# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062305166 -0.0029352588  0.0366065071  0.052133216  4.992303e-02
## 2013-02-28  0.0058910579 -0.0231055750 -0.0129695690  0.016175560  1.267824e-02
## 2013-03-28  0.0009852973 -0.0102349980  0.0129695690  0.040258399  3.726757e-02
## 2013-04-30  0.0096387154  0.0120852419  0.0489676215  0.001222024  1.903059e-02
## 2013-05-31 -0.0202140875 -0.0494835668 -0.0306555928  0.041976497  2.333525e-02
## 2013-06-28 -0.0157779366 -0.0547287165 -0.0271445305 -0.001403100 -1.343455e-02
## 2013-07-31  0.0026877033  0.0131598630  0.0518602211  0.063541619  5.038606e-02
## 2013-08-30 -0.0082982754 -0.0257056421 -0.0197463369 -0.034743858 -3.045099e-02
## 2013-09-30  0.0111442302  0.0695888981  0.0753387089  0.063873820  3.115546e-02
## 2013-10-31  0.0082914098  0.0408611197  0.0320816599  0.034234257  4.526663e-02
## 2013-11-29 -0.0025093273 -0.0025939594  0.0054497637  0.041660909  2.920742e-02
## 2013-12-31 -0.0055837289 -0.0040742390  0.0215280075  0.012892298  2.559605e-02
## 2014-01-31  0.0152920826 -0.0903226541 -0.0534131839 -0.035775481 -3.588497e-02
## 2014-02-28  0.0037568430  0.0332204819  0.0595049187  0.045257762  4.451076e-02
## 2014-03-31 -0.0014815557  0.0380214590 -0.0046026528  0.013314827  8.261000e-03
## 2014-04-30  0.0081832614  0.0077729723  0.0165294236 -0.023184114  6.927457e-03
## 2014-05-30  0.0117217429  0.0290913076  0.0158284448  0.006205287  2.294156e-02
## 2014-06-30 -0.0005756507  0.0237339394  0.0091654929  0.037718896  2.043445e-02
## 2014-07-31 -0.0025124399  0.0135557970 -0.0263798899 -0.052009416 -1.352841e-02
## 2014-08-29  0.0114309997  0.0279042740  0.0018003983  0.043657863  3.870467e-02
## 2014-09-30 -0.0061673521 -0.0808567794 -0.0395984613 -0.061260648 -1.389246e-02
## 2014-10-31  0.0105845494  0.0140965730 -0.0026546882  0.068875053  2.327789e-02
## 2014-11-28  0.0065491729 -0.0155412082  0.0006252476  0.004773730  2.710131e-02
## 2014-12-31  0.0014745074 -0.0404422965 -0.0407466441  0.025295752 -2.539736e-03
## 2015-01-30  0.0203152655 -0.0068956968  0.0062263657 -0.054627881 -3.007719e-02
## 2015-02-27 -0.0089882091  0.0431359678  0.0614505880  0.056914372  5.468214e-02
## 2015-03-31  0.0037405326 -0.0150862447 -0.0143887132  0.010156466 -1.583041e-02
## 2015-04-30 -0.0032328674  0.0662815315  0.0358166571 -0.018417957  9.785698e-03
## 2015-05-29 -0.0043841772 -0.0419111554  0.0019525556  0.007510246  1.277408e-02
## 2015-06-30 -0.0108258815 -0.0297463480 -0.0316788424  0.004171359 -2.052098e-02
## 2015-07-31  0.0085852418 -0.0651784554  0.0201145742 -0.027375502  2.233776e-02
## 2015-08-31 -0.0033635062 -0.0925122749 -0.0771526685 -0.047268437 -6.288636e-02
## 2015-09-30  0.0080809759 -0.0318250337 -0.0451948535 -0.038464590 -2.584744e-02
## 2015-10-30  0.0006859119  0.0618085611  0.0640260841  0.063589605  8.163499e-02
## 2015-11-30 -0.0038986261 -0.0255604014 -0.0075558957  0.024415353  3.648681e-03
## 2015-12-31 -0.0019190851 -0.0389471313 -0.0235948798 -0.052157006 -1.743359e-02
## 2016-01-29  0.0123299301 -0.0516369228 -0.0567579639 -0.060306811 -5.106896e-02
## 2016-02-29  0.0088316794 -0.0082113836 -0.0339140194  0.020605556 -8.263365e-04
## 2016-03-31  0.0087085088  0.1218790192  0.0637458506  0.089909722  6.510026e-02
## 2016-04-29  0.0025464761  0.0040791042  0.0219750163  0.021044478  3.933603e-03
## 2016-05-31  0.0001354205 -0.0376284639 -0.0008559985  0.004397180  1.686842e-02
## 2016-06-30  0.0191668944  0.0445824922 -0.0244914364  0.008292020  3.469846e-03
## 2016-07-29  0.0054296821  0.0524419021  0.0390000644  0.049348435  3.582192e-02
## 2016-08-31 -0.0021556546  0.0087984721  0.0053269298  0.011261061  1.196892e-03
## 2016-09-30  0.0005158676  0.0248731720  0.0132791624  0.008614807  5.786201e-05
## 2016-10-31 -0.0082054510 -0.0083124521 -0.0224037498 -0.038134812 -1.748865e-02
## 2016-11-30 -0.0259897956 -0.0451616328 -0.0179744875  0.125246587  3.617583e-02
## 2016-12-30  0.0025378765 -0.0025299175  0.0267028177  0.031491358  2.006937e-02
## 2017-01-31  0.0021263070  0.0644312901  0.0323818322 -0.012143643  1.773609e-02
## 2017-02-28  0.0064378705  0.0172579587  0.0118365146  0.013428895  3.853926e-02
## 2017-03-31 -0.0005535750  0.0361889731  0.0318059096 -0.006533184  1.249048e-03
## 2017-04-28  0.0090298828  0.0168662927  0.0239520183  0.005107827  9.877598e-03
## 2017-05-31  0.0068467419  0.0280600145  0.0348103694 -0.022862609  1.401391e-02
## 2017-06-30 -0.0001816853  0.0092237714  0.0029558517  0.029151576  6.354939e-03
## 2017-07-31  0.0033338778  0.0565947381  0.0261878079  0.007481590  2.034573e-02
## 2017-08-31  0.0093689851  0.0232436070 -0.0004482871 -0.027564712  2.913498e-03
## 2017-09-29 -0.0057320049 -0.0004464642  0.0233426720  0.082321737  1.994893e-02
## 2017-10-31  0.0009784387  0.0322786031  0.0166537929  0.005915866  2.329095e-02
## 2017-11-30 -0.0014844091 -0.0038968199  0.0068698934  0.036913717  3.010782e-02
## 2017-12-29  0.0047402506  0.0369254159  0.0133984131 -0.003731302  1.205514e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398440e-05 0.0001042091 4.178287e-05 -7.811834e-05 -9.030805e-06
## EEM  1.042091e-04 0.0017547132 1.039019e-03  6.437727e-04  6.795441e-04
## EFA  4.178287e-05 0.0010390190 1.064239e-03  6.490299e-04  6.975420e-04
## IJS -7.811834e-05 0.0006437727 6.490299e-04  1.565451e-03  8.290253e-04
## SPY -9.030805e-06 0.0006795441 6.975420e-04  8.290253e-04  7.408293e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874155 0.009257148 0.005815639 0.005684469 0.002330251
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {

    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)

}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%

    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%

    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +

    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution

calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
                                             start = 1,
                                             window = 24,
                                             weights) {

    # 1 Define start date
    start_date <- rownames(asset_returns_wide_tbl)[start]

    # 2 Define end date
    end_date <- rownames(asset_returns_wide_tbl)[start + window]

    # 3 Subset df
    df_subset <- asset_returns_wide_tbl %>%

        rownames_to_column(var = "date") %>%

        filter(date >= start_date & date < end_date) %>%

        column_to_rownames(var = "date")

    # 4 Calculate component contribution
    component_percentages <-df_subset %>%
        calculate_component_contribution(w = weights)

    # 5 Add end date to df
    component_percentages %>%

        mutate(date = ymd(end_date)) %>%
        select(date, everything())

}


# Check the custom function
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 1, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-30 0.039 0.372 0.256 0.245 0.088
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 2, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-02-27 0.036 0.374 0.249 0.252 0.089
# Iterate the custom function
w <- c(0.25,0.25,0.2,0.2,0.1)
window <- 24

rolling_comp_contrib_tbl <- 1:(nrow(asset_returns_wide_tbl) - window) %>%

    map_df(.x = ., .f = ~calculate_comp_contrib_by_window(asset_returns_wide_tbl,
                                                          start = .x,
                                                          weights = w,
                                                          window = window))
rolling_comp_contrib_tbl
## # A tibble: 36 × 6
##    date         AGG   EEM   EFA   IJS   SPY
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2015-01-30 0.039 0.372 0.256 0.245 0.088
##  2 2015-02-27 0.036 0.374 0.249 0.252 0.089
##  3 2015-03-31 0.027 0.37  0.255 0.255 0.092
##  4 2015-04-30 0.027 0.372 0.256 0.252 0.093
##  5 2015-05-29 0.024 0.385 0.254 0.246 0.092
##  6 2015-06-30 0.018 0.383 0.248 0.257 0.094
##  7 2015-07-31 0.014 0.375 0.253 0.261 0.096
##  8 2015-08-31 0.013 0.404 0.237 0.257 0.09 
##  9 2015-09-30 0.012 0.407 0.248 0.238 0.094
## 10 2015-10-30 0.003 0.405 0.244 0.243 0.105
## # ℹ 26 more rows
# Figure 10.3 Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, color = asset)) +
    geom_line() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.03,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))

# Figure 10.4 Stacked Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, fill = asset)) +
    geom_area() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.08,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))