# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062314800 -0.0029358259 0.0366062193 0.052132993 4.992278e-02
## 2013-02-28 0.0058912506 -0.0231051182 -0.0129694754 0.016175455 1.267849e-02
## 2013-03-28 0.0009850083 -0.0102349968 0.0129694754 0.040258305 3.726764e-02
## 2013-04-30 0.0096387163 0.0120848926 0.0489677151 0.001222435 1.903059e-02
## 2013-05-31 -0.0202135056 -0.0494835786 -0.0306555928 0.041976295 2.333537e-02
## 2013-06-28 -0.0157785220 -0.0547281510 -0.0271445305 -0.001402903 -1.343419e-02
## 2013-07-31 0.0026877036 0.0131595412 0.0518604901 0.063541427 5.038548e-02
## 2013-08-30 -0.0082978786 -0.0257056421 -0.0197461487 -0.034743382 -3.045123e-02
## 2013-09-30 0.0111438336 0.0695888373 0.0753382517 0.063873616 3.115615e-02
## 2013-10-31 0.0082919956 0.0408611805 0.0320819063 0.034234425 4.526662e-02
## 2013-11-29 -0.0025092284 -0.0025940764 0.0054494356 0.041660895 2.920710e-02
## 2013-12-31 -0.0055836273 -0.0040741220 0.0215280092 0.012891717 2.559625e-02
## 2014-01-31 0.0152917818 -0.0903228470 -0.0534133570 -0.035774979 -3.588496e-02
## 2014-02-28 0.0037566486 0.0332204882 0.0595051716 0.045257506 4.451025e-02
## 2014-03-31 -0.0014813623 0.0380217055 -0.0046025730 0.013314827 8.261400e-03
## 2014-04-30 0.0081829709 0.0077729124 0.0165295008 -0.023183620 6.927654e-03
## 2014-05-30 0.0117217418 0.0290909613 0.0158282878 0.006204956 2.294126e-02
## 2014-06-30 -0.0005754612 0.0237342857 0.0091655695 0.037718496 2.043463e-02
## 2014-07-31 -0.0025130089 0.0135555746 -0.0263801237 -0.052009262 -1.352860e-02
## 2014-08-29 0.0114310968 0.0279047127 0.0018007125 0.043657866 3.870458e-02
## 2014-09-30 -0.0061671643 -0.0808569957 -0.0395986999 -0.061260484 -1.389227e-02
## 2014-10-31 0.0105844560 0.0140963418 -0.0026547703 0.068874890 2.327770e-02
## 2014-11-28 0.0065488950 -0.0155412118 0.0006253295 0.004773652 2.710132e-02
## 2014-12-31 0.0014746007 -0.0404421839 -0.0407468179 0.025295909 -2.539736e-03
## 2015-01-30 0.0203156345 -0.0068954515 0.0062267907 -0.054628205 -3.007710e-02
## 2015-02-27 -0.0089885750 0.0431361984 0.0614503390 0.056914924 5.468205e-02
## 2015-03-31 0.0037403510 -0.0150861196 -0.0143887144 0.010156086 -1.583050e-02
## 2015-04-30 -0.0032327772 0.0662810527 0.0358166599 -0.018417728 9.785962e-03
## 2015-05-29 -0.0043836266 -0.0419110386 0.0019526336 0.007509863 1.277460e-02
## 2015-06-30 -0.0108255073 -0.0297465852 -0.0316789227 0.004171589 -2.052158e-02
## 2015-07-31 0.0085847758 -0.0651783350 0.0201145758 -0.027375504 2.233776e-02
## 2015-08-31 -0.0033638760 -0.0925124158 -0.0771524198 -0.047268195 -6.288654e-02
## 2015-09-30 0.0080815289 -0.0318248201 -0.0451947567 -0.038464754 -2.584716e-02
## 2015-10-30 0.0006849943 0.0618086251 0.0640258172 0.063589685 8.163498e-02
## 2015-11-30 -0.0038978918 -0.0255606784 -0.0075559798 0.024415195 3.648681e-03
## 2015-12-31 -0.0019185313 -0.0389469911 -0.0235949679 -0.052156845 -1.743385e-02
## 2016-01-29 0.0123295576 -0.0516367692 -0.0567576095 -0.060306805 -5.106869e-02
## 2016-02-29 0.0088311349 -0.0082116146 -0.0339141074 0.020604955 -8.263364e-04
## 2016-03-31 0.0087090486 0.1218790281 0.0637457564 0.089910469 6.510035e-02
## 2016-04-29 0.0025468327 0.0040792410 0.0219750163 0.021044167 3.933516e-03
## 2016-05-31 0.0001350631 -0.0376284613 -0.0008559119 0.004397180 1.686842e-02
## 2016-06-30 0.0191668894 0.0445823535 -0.0244915230 0.008292171 3.470100e-03
## 2016-07-29 0.0054295064 0.0524422915 0.0389999791 0.049348359 3.582158e-02
## 2016-08-31 -0.0021561784 0.0087981505 0.0053271000 0.011261132 1.196892e-03
## 2016-09-30 0.0005156059 0.0248729854 0.0132789100 0.008614877 5.786201e-05
## 2016-10-31 -0.0082045767 -0.0083120146 -0.0224034967 -0.038135173 -1.748873e-02
## 2016-11-30 -0.0259899717 -0.0451618180 -0.0179745731 0.125246807 3.617559e-02
## 2016-12-30 0.0025382369 -0.0025301804 0.0267029026 0.031491609 2.006961e-02
## 2017-01-31 0.0021260365 0.0644313641 0.0323819116 -0.012143766 1.773625e-02
## 2017-02-28 0.0064376019 0.0172580214 0.0118363502 0.013428706 3.853911e-02
## 2017-03-31 -0.0005525919 0.0361889168 0.0318057522 -0.006532995 1.249493e-03
## 2017-04-28 0.0090293441 0.0168667545 0.0239522525 0.005107701 9.876786e-03
## 2017-05-31 0.0068469160 0.0280595578 0.0348100700 -0.022862801 1.401435e-02
## 2017-06-30 -0.0001822132 0.0092237724 0.0029560743 0.029151706 6.354795e-03
## 2017-07-31 0.0033343166 0.0565946395 0.0261879520 0.007481529 2.034580e-02
## 2017-08-31 0.0093692425 0.0232437140 -0.0004484313 -0.027564271 2.913709e-03
## 2017-09-29 -0.0057319140 -0.0004461573 0.0233428833 0.082321302 1.994893e-02
## 2017-10-31 0.0009776523 0.0322784976 0.0166535124 0.005916216 2.329088e-02
## 2017-11-30 -0.0014842344 -0.0038969189 0.0068701003 0.036913036 3.010795e-02
## 2017-12-29 0.0047404242 0.0369252242 0.0133982076 -0.003731079 1.205475e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398387e-05 0.0001042092 4.178166e-05 -7.812045e-05 -9.032560e-06
## EEM 1.042092e-04 0.0017547122 1.039017e-03 6.437735e-04 6.795442e-04
## EFA 4.178166e-05 0.0010390168 1.064237e-03 6.490286e-04 6.975406e-04
## IJS -7.812045e-05 0.0006437735 6.490286e-04 1.565448e-03 8.290229e-04
## SPY -9.032560e-06 0.0006795442 6.975406e-04 8.290229e-04 7.408277e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874059 0.009257152 0.005815631 0.005684463 0.002330248
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
calculate_component_contribution <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062314800 -0.0029358259 0.0366062193 0.052132993 4.992278e-02
## 2013-02-28 0.0058912506 -0.0231051182 -0.0129694754 0.016175455 1.267849e-02
## 2013-03-28 0.0009850083 -0.0102349968 0.0129694754 0.040258305 3.726764e-02
## 2013-04-30 0.0096387163 0.0120848926 0.0489677151 0.001222435 1.903059e-02
## 2013-05-31 -0.0202135056 -0.0494835786 -0.0306555928 0.041976295 2.333537e-02
## 2013-06-28 -0.0157785220 -0.0547281510 -0.0271445305 -0.001402903 -1.343419e-02
## 2013-07-31 0.0026877036 0.0131595412 0.0518604901 0.063541427 5.038548e-02
## 2013-08-30 -0.0082978786 -0.0257056421 -0.0197461487 -0.034743382 -3.045123e-02
## 2013-09-30 0.0111438336 0.0695888373 0.0753382517 0.063873616 3.115615e-02
## 2013-10-31 0.0082919956 0.0408611805 0.0320819063 0.034234425 4.526662e-02
## 2013-11-29 -0.0025092284 -0.0025940764 0.0054494356 0.041660895 2.920710e-02
## 2013-12-31 -0.0055836273 -0.0040741220 0.0215280092 0.012891717 2.559625e-02
## 2014-01-31 0.0152917818 -0.0903228470 -0.0534133570 -0.035774979 -3.588496e-02
## 2014-02-28 0.0037566486 0.0332204882 0.0595051716 0.045257506 4.451025e-02
## 2014-03-31 -0.0014813623 0.0380217055 -0.0046025730 0.013314827 8.261400e-03
## 2014-04-30 0.0081829709 0.0077729124 0.0165295008 -0.023183620 6.927654e-03
## 2014-05-30 0.0117217418 0.0290909613 0.0158282878 0.006204956 2.294126e-02
## 2014-06-30 -0.0005754612 0.0237342857 0.0091655695 0.037718496 2.043463e-02
## 2014-07-31 -0.0025130089 0.0135555746 -0.0263801237 -0.052009262 -1.352860e-02
## 2014-08-29 0.0114310968 0.0279047127 0.0018007125 0.043657866 3.870458e-02
## 2014-09-30 -0.0061671643 -0.0808569957 -0.0395986999 -0.061260484 -1.389227e-02
## 2014-10-31 0.0105844560 0.0140963418 -0.0026547703 0.068874890 2.327770e-02
## 2014-11-28 0.0065488950 -0.0155412118 0.0006253295 0.004773652 2.710132e-02
## 2014-12-31 0.0014746007 -0.0404421839 -0.0407468179 0.025295909 -2.539736e-03
## 2015-01-30 0.0203156345 -0.0068954515 0.0062267907 -0.054628205 -3.007710e-02
## 2015-02-27 -0.0089885750 0.0431361984 0.0614503390 0.056914924 5.468205e-02
## 2015-03-31 0.0037403510 -0.0150861196 -0.0143887144 0.010156086 -1.583050e-02
## 2015-04-30 -0.0032327772 0.0662810527 0.0358166599 -0.018417728 9.785962e-03
## 2015-05-29 -0.0043836266 -0.0419110386 0.0019526336 0.007509863 1.277460e-02
## 2015-06-30 -0.0108255073 -0.0297465852 -0.0316789227 0.004171589 -2.052158e-02
## 2015-07-31 0.0085847758 -0.0651783350 0.0201145758 -0.027375504 2.233776e-02
## 2015-08-31 -0.0033638760 -0.0925124158 -0.0771524198 -0.047268195 -6.288654e-02
## 2015-09-30 0.0080815289 -0.0318248201 -0.0451947567 -0.038464754 -2.584716e-02
## 2015-10-30 0.0006849943 0.0618086251 0.0640258172 0.063589685 8.163498e-02
## 2015-11-30 -0.0038978918 -0.0255606784 -0.0075559798 0.024415195 3.648681e-03
## 2015-12-31 -0.0019185313 -0.0389469911 -0.0235949679 -0.052156845 -1.743385e-02
## 2016-01-29 0.0123295576 -0.0516367692 -0.0567576095 -0.060306805 -5.106869e-02
## 2016-02-29 0.0088311349 -0.0082116146 -0.0339141074 0.020604955 -8.263364e-04
## 2016-03-31 0.0087090486 0.1218790281 0.0637457564 0.089910469 6.510035e-02
## 2016-04-29 0.0025468327 0.0040792410 0.0219750163 0.021044167 3.933516e-03
## 2016-05-31 0.0001350631 -0.0376284613 -0.0008559119 0.004397180 1.686842e-02
## 2016-06-30 0.0191668894 0.0445823535 -0.0244915230 0.008292171 3.470100e-03
## 2016-07-29 0.0054295064 0.0524422915 0.0389999791 0.049348359 3.582158e-02
## 2016-08-31 -0.0021561784 0.0087981505 0.0053271000 0.011261132 1.196892e-03
## 2016-09-30 0.0005156059 0.0248729854 0.0132789100 0.008614877 5.786201e-05
## 2016-10-31 -0.0082045767 -0.0083120146 -0.0224034967 -0.038135173 -1.748873e-02
## 2016-11-30 -0.0259899717 -0.0451618180 -0.0179745731 0.125246807 3.617559e-02
## 2016-12-30 0.0025382369 -0.0025301804 0.0267029026 0.031491609 2.006961e-02
## 2017-01-31 0.0021260365 0.0644313641 0.0323819116 -0.012143766 1.773625e-02
## 2017-02-28 0.0064376019 0.0172580214 0.0118363502 0.013428706 3.853911e-02
## 2017-03-31 -0.0005525919 0.0361889168 0.0318057522 -0.006532995 1.249493e-03
## 2017-04-28 0.0090293441 0.0168667545 0.0239522525 0.005107701 9.876786e-03
## 2017-05-31 0.0068469160 0.0280595578 0.0348100700 -0.022862801 1.401435e-02
## 2017-06-30 -0.0001822132 0.0092237724 0.0029560743 0.029151706 6.354795e-03
## 2017-07-31 0.0033343166 0.0565946395 0.0261879520 0.007481529 2.034580e-02
## 2017-08-31 0.0093692425 0.0232437140 -0.0004484313 -0.027564271 2.913709e-03
## 2017-09-29 -0.0057319140 -0.0004461573 0.0233428833 0.082321302 1.994893e-02
## 2017-10-31 0.0009776523 0.0322784976 0.0166535124 0.005916216 2.329088e-02
## 2017-11-30 -0.0014842344 -0.0038969189 0.0068701003 0.036913036 3.010795e-02
## 2017-12-29 0.0047404242 0.0369252242 0.0133982076 -0.003731079 1.205475e-02
calculate_component_contribution <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
Column Chart of Component Contribution
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(cols = everything(), names_to = "asset", values_to = "contribution")
plot_data %>%
ggplot(aes(x = asset, y = contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column Chart of Component Contribution and Weight
plot_data <- calculate_component_contribution(asset_returns_wide_tbl,
w = c(.25, .25, .2, .2, .1)) %>%
as_tibble() %>%
pivot_longer(cols = everything(),
names_to = "asset",
values_to = "contribution") %>%
mutate(weight = c(.25, .25, .2, .2, .1)) %>%
pivot_longer(cols = c(contribution, weight),
names_to = "type",
values_to = "value")
plot_data %>%
ggplot(aes(x = asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight",
y = "Percent",
x = NULL)