.20001626  0.2480696622
## factor(Race)2 -0.26030918  0.2179760620
## factor(Race)3 -0.27178019  0.2908076441
## factor(Race)4 -0.25056969  0.3274061039
## Speed          0.49300873  1.1591155176
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ochb
## 
## REML criterion at convergence: -1515.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3484 -0.4441 -0.0515  0.2714  4.5773 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0009452 0.03074 
##  Residual             0.0004024 0.02006 
## Number of obs: 343, groups:  Subject, 41
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    4.474e-02  1.040e-01  3.198e+01   0.430    0.670    
## Group          5.732e-03  1.121e-02  3.785e+01   0.511    0.612    
## age           -1.226e-03  1.106e-03  3.215e+01  -1.109    0.276    
## Sex            8.894e-03  1.228e-02  3.249e+01   0.724    0.474    
## leg_l         -3.185e-04  1.100e-03  3.567e+01  -0.289    0.774    
## factor(Race)1 -1.140e-02  1.661e-02  3.224e+01  -0.686    0.497    
## factor(Race)2 -8.539e-03  1.817e-02  3.243e+01  -0.470    0.642    
## factor(Race)3 -2.379e-04  2.092e-02  3.241e+01  -0.011    0.991    
## factor(Race)4 -1.666e-02  2.132e-02  3.266e+01  -0.781    0.440    
## Speed          8.412e-02  2.062e-02  2.626e+02   4.080 5.98e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.135                                                        
## age         -0.330 -0.121                                                 
## Sex         -0.263 -0.092  0.058                                          
## leg_l       -0.903  0.038  0.024  0.216                                   
## factor(Rc)1 -0.309 -0.008  0.214  0.047  0.137                            
## factor(Rc)2 -0.148 -0.110  0.108 -0.157  0.047  0.688                     
## factor(Rc)3 -0.165 -0.004  0.175 -0.204  0.041  0.616  0.588              
## factor(Rc)4 -0.173 -0.068  0.313 -0.082  0.025  0.631  0.577  0.531       
## Speed       -0.013  0.327  0.020 -0.096 -0.262 -0.017 -0.068 -0.021 -0.108
##            R2m       R2c
## [1,] 0.1616718 0.7496711
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.203071  1        1.096846
## age          1.162061  1        1.077989
## Sex          1.217654  1        1.103474
## leg_l        1.174553  1        1.083768
## factor(Race) 1.398979  4        1.042861
## Speed        1.262160  1        1.123459
##                      2.5 %       97.5 %
## .sig01                  NA           NA
## .sigma                  NA           NA
## (Intercept)   -0.159071463 0.2485466697
## Group         -0.016243967 0.0277082713
## age           -0.003393680 0.0009416305
## Sex           -0.015169084 0.0329571873
## leg_l         -0.002475167 0.0018380788
## factor(Race)1 -0.043949446 0.0211557378
## factor(Race)2 -0.044148543 0.0270709818
## factor(Race)3 -0.041242557 0.0407666653
## factor(Race)4 -0.058433878 0.0251193163
## Speed          0.043710247 0.1245373844
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_ochb
## 
## REML criterion at convergence: 1453.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2142 -0.5813 -0.0369  0.5578  3.3741 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 25.896   5.089   
##  Residual              2.285   1.512   
## Number of obs: 353, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)    18.04481   16.87490  32.84036   1.069  0.29272   
## Group          -5.47604    1.74508  34.82879  -3.138  0.00345 **
## age             0.02771    0.17108  32.87864   0.162  0.87230   
## Sex             2.83352    1.90237  33.04494   1.489  0.14585   
## leg_l          -0.06865    0.17341  34.11545  -0.396  0.69465   
## factor(Race)1   4.67265    2.68739  32.89355   1.739  0.09144 . 
## factor(Race)2  -0.08575    2.85136  32.94273  -0.030  0.97619   
## factor(Race)3   2.57563    3.36230  32.93891   0.766  0.44911   
## factor(Race)4   2.78608    3.41289  33.03793   0.816  0.42015   
## Speed           1.91633    1.72514 339.51562   1.111  0.26743   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.146                                                 
## Sex         -0.277 -0.065  0.158                                          
## leg_l       -0.933  0.110  0.056  0.191                                   
## factor(Rc)1 -0.311 -0.006  0.209  0.064  0.144                            
## factor(Rc)2 -0.153 -0.110  0.038 -0.102  0.055  0.697                     
## factor(Rc)3 -0.164 -0.005  0.151 -0.182  0.045  0.615  0.581              
## factor(Rc)4 -0.178 -0.048  0.293 -0.057  0.016  0.631  0.564  0.525       
## Speed       -0.007  0.176  0.017 -0.056 -0.141 -0.007 -0.031 -0.008 -0.054
##            R2m       R2c
## [1,] 0.3399021 0.9464801
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.122108  1        1.059296
## age          1.217433  1        1.103374
## Sex          1.184696  1        1.088437
## leg_l        1.111651  1        1.054349
## factor(Race) 1.367254  4        1.039875
## Speed        1.072782  1        1.035752
##                     2.5 %     97.5 %
## .sig01                 NA         NA
## .sigma                 NA         NA
## (Intercept)   -15.0293931 51.1190041
## Group          -8.8963299 -2.0557594
## age            -0.3075971  0.3630263
## Sex            -0.8950659  6.5620980
## leg_l          -0.4085240  0.2712236
## factor(Race)1  -0.5945385  9.9398465
## factor(Race)2  -5.6743151  5.5028245
## factor(Race)3  -4.0143504  9.1656126
## factor(Race)4  -3.9030513  9.4752122
## Speed          -1.4648780  5.2975374
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ochb
## 
## REML criterion at convergence: 1549.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.62718 -0.56966  0.00019  0.55281  2.43051 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 16.636   4.079   
##  Residual              3.259   1.805   
## Number of obs: 353, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)    21.02706   13.61222  32.99692   1.545   0.1320  
## Group          -3.45232    1.43006  36.77491  -2.414   0.0209 *
## age            -0.06675    0.13805  33.07626  -0.484   0.6319  
## Sex            -0.42255    1.53721  33.39264  -0.275   0.7851  
## leg_l          -0.05329    0.14133  35.42006  -0.377   0.7084  
## factor(Race)1   2.07260    2.16884  33.11445   0.956   0.3462  
## factor(Race)2   0.72104    2.30213  33.20824   0.313   0.7561  
## factor(Race)3   1.96431    2.71462  33.21287   0.724   0.4744  
## factor(Race)4   4.05534    2.75763  33.38153   1.471   0.1508  
## Speed          -2.65732    1.98358 337.17042  -1.340   0.1813  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.347 -0.141                                                 
## Sex         -0.277 -0.075  0.157                                          
## leg_l       -0.922  0.082  0.053  0.197                                   
## factor(Rc)1 -0.311 -0.007  0.209  0.064  0.143                            
## factor(Rc)2 -0.153 -0.113  0.038 -0.099  0.059  0.697                     
## factor(Rc)3 -0.165 -0.006  0.150 -0.181  0.047  0.615  0.581              
## factor(Rc)4 -0.177 -0.057  0.291 -0.053  0.023  0.631  0.565  0.524       
## Speed       -0.010  0.247  0.024 -0.081 -0.198 -0.011 -0.045 -0.012 -0.077
##            R2m      R2c
## [1,] 0.1785766 0.865438
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.158236  1        1.076214
## age          1.217722  1        1.103504
## Sex          1.188193  1        1.090043
## leg_l        1.134214  1        1.064995
## factor(Race) 1.373101  4        1.040430
## Speed        1.147855  1        1.071380
##                    2.5 %     97.5 %
## .sig01                NA         NA
## .sigma                NA         NA
## (Intercept)   -5.6523892 47.7065143
## Group         -6.2551722 -0.6494593
## age           -0.3373261  0.2038173
## Sex           -3.4354256  2.5903331
## leg_l         -0.3302968  0.2237200
## factor(Race)1 -2.1782541  6.3234578
## factor(Race)2 -3.7910434  5.2331264
## factor(Race)3 -3.3562572  7.2848766
## factor(Race)4 -1.3495192  9.4602015
## Speed         -6.5450595  1.2304240
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ochb
## 
## REML criterion at convergence: -515.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3002 -0.5323  0.0167  0.4702  4.0482 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.050236 0.22413 
##  Residual             0.007703 0.08777 
## Number of obs: 352, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.968016   0.746133  32.609639   1.297 0.203605    
## Group          -0.167303   0.077946  35.753951  -2.146 0.038702 *  
## age            -0.006452   0.007566  32.675000  -0.853 0.400034    
## Sex             0.071429   0.084212  32.943824   0.848 0.402445    
## leg_l          -0.006635   0.007717  34.606007  -0.860 0.395814    
## factor(Race)1   0.129588   0.118864  32.705761   1.090 0.283582    
## factor(Race)2   0.015855   0.126144  32.777917   0.126 0.900744    
## factor(Race)3   0.217581   0.148746  32.777860   1.463 0.153054    
## factor(Race)4   0.176011   0.151060  32.923465   1.165 0.252322    
## Speed           0.363172   0.097882 341.347840   3.710 0.000242 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.347 -0.143                                                 
## Sex         -0.277 -0.071  0.157                                          
## leg_l       -0.926  0.092  0.054  0.195                                   
## factor(Rc)1 -0.311 -0.007  0.209  0.064  0.143                            
## factor(Rc)2 -0.153 -0.112  0.038 -0.100  0.057  0.697                     
## factor(Rc)3 -0.165 -0.005  0.150 -0.181  0.046  0.615  0.581              
## factor(Rc)4 -0.177 -0.054  0.292 -0.054  0.020  0.631  0.565  0.525       
## Speed       -0.009  0.224  0.021 -0.073 -0.179 -0.010 -0.040 -0.011 -0.069
##            R2m       R2c
## [1,] 0.3394928 0.9121833
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.144972  1        1.070034
## age          1.217658  1        1.103475
## Sex          1.187031  1        1.089510
## leg_l        1.125741  1        1.061009
## factor(Race) 1.370930  4        1.040224
## Speed        1.119952  1        1.058278
##                     2.5 %       97.5 %
## .sig01                 NA           NA
## .sigma                 NA           NA
## (Intercept)   -0.49437736  2.430409832
## Group         -0.32007490 -0.014531179
## age           -0.02128092  0.008377687
## Sex           -0.09362350  0.236481723
## leg_l         -0.02176079  0.008490175
## factor(Race)1 -0.10338053  0.362556815
## factor(Race)2 -0.23138223  0.263092793
## factor(Race)3 -0.07395561  0.509118058
## factor(Race)4 -0.12006122  0.472083509
## Speed          0.17132685  0.555016831
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ochb
## 
## REML criterion at convergence: -459.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7281 -0.4985 -0.0183  0.4745  5.0177 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.051366 0.22664 
##  Residual             0.009188 0.09585 
## Number of obs: 352, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.743518   0.755617  32.569878   0.984   0.3324    
## Group          -0.172256   0.079221  36.099631  -2.174   0.0363 *  
## age            -0.003815   0.007663  32.644813  -0.498   0.6219    
## Sex             0.036306   0.085317  32.946944   0.426   0.6732    
## leg_l          -0.005324   0.007834  34.810836  -0.680   0.5013    
## factor(Race)1   0.150660   0.120389  32.681598   1.251   0.2197    
## factor(Race)2   0.025493   0.127774  32.762541   0.200   0.8431    
## factor(Race)3   0.224784   0.150668  32.765093   1.492   0.1453    
## factor(Race)4   0.175454   0.153039  32.924274   1.146   0.2599    
## Speed           0.570809   0.105962 338.814207   5.387 1.34e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.347 -0.142                                                 
## Sex         -0.277 -0.074  0.157                                          
## leg_l       -0.924  0.086  0.053  0.196                                   
## factor(Rc)1 -0.311 -0.007  0.209  0.064  0.143                            
## factor(Rc)2 -0.153 -0.113  0.038 -0.100  0.058  0.697                     
## factor(Rc)3 -0.165 -0.006  0.150 -0.181  0.047  0.615  0.581              
## factor(Rc)4 -0.177 -0.056  0.292 -0.054  0.022  0.631  0.565  0.524       
## Speed       -0.009  0.239  0.023 -0.078 -0.191 -0.010 -0.043 -0.012 -0.074
##            R2m       R2c
## [1,] 0.3781692 0.9056504
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.153233  1        1.073887
## age          1.217730  1        1.103508
## Sex          1.187849  1        1.089885
## leg_l        1.130865  1        1.063421
## factor(Race) 1.372256  4        1.040350
## Speed        1.137061  1        1.066331
##                     2.5 %      97.5 %
## .sig01                 NA          NA
## .sigma                 NA          NA
## (Intercept)   -0.73746455  2.22450149
## Group         -0.32752735 -0.01698536
## age           -0.01883440  0.01120364
## Sex           -0.13091338  0.20352441
## leg_l         -0.02067733  0.01002996
## factor(Race)1 -0.08529821  0.38661845
## factor(Race)2 -0.22493973  0.27592489
## factor(Race)3 -0.07052028  0.52008864
## factor(Race)4 -0.12449680  0.47540500
## Speed          0.36312804  0.77848978
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange


## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocmb
## 
## REML criterion at convergence: -1522.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8005 -0.4442 -0.0666  0.3243  6.3261 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0008799 0.02966 
##  Residual             0.0004034 0.02008 
## Number of obs: 344, groups:  Subject, 41
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)    -0.033869   0.100315  30.863975  -0.338  0.73793   
## Group           0.001176   0.010776  35.769330   0.109  0.91369   
## age            -0.001000   0.001069  31.225702  -0.936  0.35638   
## Sex             0.015846   0.011967  32.327388   1.324  0.19475   
## leg_l           0.000638   0.001073  35.073015   0.595  0.55595   
## factor(Race)1  -0.008085   0.016052  31.339346  -0.504  0.61804   
## factor(Race)2   0.005702   0.017610  31.752364   0.324  0.74823   
## factor(Race)3   0.010443   0.020209  31.390882   0.517  0.60894   
## factor(Race)4  -0.012777   0.020592  31.646873  -0.621  0.53937   
## Speed           0.064880   0.022733 214.111979   2.854  0.00474 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.134                                                        
## age         -0.334 -0.118                                                 
## Sex         -0.260 -0.110  0.056                                          
## leg_l       -0.892  0.027  0.026  0.233                                   
## factor(Rc)1 -0.309 -0.012  0.214  0.047  0.139                            
## factor(Rc)2 -0.147 -0.121  0.106 -0.148  0.059  0.687                     
## factor(Rc)3 -0.163 -0.019  0.178 -0.198  0.050  0.617  0.591              
## factor(Rc)4 -0.176 -0.067  0.312 -0.077  0.032  0.632  0.580  0.536       
## Speed       -0.012  0.311  0.024 -0.153 -0.301 -0.024 -0.101 -0.056 -0.110
##            R2m       R2c
## [1,] 0.2081002 0.7510754
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.187630  1        1.089784
## age          1.161420  1        1.077692
## Sex          1.237179  1        1.112285
## leg_l        1.202187  1        1.096443
## factor(Race) 1.405826  4        1.043498
## Speed        1.295350  1        1.138134
##                      2.5 %      97.5 %
## .sig01                  NA          NA
## .sigma                  NA          NA
## (Intercept)   -0.230482382 0.162743865
## Group         -0.019944013 0.022296543
## age           -0.003094927 0.001094101
## Sex           -0.007609334 0.039302161
## leg_l         -0.001465089 0.002741039
## factor(Race)1 -0.039546398 0.023377282
## factor(Race)2 -0.028813573 0.040216845
## factor(Race)3 -0.029164815 0.050050976
## factor(Race)4 -0.053136519 0.027581768
## Speed          0.020324294 0.109435220
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_ocmb
## 
## REML criterion at convergence: 1408
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6659 -0.5932  0.0450  0.6071  3.3506 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 24.853   4.985   
##  Residual              1.961   1.400   
## Number of obs: 354, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)    12.15616   16.51616  32.72368   0.736  0.46696   
## Group          -4.73029    1.70327  34.33910  -2.777  0.00882 **
## age             0.05714    0.16749  32.79624   0.341  0.73518   
## Sex             2.05898    1.86655  33.23281   1.103  0.27791   
## leg_l          -0.05473    0.17003  34.21025  -0.322  0.74951   
## factor(Race)1   4.19425    2.63097  32.81135   1.594  0.12048   
## factor(Race)2  -1.37514    2.79320  32.93441  -0.492  0.62576   
## factor(Race)3   2.59251    3.29117  32.83353   0.788  0.43651   
## factor(Race)4   2.01055    3.34063  32.93118   0.602  0.55140   
## Speed           5.35608    1.82743 342.31597   2.931  0.00361 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.348 -0.146                                                 
## Sex         -0.277 -0.069  0.157                                          
## leg_l       -0.931  0.110  0.057  0.196                                   
## factor(Rc)1 -0.311 -0.007  0.209  0.064  0.144                            
## factor(Rc)2 -0.152 -0.112  0.038 -0.100  0.058  0.697                     
## factor(Rc)3 -0.164 -0.009  0.151 -0.180  0.047  0.615  0.582              
## factor(Rc)4 -0.178 -0.047  0.293 -0.056  0.017  0.631  0.565  0.526       
## Speed       -0.006  0.158  0.019 -0.084 -0.155 -0.010 -0.046 -0.025 -0.052
##            R2m       R2c
## [1,] 0.3424011 0.9519077
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.114855  1        1.055867
## age          1.217414  1        1.103365
## Sex          1.189644  1        1.090708
## leg_l        1.116179  1        1.056494
## factor(Race) 1.368289  4        1.039973
## Speed        1.074116  1        1.036396
##                     2.5 %     97.5 %
## .sig01                 NA         NA
## .sigma                 NA         NA
## (Intercept)   -20.2149179 44.5272393
## Group          -8.0686298 -1.3919495
## age            -0.2711356  0.3854069
## Sex            -1.5993903  5.7173601
## leg_l          -0.3879866  0.2785300
## factor(Race)1  -0.9623455  9.3508538
## factor(Race)2  -6.8497191  4.0994421
## factor(Race)3  -3.8580693  9.0430992
## factor(Race)4  -4.5369614  8.5580588
## Speed           1.7743797  8.9377873
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocmb
## 
## REML criterion at convergence: 1504.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.66789 -0.58248  0.01772  0.55906  2.54914 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 16.652   4.081   
##  Residual              2.783   1.668   
## Number of obs: 354, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)    21.90183   13.58493  32.84697   1.612    0.116
## Group          -2.25276    1.41785  35.77553  -1.589    0.121
## age            -0.06823    0.13784  32.99227  -0.495    0.624
## Sex            -0.98435    1.54133  33.78562  -0.639    0.527
## leg_l          -0.11584    0.14141  35.52005  -0.819    0.418
## factor(Race)1   1.71004    2.16561  33.02938   0.790    0.435
## factor(Race)2  -0.45087    2.30132  33.25109  -0.196    0.846
## factor(Race)3   1.45817    2.70949  33.06711   0.538    0.594
## factor(Race)4   3.78782    2.75222  33.23548   1.376    0.178
## Speed           1.09662    2.09257 334.37547   0.524    0.601
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.348 -0.141                                                 
## Sex         -0.275 -0.081  0.155                                          
## leg_l       -0.920  0.084  0.053  0.205                                   
## factor(Rc)1 -0.311 -0.009  0.208  0.064  0.144                            
## factor(Rc)2 -0.152 -0.118  0.037 -0.096  0.063  0.696                     
## factor(Rc)3 -0.164 -0.013  0.151 -0.178  0.051  0.615  0.582              
## factor(Rc)4 -0.178 -0.054  0.291 -0.052  0.024  0.631  0.566  0.527       
## Speed       -0.008  0.218  0.026 -0.117 -0.213 -0.014 -0.065 -0.035 -0.072
##            R2m       R2c
## [1,] 0.1809507 0.8827179
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.140825  1        1.068094
## age          1.217630  1        1.103463
## Sex          1.197447  1        1.094279
## leg_l        1.140936  1        1.068146
## factor(Race) 1.374572  4        1.040569
## Speed        1.143460  1        1.069327
##                    2.5 %     97.5 %
## .sig01                NA         NA
## .sigma                NA         NA
## (Intercept)   -4.7241426 48.5278081
## Group         -5.0316916  0.5261703
## age           -0.3383969  0.2019442
## Sex           -4.0052937  2.0366032
## leg_l         -0.3929843  0.1613141
## factor(Race)1 -2.5344713  5.9545580
## factor(Race)2 -4.9613785  4.0596476
## factor(Race)3 -3.8523345  6.7686770
## factor(Race)4 -1.6064420  9.1820770
## Speed         -3.0047385  5.1979701
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocmb
## 
## REML criterion at convergence: -548.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3566 -0.4847 -0.0178  0.5441  3.7215 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.051339 0.22658 
##  Residual             0.006959 0.08342 
## Number of obs: 353, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)     0.771833   0.753010  31.947308   1.025   0.3131   
## Group          -0.172292   0.078295  34.429236  -2.201   0.0346 * 
## age            -0.006087   0.007639  32.067489  -0.797   0.4314   
## Sex             0.099941   0.085331  32.741702   1.171   0.2500   
## leg_l          -0.004437   0.007809  34.189762  -0.568   0.5736   
## factor(Race)1   0.135395   0.120014  32.098877   1.128   0.2676   
## factor(Race)2  -0.014486   0.127488  32.278254  -0.114   0.9102   
## factor(Race)3   0.242966   0.150139  32.124685   1.618   0.1154   
## factor(Race)4   0.215710   0.152470  32.268344   1.415   0.1667   
## Speed           0.321930   0.106114 340.301598   3.034   0.0026 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.348 -0.143                                                 
## Sex         -0.276 -0.077  0.156                                          
## leg_l       -0.923  0.093  0.054  0.202                                   
## factor(Rc)1 -0.311 -0.008  0.208  0.064  0.144                            
## factor(Rc)2 -0.152 -0.116  0.037 -0.097  0.061  0.696                     
## factor(Rc)3 -0.164 -0.011  0.151 -0.179  0.050  0.615  0.582              
## factor(Rc)4 -0.178 -0.052  0.292 -0.053  0.022  0.631  0.566  0.527       
## Speed       -0.008  0.200  0.023 -0.107 -0.195 -0.013 -0.059 -0.032 -0.066
##            R2m       R2c
## [1,] 0.3593029 0.9235158
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.132292  1        1.064092
## age          1.217619  1        1.103458
## Sex          1.195016  1        1.093168
## leg_l        1.132535  1        1.064206
## factor(Race) 1.372459  4        1.040369
## Speed        1.120216  1        1.058403
##                     2.5 %       97.5 %
## .sig01                 NA           NA
## .sigma                 NA           NA
## (Intercept)   -0.70404000  2.247706251
## Group         -0.32574662 -0.018837722
## age           -0.02105963  0.008885867
## Sex           -0.06730510  0.267186980
## leg_l         -0.01974304  0.010868336
## factor(Race)1 -0.09982842  0.370618789
## factor(Race)2 -0.26435794  0.235386800
## factor(Race)3 -0.05130130  0.537233879
## factor(Race)4 -0.08312653  0.514546117
## Speed          0.11394992  0.529910938
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ocmb
## 
## REML criterion at convergence: -500.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8632 -0.5181  0.0011  0.5552  3.2753 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.049593 0.22270 
##  Residual             0.008146 0.09026 
## Number of obs: 353, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.399945   0.741265  31.934742   0.540   0.5933    
## Group          -0.168561   0.077360  34.794212  -2.179   0.0362 *  
## age            -0.003954   0.007522  32.077704  -0.526   0.6027    
## Sex             0.079693   0.084104  32.855432   0.948   0.3503    
## leg_l          -0.001654   0.007713  34.510105  -0.214   0.8314    
## factor(Race)1   0.146500   0.118171  32.117077   1.240   0.2241    
## factor(Race)2   0.004002   0.125566  32.323017   0.032   0.9748    
## factor(Race)3   0.246068   0.147839  32.145751   1.664   0.1057    
## factor(Race)4   0.203925   0.150168  32.308524   1.358   0.1839    
## Speed           0.527126   0.113383 334.039915   4.649 4.81e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.136                                                        
## age         -0.348 -0.142                                                 
## Sex         -0.275 -0.081  0.155                                          
## leg_l       -0.920  0.085  0.053  0.205                                   
## factor(Rc)1 -0.311 -0.009  0.208  0.064  0.144                            
## factor(Rc)2 -0.152 -0.118  0.037 -0.096  0.063  0.696                     
## factor(Rc)3 -0.164 -0.012  0.151 -0.178  0.050  0.615  0.582              
## factor(Rc)4 -0.178 -0.054  0.291 -0.052  0.024  0.631  0.566  0.527       
## Speed       -0.008  0.216  0.025 -0.116 -0.211 -0.014 -0.064 -0.035 -0.072
##            R2m       R2c
## [1,] 0.3883109 0.9137001
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.140327  1        1.067861
## age          1.217694  1        1.103492
## Sex          1.197456  1        1.094283
## leg_l        1.140140  1        1.067773
## factor(Race) 1.374384  4        1.040551
## Speed        1.141576  1        1.068446
##                     2.5 %      97.5 %
## .sig01                 NA          NA
## .sigma                 NA          NA
## (Intercept)   -1.05290716  1.85279669
## Group         -0.32018343 -0.01693867
## age           -0.01869636  0.01078772
## Sex           -0.08514833  0.24453434
## leg_l         -0.01677208  0.01346340
## factor(Race)1 -0.08511083  0.37811143
## factor(Race)2 -0.24210148  0.25010639
## factor(Race)3 -0.04369200  0.53582778
## factor(Race)4 -0.09039968  0.49824889
## Speed          0.30489930  0.74935330
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ff
## 
## REML criterion at convergence: -1591.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.9637 -0.4114 -0.0401  0.3557  5.8619 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0007291 0.02700 
##  Residual             0.0002305 0.01518 
## Number of obs: 325, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   -1.056e-01  9.168e-02  3.379e+01  -1.152   0.2574    
## Group         -2.394e-03  9.370e-03  3.429e+01  -0.256   0.7999    
## age            1.834e-04  9.224e-04  3.296e+01   0.199   0.8436    
## Sex            1.927e-02  1.028e-02  3.333e+01   1.875   0.0695 .  
## leg_l          9.526e-04  9.283e-04  3.326e+01   1.026   0.3122    
## factor(Race)1  1.477e-02  1.462e-02  3.404e+01   1.011   0.3194    
## factor(Race)2 -9.566e-04  1.551e-02  3.405e+01  -0.062   0.9512    
## factor(Race)3  1.552e-03  1.822e-02  3.363e+01   0.085   0.9326    
## factor(Race)4 -1.325e-02  1.889e-02  3.627e+01  -0.701   0.4877    
## Speed          5.570e-02  1.289e-02  3.133e+02   4.320 2.09e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.155                                                        
## age         -0.345 -0.153                                                 
## Sex         -0.262 -0.069  0.158                                          
## leg_l       -0.916  0.121  0.061  0.191                                   
## factor(Rc)1 -0.291 -0.021  0.205  0.073  0.153                            
## factor(Rc)2 -0.134 -0.121  0.037 -0.090  0.063  0.703                     
## factor(Rc)3 -0.149 -0.018  0.150 -0.172  0.054  0.621  0.588              
## factor(Rc)4 -0.142 -0.071  0.285 -0.036  0.031  0.638  0.575  0.533       
## Speed       -0.134  0.151 -0.001 -0.088 -0.099 -0.111 -0.124 -0.098 -0.229
##            R2m      R2c
## [1,] 0.1969276 0.807094
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.114002  1        1.055463
## age          1.218146  1        1.103696
## Sex          1.188590  1        1.090225
## leg_l        1.099966  1        1.048793
## factor(Race) 1.439094  4        1.046553
## Speed        1.115464  1        1.056155
##                       2.5 %      97.5 %
## .sig01                   NA          NA
## .sigma                   NA          NA
## (Intercept)   -0.2852984789 0.074083246
## Group         -0.0207590925 0.015970954
## age           -0.0016244671 0.001991248
## Sex           -0.0008685809 0.039413658
## leg_l         -0.0008668995 0.002772067
## factor(Race)1 -0.0138780154 0.043421589
## factor(Race)2 -0.0313506339 0.029437466
## factor(Race)3 -0.0341636059 0.037268352
## factor(Race)4 -0.0502708217 0.023780344
## Speed          0.0304343815 0.080974724
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_ff
## 
## REML criterion at convergence: 1410.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8373 -0.5858 -0.0268  0.5197  3.2446 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 31.882   5.646   
##  Residual              2.786   1.669   
## Number of obs: 325, groups:  Subject, 42
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)    18.5325    18.7825  33.0608   0.987   0.3310  
## Group          -4.8716     1.9143  33.2193  -2.545   0.0158 *
## age             0.2234     0.1899  32.7644   1.176   0.2479  
## Sex            -0.1427     2.1111  32.8946  -0.068   0.9465  
## leg_l          -0.1118     0.1908  32.8787  -0.586   0.5619  
## factor(Race)1   5.9898     2.9911  33.1161   2.003   0.0535 .
## factor(Race)2   1.4083     3.1728  33.1293   0.444   0.6600  
## factor(Race)3   4.4646     3.7373  32.9877   1.195   0.2408  
## factor(Race)4   7.4451     3.8172  33.8916   1.950   0.0594 .
## Speed           3.6348     1.4866 301.3293   2.445   0.0151 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.143                                                        
## age         -0.347 -0.152                                                 
## Sex         -0.273 -0.060  0.158                                          
## leg_l       -0.935  0.132  0.060  0.187                                   
## factor(Rc)1 -0.305 -0.010  0.208  0.067  0.148                            
## factor(Rc)2 -0.147 -0.111  0.038 -0.100  0.055  0.699                     
## factor(Rc)3 -0.159 -0.009  0.151 -0.180  0.047  0.617  0.583              
## factor(Rc)4 -0.167 -0.049  0.291 -0.052  0.016  0.633  0.567  0.528       
## Speed       -0.076  0.085  0.000 -0.049 -0.055 -0.063 -0.070 -0.055 -0.131
##           R2m      R2c
## [1,] 0.285975 0.942612
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.095473  1        1.046649
## age          1.217424  1        1.103369
## Sex          1.183618  1        1.087942
## leg_l        1.092919  1        1.045428
## factor(Race) 1.385910  4        1.041638
## Speed        1.036117  1        1.017898
##                      2.5 %     97.5 %
## .sig01                  NA         NA
## .sigma                  NA         NA
## (Intercept)   -18.28050003 55.3455837
## Group          -8.62352367 -1.1196389
## age            -0.14882338  0.5956250
## Sex            -4.28050827  3.9950113
## leg_l          -0.48569683  0.2621349
## factor(Race)1   0.12723416 11.8523026
## factor(Race)2  -4.81021944  7.6267370
## factor(Race)3  -2.86043745 11.7895436
## factor(Race)4  -0.03650778 14.9266156
## Speed           0.72112637  6.5484650
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ff
## 
## REML criterion at convergence: 1427.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2786 -0.5724  0.0150  0.5966  2.5470 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 16.103   4.013   
##  Residual              3.195   1.788   
## Number of obs: 325, groups:  Subject, 42
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)    25.2253    13.4856  33.4311   1.871   0.0702 .
## Group          -2.6824     1.3764  33.7688  -1.949   0.0597 .
## age             0.1731     0.1360  32.8401   1.273   0.2121  
## Sex            -2.3141     1.5136  33.1001  -1.529   0.1358  
## leg_l          -0.1757     0.1368  33.0607  -1.285   0.2079  
## factor(Race)1   2.7740     2.1488  33.5736   1.291   0.2055  
## factor(Race)2   1.7303     2.2795  33.5925   0.759   0.4531  
## factor(Race)3   3.6153     2.6817  33.3021   1.348   0.1867  
## factor(Race)4   6.3917     2.7604  35.1466   2.315   0.0265 *
## Speed           0.4207     1.5542 313.6908   0.271   0.7868  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.149                                                        
## age         -0.346 -0.152                                                 
## Sex         -0.267 -0.065  0.158                                          
## leg_l       -0.925  0.126  0.060  0.189                                   
## factor(Rc)1 -0.298 -0.016  0.207  0.070  0.151                            
## factor(Rc)2 -0.140 -0.116  0.037 -0.095  0.059  0.701                     
## factor(Rc)3 -0.154 -0.014  0.150 -0.176  0.051  0.619  0.586              
## factor(Rc)4 -0.154 -0.061  0.288 -0.044  0.024  0.636  0.571  0.531       
## Speed       -0.110  0.124  0.000 -0.072 -0.081 -0.091 -0.102 -0.080 -0.189
##           R2m     R2c
## [1,] 0.224873 0.87166
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.105003  1        1.051191
## age          1.217775  1        1.103528
## Sex          1.186208  1        1.089132
## leg_l        1.096553  1        1.047164
## factor(Race) 1.413448  4        1.044203
## Speed        1.077079  1        1.037824
##                     2.5 %      97.5 %
## .sig01                 NA          NA
## .sigma                 NA          NA
## (Intercept)   -1.20600291 51.65666735
## Group         -5.38008321  0.01528099
## age           -0.09347241  0.43963933
## Sex           -5.28064998  0.65242594
## leg_l         -0.44371356  0.09235520
## factor(Race)1 -1.43758860  6.98549743
## factor(Race)2 -2.73735437  6.19802417
## factor(Race)3 -1.64080630  8.87136045
## factor(Race)4  0.98138413 11.80210595
## Speed         -2.62552877  3.46689420
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ff
## 
## REML criterion at convergence: -386.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7313 -0.6128 -0.0095  0.5761  3.4220 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.04889  0.2211  
##  Residual             0.01014  0.1007  
## Number of obs: 325, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.831695   0.743647  33.113354   1.118   0.2714    
## Group          -0.182499   0.075908  33.461461  -2.404   0.0219 *  
## age             0.005657   0.007498  32.507265   0.755   0.4560    
## Sex            -0.006518   0.083455  32.773914  -0.078   0.9382    
## leg_l          -0.009313   0.007540  32.732799  -1.235   0.2256    
## factor(Race)1   0.264841   0.118498  33.262271   2.235   0.0322 *  
## factor(Race)2   0.099450   0.125705  33.280972   0.791   0.4345    
## factor(Race)3   0.338292   0.147874  32.982492   2.288   0.0287 *  
## factor(Race)4   0.386316   0.152304  34.877719   2.536   0.0158 *  
## Speed           0.434100   0.087410 314.099307   4.966 1.12e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.149                                                        
## age         -0.346 -0.152                                                 
## Sex         -0.267 -0.065  0.158                                          
## leg_l       -0.924  0.126  0.060  0.190                                   
## factor(Rc)1 -0.297 -0.016  0.206  0.070  0.151                            
## factor(Rc)2 -0.140 -0.116  0.037 -0.095  0.059  0.701                     
## factor(Rc)3 -0.154 -0.014  0.150 -0.175  0.051  0.619  0.586              
## factor(Rc)4 -0.153 -0.061  0.288 -0.044  0.025  0.636  0.571  0.531       
## Speed       -0.112  0.126 -0.001 -0.074 -0.082 -0.093 -0.104 -0.082 -0.193
##            R2m       R2c
## [1,] 0.3928577 0.8956609
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.105736  1        1.051540
## age          1.217804  1        1.103541
## Sex          1.186404  1        1.089222
## leg_l        1.096831  1        1.047297
## factor(Race) 1.415549  4        1.044397
## Speed        1.080215  1        1.039334
##                      2.5 %       97.5 %
## .sig01                  NA           NA
## .sigma                  NA           NA
## (Intercept)   -0.625826008  2.289216140
## Group         -0.331275820 -0.033722746
## age           -0.009038543  0.020353419
## Sex           -0.170085929  0.157049881
## leg_l         -0.024091863  0.005465312
## factor(Race)1  0.032590051  0.497091882
## factor(Race)2 -0.146928104  0.345827733
## factor(Race)3  0.048464145  0.628119200
## factor(Race)4  0.087806258  0.684825288
## Speed          0.262780292  0.605420549
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_ff
## 
## REML criterion at convergence: -268.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3525 -0.5829 -0.0157  0.5663  3.6142 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.03845  0.1961  
##  Residual             0.01577  0.1256  
## Number of obs: 325, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.487220   0.671037  32.364269   0.726  0.47301    
## Group          -0.215694   0.068651  32.960234  -3.142  0.00354 ** 
## age             0.007747   0.006740  31.435773   1.149  0.25908    
## Sex            -0.021221   0.075146  31.844884  -0.282  0.77947    
## leg_l          -0.008315   0.006787  31.759314  -1.225  0.22957    
## factor(Race)1   0.281578   0.107046  32.692380   2.630  0.01290 *  
## factor(Race)2   0.065957   0.113565  32.697643   0.581  0.56537    
## factor(Race)3   0.338628   0.133340  32.216651   2.540  0.01612 *  
## factor(Race)4   0.333648   0.138916  35.228866   2.402  0.02172 *  
## Speed           0.740052   0.104788 305.230602   7.062 1.11e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.158                                                        
## age         -0.345 -0.153                                                 
## Sex         -0.258 -0.073  0.157                                          
## leg_l       -0.910  0.117  0.061  0.193                                   
## factor(Rc)1 -0.287 -0.024  0.205  0.075  0.155                            
## factor(Rc)2 -0.130 -0.124  0.036 -0.087  0.066  0.705                     
## factor(Rc)3 -0.146 -0.021  0.149 -0.169  0.056  0.622  0.590              
## factor(Rc)4 -0.134 -0.078  0.283 -0.031  0.037  0.640  0.577  0.535       
## Speed       -0.149  0.168 -0.001 -0.098 -0.110 -0.123 -0.138 -0.108 -0.253
##            R2m       R2c
## [1,] 0.5185026 0.8599389
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.120498  1        1.058536
## age          1.218440  1        1.103830
## Sex          1.190269  1        1.090994
## leg_l        1.102419  1        1.049962
## factor(Race) 1.457378  4        1.048206
## Speed        1.142984  1        1.069104
##                      2.5 %       97.5 %
## .sig01                  NA           NA
## .sigma                  NA           NA
## (Intercept)   -0.827987376  1.802428246
## Group         -0.350248042 -0.081140550
## age           -0.005463553  0.020957108
## Sex           -0.168504227  0.126062210
## leg_l         -0.021618068  0.004988287
## factor(Race)1  0.071771630  0.491384852
## factor(Race)2 -0.156627620  0.288540809
## factor(Race)3  0.077286519  0.599969765
## factor(Race)4  0.061378621  0.605917434
## Speed          0.534671603  0.945432466
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Stiffness ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_prf
## 
## REML criterion at convergence: -1531.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.6999 -0.4451  0.0045  0.3256  7.0011 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  Subject  (Intercept) 0.0009437 0.03072 
##  Residual             0.0002996 0.01731 
## Number of obs: 329, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)    1.365e-01  1.035e-01  3.142e+01   1.319    0.197
## Group         -6.217e-03  1.090e-02  3.465e+01  -0.570    0.572
## age           -5.641e-04  1.053e-03  3.182e+01  -0.536    0.596
## Sex           -2.372e-03  1.186e-02  3.307e+01  -0.200    0.843
## leg_l         -9.927e-04  1.088e-03  3.449e+01  -0.912    0.368
## factor(Race)1 -1.469e-02  1.680e-02  3.332e+01  -0.874    0.388
## factor(Race)2  1.323e-02  1.789e-02  3.370e+01   0.739    0.465
## factor(Race)3  1.393e-03  2.115e-02  3.388e+01   0.066    0.948
## factor(Race)4 -4.304e-04  2.178e-02  3.534e+01  -0.020    0.984
## Speed          3.662e-02  2.380e-02  2.314e+02   1.539    0.125
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.166                                                 
## Sex         -0.269 -0.101  0.165                                          
## leg_l       -0.906  0.062  0.079  0.224                                   
## factor(Rc)1 -0.302 -0.051  0.216  0.097  0.186                            
## factor(Rc)2 -0.146 -0.152  0.054 -0.061  0.101  0.709                     
## factor(Rc)3 -0.153 -0.062  0.163 -0.135  0.096  0.630  0.601              
## factor(Rc)4 -0.166 -0.108  0.301 -0.004  0.082  0.649  0.589  0.555       
## Speed       -0.020  0.255 -0.072 -0.185 -0.257 -0.188 -0.207 -0.221 -0.285
##            R2m       R2c
## [1,] 0.1151962 0.7867893
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.163481  1        1.078648
## age          1.220483  1        1.104755
## Sex          1.221804  1        1.105352
## leg_l        1.166847  1        1.080207
## factor(Race) 1.492882  4        1.051364
## Speed        1.296115  1        1.138470
##                      2.5 %      97.5 %
## .sig01                  NA          NA
## .sigma                  NA          NA
## (Intercept)   -0.066332321 0.339300288
## Group         -0.027588689 0.015154035
## age           -0.002627680 0.001499445
## Sex           -0.025612828 0.020869525
## leg_l         -0.003125651 0.001140250
## factor(Race)1 -0.047621608 0.018249258
## factor(Race)2 -0.021835900 0.048288390
## factor(Race)3 -0.040060654 0.042847128
## factor(Race)4 -0.043127352 0.042266569
## Speed         -0.010020863 0.083269258
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Peak ~ Group + age + Sex + leg_l + factor(Race) + Speed + (1 |  
##     Subject)
##    Data: df_prf
## 
## REML criterion at convergence: 1376
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2823 -0.5943  0.0334  0.5790  3.1047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 29.621   5.443   
##  Residual              2.107   1.452   
## Number of obs: 338, groups:  Subject, 42
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     9.35761   18.03645  32.91548   0.519    0.607    
## Group          -2.71090    1.85548  34.21063  -1.461    0.153    
## age            -0.01502    0.18294  33.00380  -0.082    0.935    
## Sex             1.07584    2.04051  33.54270   0.527    0.601    
## leg_l          -0.13452    0.18535  34.16929  -0.726    0.473    
## factor(Race)1   3.19310    2.88822  33.63854   1.106    0.277    
## factor(Race)2  -2.77669    3.06598  33.74901  -0.906    0.372    
## factor(Race)3   1.95010    3.61951  33.88199   0.539    0.594    
## factor(Race)4   0.73896    3.68871  34.48199   0.200    0.842    
## Speed          14.43258    2.25614 327.10258   6.397 5.48e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.156                                                 
## Sex         -0.275 -0.070  0.161                                          
## leg_l       -0.932  0.114  0.066  0.197                                   
## factor(Rc)1 -0.308 -0.020  0.211  0.074  0.157                            
## factor(Rc)2 -0.151 -0.120  0.042 -0.091  0.067  0.701                     
## factor(Rc)3 -0.161 -0.022  0.155 -0.168  0.060  0.620  0.587              
## factor(Rc)4 -0.175 -0.061  0.296 -0.042  0.032  0.637  0.571  0.535       
## Speed       -0.010  0.142 -0.039 -0.103 -0.144 -0.104 -0.114 -0.122 -0.159
##            R2m       R2c
## [1,] 0.3302585 0.9555201
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.109923  1        1.053529
## age          1.218848  1        1.104014
## Sex          1.193410  1        1.092433
## leg_l        1.112535  1        1.054768
## factor(Race) 1.400100  4        1.042965
## Speed        1.087993  1        1.043069
##                     2.5 %     97.5 %
## .sig01                 NA         NA
## .sigma                 NA         NA
## (Intercept)   -25.9931770 44.7083886
## Group          -6.3475609  0.9257701
## age            -0.3735683  0.3435301
## Sex            -2.9234777  5.0751559
## leg_l          -0.4978065  0.2287672
## factor(Race)1  -2.4676972  8.8539051
## factor(Race)2  -8.7858952  3.2325093
## factor(Race)3  -5.1440078  9.0442116
## factor(Race)4  -6.4907839  7.9686976
## Speed          10.0106221 18.8545279
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: InitialPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_prf
## 
## REML criterion at convergence: 1449.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88078 -0.51175 -0.03963  0.57084  2.76940 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 19.386   4.403   
##  Residual              2.833   1.683   
## Number of obs: 338, groups:  Subject, 42
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)    16.5140    14.6625  32.9756   1.126    0.268    
## Group          -0.5186     1.5221  35.2156  -0.341    0.735    
## age            -0.1490     0.1488  33.1249  -1.001    0.324    
## Sex            -1.2124     1.6662  34.0496  -0.728    0.472    
## leg_l          -0.1531     0.1520  35.1269  -1.007    0.321    
## factor(Race)1   0.1651     2.3601  34.2389   0.070    0.945    
## factor(Race)2  -2.6554     2.5072  34.4288  -1.059    0.297    
## factor(Race)3   0.7986     2.9625  34.6507   0.270    0.789    
## factor(Race)4   0.3659     3.0313  35.6741   0.121    0.905    
## Speed          10.3940     2.5087 316.2120   4.143  4.4e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.160                                                 
## Sex         -0.273 -0.082  0.164                                          
## leg_l       -0.922  0.094  0.070  0.207                                   
## factor(Rc)1 -0.306 -0.032  0.213  0.083  0.168                            
## factor(Rc)2 -0.149 -0.132  0.046 -0.079  0.080  0.704                     
## factor(Rc)3 -0.158 -0.037  0.158 -0.155  0.074  0.624  0.592              
## factor(Rc)4 -0.172 -0.079  0.298 -0.027  0.051  0.641  0.578  0.542       
## Speed       -0.014  0.193 -0.053 -0.140 -0.195 -0.141 -0.154 -0.166 -0.215
##            R2m       R2c
## [1,] 0.2073673 0.8989244
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.129754  1        1.062899
## age          1.220287  1        1.104666
## Sex          1.203858  1        1.097204
## leg_l        1.132345  1        1.064117
## factor(Race) 1.433570  4        1.046050
## Speed        1.164490  1        1.079115
##                     2.5 %     97.5 %
## .sig01                 NA         NA
## .sigma                 NA         NA
## (Intercept)   -12.2239114 45.2518902
## Group          -3.5017417  2.4646353
## age            -0.4406440  0.1426784
## Sex            -4.4780567  2.0532276
## leg_l          -0.4510285  0.1448017
## factor(Race)1  -4.4605360  4.7907035
## factor(Race)2  -7.5694571  2.2586441
## factor(Race)3  -5.0078511  6.6050484
## factor(Race)4  -5.5753700  6.3071033
## Speed           5.4770484 15.3108807
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MomentPeak ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_prf
## 
## REML criterion at convergence: -539.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5742 -0.5498  0.0065  0.6312  3.5405 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.043875 0.20946 
##  Residual             0.006597 0.08122 
## Number of obs: 338, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.954621   0.697741  32.839996   1.368   0.1806    
## Group          -0.014631   0.072463  35.114704  -0.202   0.8412    
## age            -0.005836   0.007082  32.991385  -0.824   0.4158    
## Sex             0.003806   0.079306  33.930000   0.048   0.9620    
## leg_l          -0.013367   0.007236  35.023656  -1.847   0.0732 .  
## factor(Race)1   0.027565   0.112337  34.123638   0.245   0.8076    
## factor(Race)2  -0.151961   0.119346  34.316398  -1.273   0.2115    
## factor(Race)3   0.151880   0.141026  34.541295   1.077   0.2890    
## factor(Race)4   0.115746   0.144328  35.579614   0.802   0.4279    
## Speed           0.748409   0.120783 314.647138   6.196 1.81e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.160                                                 
## Sex         -0.273 -0.082  0.164                                          
## leg_l       -0.922  0.093  0.071  0.208                                   
## factor(Rc)1 -0.306 -0.032  0.213  0.083  0.168                            
## factor(Rc)2 -0.149 -0.133  0.046 -0.078  0.080  0.704                     
## factor(Rc)3 -0.158 -0.038  0.158 -0.154  0.075  0.624  0.593              
## factor(Rc)4 -0.171 -0.079  0.298 -0.027  0.052  0.642  0.578  0.543       
## Speed       -0.014  0.195 -0.054 -0.142 -0.197 -0.143 -0.156 -0.168 -0.218
##            R2m      R2c
## [1,] 0.3819236 0.919212
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.130760  1        1.063372
## age          1.220359  1        1.104699
## Sex          1.204385  1        1.097445
## leg_l        1.133350  1        1.064589
## factor(Race) 1.435266  4        1.046204
## Speed        1.168372  1        1.080912
##                    2.5 %       97.5 %
## .sig01                NA           NA
## .sigma                NA           NA
## (Intercept)   -0.4129254 2.3221673879
## Group         -0.1566563 0.1273940362
## age           -0.0197153 0.0080440602
## Sex           -0.1516307 0.1592420977
## leg_l         -0.0275505 0.0008155994
## factor(Race)1 -0.1926113 0.2477414763
## factor(Race)2 -0.3858754 0.0819534573
## factor(Race)3 -0.1245261 0.4282856044
## factor(Race)4 -0.1671322 0.3986243973
## Speed          0.5116776 0.9851395230
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: kneeMrange ~ Group + age + Sex + leg_l + factor(Race) + Speed +  
##     (1 | Subject)
##    Data: df_prf
## 
## REML criterion at convergence: -508.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6557 -0.6146  0.0070  0.5877  2.7132 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 0.035094 0.18733 
##  Residual             0.007501 0.08661 
## Number of obs: 338, groups:  Subject, 42
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     0.697799   0.626578  33.056856   1.114   0.2735    
## Group          -0.004357   0.065485  35.894927  -0.067   0.9473    
## age            -0.005508   0.006362  33.242195  -0.866   0.3928    
## Sex            -0.027973   0.071438  34.406545  -0.392   0.6978    
## leg_l          -0.013415   0.006538  35.762233  -2.052   0.0476 *  
## factor(Race)1  -0.005882   0.101250  34.674827  -0.058   0.9540    
## factor(Race)2  -0.164425   0.107624  34.913888  -1.528   0.1356    
## factor(Race)3   0.107354   0.127251  35.185004   0.844   0.4046    
## factor(Race)4   0.029072   0.130585  36.460936   0.223   0.8251    
## Speed           1.113116   0.124720 286.880401   8.925   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Group  age    Sex    leg_l  fc(R)1 fc(R)2 fc(R)3 fc(R)4
## Group       -0.137                                                        
## age         -0.347 -0.163                                                 
## Sex         -0.271 -0.091  0.165                                          
## leg_l       -0.915  0.080  0.074  0.214                                   
## factor(Rc)1 -0.304 -0.040  0.214  0.089  0.176                            
## factor(Rc)2 -0.148 -0.141  0.048 -0.070  0.089  0.706                     
## factor(Rc)3 -0.156 -0.048  0.159 -0.146  0.084  0.627  0.596              
## factor(Rc)4 -0.169 -0.092  0.299 -0.016  0.065  0.645  0.583  0.548       
## Speed       -0.017  0.223 -0.062 -0.162 -0.225 -0.164 -0.179 -0.192 -0.249
##           R2m       R2c
## [1,] 0.479623 0.9083614
##                  GVIF Df GVIF^(1/(2*Df))
## Group        1.144796  1        1.069951
## age          1.221348  1        1.105146
## Sex          1.211713  1        1.100778
## leg_l        1.147344  1        1.071142
## factor(Race) 1.458872  4        1.048340
## Speed        1.222472  1        1.105655
##                     2.5 %        97.5 %
## .sig01                 NA            NA
## .sigma                 NA            NA
## (Intercept)   -0.53027194  1.9258704500
## Group         -0.13270381  0.1239907239
## age           -0.01797764  0.0069614670
## Sex           -0.16798958  0.1120433548
## leg_l         -0.02622881 -0.0006011951
## factor(Race)1 -0.20432756  0.1925641667
## factor(Race)2 -0.37536422  0.0465138197
## factor(Race)3 -0.14205219  0.3567608038
## factor(Race)4 -0.22686958  0.2850126354
## Speed          0.86866845  1.3575631828
## Residual analysis for Stiffness

## 
## 
## Residual analysis for Peak

## 
## 
## Residual analysis for InitialPeak

## 
## 
## Residual analysis for PeakMoment

## 
## 
## Residual analysis for kneeRange