# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310941 -0.0029355995  0.0366062193  0.052133210  4.992283e-02
## 2013-02-28  0.0058911537 -0.0231048858 -0.0129694754  0.016175451  1.267817e-02
## 2013-03-28  0.0009850083 -0.0102352292  0.0129694754  0.040258193  3.726788e-02
## 2013-04-30  0.0096388117  0.0120846606  0.0489678042  0.001222435  1.903035e-02
## 2013-05-31 -0.0202141848 -0.0494834075 -0.0306556819  0.041976390  2.333525e-02
## 2013-06-28 -0.0157779382 -0.0547284119 -0.0271445305 -0.001402804 -1.343419e-02
## 2013-07-31  0.0026874078  0.0131598630  0.0518603108  0.063541317  5.038615e-02
## 2013-08-30 -0.0082977817 -0.0257055117 -0.0197460608 -0.034744047 -3.045179e-02
## 2013-09-30  0.0111438358  0.0695885854  0.0753384280  0.063874095  3.115615e-02
## 2013-10-31  0.0082921922  0.0408614187  0.0320815751  0.034233730  4.526662e-02
## 2013-11-29 -0.0025099125 -0.0025941931  0.0054496820  0.041661507  2.920700e-02
## 2013-12-31 -0.0055828449 -0.0040742395  0.0215280892  0.012892130  2.559605e-02
## 2014-01-31  0.0152914900 -0.0903224080 -0.0534133526 -0.035775734 -3.588465e-02
## 2014-02-28  0.0037565529  0.0332201667  0.0595050873  0.045257607  4.451035e-02
## 2014-03-31 -0.0014810730  0.0380218252 -0.0046025730  0.013315233  8.261002e-03
## 2014-04-30  0.0081825877  0.0077727927  0.0165292653 -0.023183865  6.928150e-03
## 2014-05-30  0.0117220303  0.0290913076  0.0158286006  0.006205285  2.294097e-02
## 2014-06-30 -0.0005759348  0.0237337140  0.0091653391  0.037718647  2.043435e-02
## 2014-07-31 -0.0025116809  0.0135558000 -0.0263798134 -0.052009577 -1.352860e-02
## 2014-08-29  0.0114304310  0.0279044964  0.0018004767  0.043657946  3.870496e-02
## 2014-09-30 -0.0061669748 -0.0808566622 -0.0395985398 -0.061260479 -1.389227e-02
## 2014-10-31  0.0105840791  0.0140964557 -0.0026549338  0.068874884  2.327780e-02
## 2014-11-28  0.0065491742 -0.0155414430  0.0006254932  0.004773730  2.710149e-02
## 2014-12-31  0.0014743222 -0.0404418783 -0.0407465589  0.025295752 -2.539913e-03
## 2015-01-30  0.0203157272 -0.0068958802  0.0062263652 -0.054628124 -3.007737e-02
## 2015-02-27 -0.0089882999  0.0431362036  0.0614505830  0.056914690  5.468197e-02
## 2015-03-31  0.0037402586 -0.0150863608 -0.0143886313  0.010156390 -1.583006e-02
## 2015-04-30 -0.0032334180  0.0662814118  0.0358164176 -0.018417572  9.785785e-03
## 2015-05-29 -0.0043828924 -0.0419109218  0.0019526336  0.007509632  1.277408e-02
## 2015-06-30 -0.0108257834 -0.0297466418 -0.0316788424  0.004171436 -2.052089e-02
## 2015-07-31  0.0085846836 -0.0651782668  0.0201143381 -0.027375350  2.233784e-02
## 2015-08-31 -0.0033636913 -0.0925122625 -0.0771523474 -0.047268437 -6.288680e-02
## 2015-09-30  0.0080808856 -0.0318250291 -0.0451948496 -0.038464675 -2.584716e-02
## 2015-10-30  0.0006860038  0.0618082789  0.0640259951  0.063590090  8.163490e-02
## 2015-11-30 -0.0038984426 -0.0255604049 -0.0075558957  0.024415031  3.648508e-03
## 2015-12-31 -0.0019187160 -0.0389469911 -0.0235950520 -0.052157166 -1.743350e-02
## 2016-01-29  0.0123301079 -0.0516367692 -0.0567579739 -0.060306903 -5.106887e-02
## 2016-02-29  0.0088311325 -0.0082117694 -0.0339136488  0.020605217 -8.261510e-04
## 2016-03-31  0.0087085984  0.1218793200  0.0637456621  0.089910235  6.510008e-02
## 2016-04-29  0.0025464758  0.0040789675  0.0219750163  0.021044401  3.933516e-03
## 2016-05-31  0.0001355991 -0.0376284665 -0.0008560851  0.004396951  1.686876e-02
## 2016-06-30  0.0191667141  0.0445824275 -0.0244914386  0.008292475  3.469421e-03
## 2016-07-29  0.0054296816  0.0524422949  0.0390002385  0.049348284  3.582192e-02
## 2016-08-31 -0.0021564405  0.0087984061  0.0053267596  0.011261132  1.197056e-03
## 2016-09-30  0.0005161298  0.0248730429  0.0132789122  0.008614665  5.827063e-05
## 2016-10-31 -0.0082051906 -0.0083124516 -0.0224035861 -0.038134742 -1.748922e-02
## 2016-11-30 -0.0259895293 -0.0451616955 -0.0179742290  0.125246199  3.617591e-02
## 2016-12-30  0.0025376060 -0.0025300490  0.0267029003  0.031492122  2.006898e-02
## 2017-01-31  0.0021262175  0.0644316066  0.0323819089 -0.012144335  1.773641e-02
## 2017-02-28  0.0064381402  0.0172578949  0.0118363492  0.013429087  3.853956e-02
## 2017-03-31 -0.0005530387  0.0361887350  0.0318057497 -0.006532995  1.248899e-03
## 2017-04-28  0.0090295236  0.0168666395  0.0239520970  0.005107514  9.877230e-03
## 2017-05-31  0.0068474445  0.0280600081  0.0348102211 -0.022862550  1.401457e-02
## 2017-06-30 -0.0001830930  0.0092234371  0.0029558521  0.029151768  6.354577e-03
## 2017-07-31  0.0033344935  0.0565946395  0.0261881000  0.007481405  2.034566e-02
## 2017-08-31  0.0093693318  0.0232438163 -0.0004483592 -0.027564590  2.913569e-03
## 2017-09-29 -0.0057321771 -0.0004462596  0.0233428112  0.082322151  1.994893e-02
## 2017-10-31  0.0009780892  0.0322785967  0.0166535124  0.005915399  2.329082e-02
## 2017-11-30 -0.0014838847 -0.0038973163  0.0068700315  0.036913833  3.010808e-02
## 2017-12-29  0.0047401615  0.0369257143  0.0133984801 -0.003731752  1.205501e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398321e-05 0.0001042088 4.178213e-05 -7.812254e-05 -9.031522e-06
## EEM  1.042088e-04 0.0017547112 1.039016e-03  6.437740e-04  6.795429e-04
## EFA  4.178213e-05 0.0010390162 1.064236e-03  6.490318e-04  6.975416e-04
## IJS -7.812254e-05 0.0006437740 6.490318e-04  1.565455e-03  8.290264e-04
## SPY -9.031522e-06 0.0006795429 6.975416e-04  8.290264e-04  7.408301e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874007 0.009257144 0.005815634 0.005684476 0.002330252
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310941 -0.0029355995  0.0366062193  0.052133210  4.992283e-02
## 2013-02-28  0.0058911537 -0.0231048858 -0.0129694754  0.016175451  1.267817e-02
## 2013-03-28  0.0009850083 -0.0102352292  0.0129694754  0.040258193  3.726788e-02
## 2013-04-30  0.0096388117  0.0120846606  0.0489678042  0.001222435  1.903035e-02
## 2013-05-31 -0.0202141848 -0.0494834075 -0.0306556819  0.041976390  2.333525e-02
## 2013-06-28 -0.0157779382 -0.0547284119 -0.0271445305 -0.001402804 -1.343419e-02
## 2013-07-31  0.0026874078  0.0131598630  0.0518603108  0.063541317  5.038615e-02
## 2013-08-30 -0.0082977817 -0.0257055117 -0.0197460608 -0.034744047 -3.045179e-02
## 2013-09-30  0.0111438358  0.0695885854  0.0753384280  0.063874095  3.115615e-02
## 2013-10-31  0.0082921922  0.0408614187  0.0320815751  0.034233730  4.526662e-02
## 2013-11-29 -0.0025099125 -0.0025941931  0.0054496820  0.041661507  2.920700e-02
## 2013-12-31 -0.0055828449 -0.0040742395  0.0215280892  0.012892130  2.559605e-02
## 2014-01-31  0.0152914900 -0.0903224080 -0.0534133526 -0.035775734 -3.588465e-02
## 2014-02-28  0.0037565529  0.0332201667  0.0595050873  0.045257607  4.451035e-02
## 2014-03-31 -0.0014810730  0.0380218252 -0.0046025730  0.013315233  8.261002e-03
## 2014-04-30  0.0081825877  0.0077727927  0.0165292653 -0.023183865  6.928150e-03
## 2014-05-30  0.0117220303  0.0290913076  0.0158286006  0.006205285  2.294097e-02
## 2014-06-30 -0.0005759348  0.0237337140  0.0091653391  0.037718647  2.043435e-02
## 2014-07-31 -0.0025116809  0.0135558000 -0.0263798134 -0.052009577 -1.352860e-02
## 2014-08-29  0.0114304310  0.0279044964  0.0018004767  0.043657946  3.870496e-02
## 2014-09-30 -0.0061669748 -0.0808566622 -0.0395985398 -0.061260479 -1.389227e-02
## 2014-10-31  0.0105840791  0.0140964557 -0.0026549338  0.068874884  2.327780e-02
## 2014-11-28  0.0065491742 -0.0155414430  0.0006254932  0.004773730  2.710149e-02
## 2014-12-31  0.0014743222 -0.0404418783 -0.0407465589  0.025295752 -2.539913e-03
## 2015-01-30  0.0203157272 -0.0068958802  0.0062263652 -0.054628124 -3.007737e-02
## 2015-02-27 -0.0089882999  0.0431362036  0.0614505830  0.056914690  5.468197e-02
## 2015-03-31  0.0037402586 -0.0150863608 -0.0143886313  0.010156390 -1.583006e-02
## 2015-04-30 -0.0032334180  0.0662814118  0.0358164176 -0.018417572  9.785785e-03
## 2015-05-29 -0.0043828924 -0.0419109218  0.0019526336  0.007509632  1.277408e-02
## 2015-06-30 -0.0108257834 -0.0297466418 -0.0316788424  0.004171436 -2.052089e-02
## 2015-07-31  0.0085846836 -0.0651782668  0.0201143381 -0.027375350  2.233784e-02
## 2015-08-31 -0.0033636913 -0.0925122625 -0.0771523474 -0.047268437 -6.288680e-02
## 2015-09-30  0.0080808856 -0.0318250291 -0.0451948496 -0.038464675 -2.584716e-02
## 2015-10-30  0.0006860038  0.0618082789  0.0640259951  0.063590090  8.163490e-02
## 2015-11-30 -0.0038984426 -0.0255604049 -0.0075558957  0.024415031  3.648508e-03
## 2015-12-31 -0.0019187160 -0.0389469911 -0.0235950520 -0.052157166 -1.743350e-02
## 2016-01-29  0.0123301079 -0.0516367692 -0.0567579739 -0.060306903 -5.106887e-02
## 2016-02-29  0.0088311325 -0.0082117694 -0.0339136488  0.020605217 -8.261510e-04
## 2016-03-31  0.0087085984  0.1218793200  0.0637456621  0.089910235  6.510008e-02
## 2016-04-29  0.0025464758  0.0040789675  0.0219750163  0.021044401  3.933516e-03
## 2016-05-31  0.0001355991 -0.0376284665 -0.0008560851  0.004396951  1.686876e-02
## 2016-06-30  0.0191667141  0.0445824275 -0.0244914386  0.008292475  3.469421e-03
## 2016-07-29  0.0054296816  0.0524422949  0.0390002385  0.049348284  3.582192e-02
## 2016-08-31 -0.0021564405  0.0087984061  0.0053267596  0.011261132  1.197056e-03
## 2016-09-30  0.0005161298  0.0248730429  0.0132789122  0.008614665  5.827063e-05
## 2016-10-31 -0.0082051906 -0.0083124516 -0.0224035861 -0.038134742 -1.748922e-02
## 2016-11-30 -0.0259895293 -0.0451616955 -0.0179742290  0.125246199  3.617591e-02
## 2016-12-30  0.0025376060 -0.0025300490  0.0267029003  0.031492122  2.006898e-02
## 2017-01-31  0.0021262175  0.0644316066  0.0323819089 -0.012144335  1.773641e-02
## 2017-02-28  0.0064381402  0.0172578949  0.0118363492  0.013429087  3.853956e-02
## 2017-03-31 -0.0005530387  0.0361887350  0.0318057497 -0.006532995  1.248899e-03
## 2017-04-28  0.0090295236  0.0168666395  0.0239520970  0.005107514  9.877230e-03
## 2017-05-31  0.0068474445  0.0280600081  0.0348102211 -0.022862550  1.401457e-02
## 2017-06-30 -0.0001830930  0.0092234371  0.0029558521  0.029151768  6.354577e-03
## 2017-07-31  0.0033344935  0.0565946395  0.0261881000  0.007481405  2.034566e-02
## 2017-08-31  0.0093693318  0.0232438163 -0.0004483592 -0.027564590  2.913569e-03
## 2017-09-29 -0.0057321771 -0.0004462596  0.0233428112  0.082322151  1.994893e-02
## 2017-10-31  0.0009780892  0.0322785967  0.0166535124  0.005915399  2.329082e-02
## 2017-11-30 -0.0014838847 -0.0038973163  0.0068700315  0.036913833  3.010808e-02
## 2017-12-29  0.0047401615  0.0369257143  0.0133984801 -0.003731752  1.205501e-02
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {

    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    component_percentages
    
    return(component_percentages) %>%
        
        as_tibble() %>%
        gather(key - "asset", value = "contribution")

}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%

    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%

    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +

    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution