# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062305130 -0.0029352592  0.0366063129  0.052133096  4.992271e-02
## 2013-02-28  0.0058902835 -0.0231049967 -0.0129695690  0.016175558  1.267836e-02
## 2013-03-28  0.0009847199 -0.0102354628  0.0129695690  0.040258086  3.726842e-02
## 2013-04-30  0.0096397717  0.0120848940  0.0489676215  0.001222024  1.902938e-02
## 2013-05-31 -0.0202141789 -0.0494834017 -0.0306555009  0.041976604  2.333572e-02
## 2013-06-28 -0.0157785266 -0.0547280833 -0.0271445280 -0.001402903 -1.343419e-02
## 2013-07-31  0.0026873100  0.0131590314  0.0518603956  0.063541427  5.038559e-02
## 2013-08-30 -0.0082974867 -0.0257051958 -0.0197465144 -0.034743478 -3.045134e-02
## 2013-09-30  0.0111443285  0.0695885897  0.0753387023  0.063873622  3.115615e-02
## 2013-10-31  0.0082916040  0.0408613628  0.0320817394  0.034234167  4.526662e-02
## 2013-11-29 -0.0025095221 -0.0025940764  0.0054495994  0.041661243  2.920658e-02
## 2013-12-31 -0.0055835318 -0.0040741220  0.0215280075  0.012892129  2.559637e-02
## 2014-01-31  0.0152914006 -0.0903224612 -0.0534133526 -0.035775390 -3.588455e-02
## 2014-02-28  0.0037577123  0.0332203512  0.0595051668  0.045257180  4.451065e-02
## 2014-03-31 -0.0014821344  0.0380216363 -0.0046027323  0.013315314  8.260999e-03
## 2014-04-30  0.0081833579  0.0077724951  0.0165294236 -0.023184192  6.927457e-03
## 2014-05-30  0.0117214589  0.0290914298  0.0158282903  0.006205286  2.294155e-02
## 2014-06-30 -0.0005758403  0.0237338294  0.0091658006  0.037718971  2.043435e-02
## 2014-07-31 -0.0025121562  0.0135556888 -0.0263799645 -0.052009324 -1.352860e-02
## 2014-08-29  0.0114310019  0.0279048239  0.0018004766  0.043657693  3.870468e-02
## 2014-09-30 -0.0061673533 -0.0808568785 -0.0395984549 -0.061260812 -1.389237e-02
## 2014-10-31  0.0105844580  0.0140965713 -0.0026547696  0.068875138  2.327789e-02
## 2014-11-28  0.0065489891 -0.0155414412  0.0006250021  0.004773416  2.710132e-02
## 2014-12-31  0.0014748790 -0.0404419346 -0.0407463100  0.025295913 -2.539647e-03
## 2015-01-30  0.0203157216 -0.0068959413  0.0062261953 -0.054627809 -3.007746e-02
## 2015-02-27 -0.0089888475  0.0431360857  0.0614506677  0.056914605  5.468215e-02
## 2015-03-31  0.0037408990 -0.0150863626 -0.0143888736  0.010156389 -1.583032e-02
## 2015-04-30 -0.0032328671  0.0662814194  0.0358165820 -0.018417724  9.785962e-03
## 2015-05-29 -0.0043837166 -0.0419106929  0.0019526337  0.007509938  1.277442e-02
## 2015-06-30 -0.0108258754 -0.0297469392 -0.0316789252  0.004171359 -2.052141e-02
## 2015-07-31  0.0085848680 -0.0651780220  0.0201146561 -0.027375267  2.233793e-02
## 2015-08-31 -0.0033641534 -0.0925122563 -0.0771525048 -0.047268098 -6.288681e-02
## 2015-09-30  0.0080815304 -0.0318252450 -0.0451948496 -0.038464823 -2.584726e-02
## 2015-10-30  0.0006855448  0.0618083560  0.0640259951  0.063589505  8.163508e-02
## 2015-11-30 -0.0038984430 -0.0255603366 -0.0075558957  0.024414879  3.648162e-03
## 2015-12-31 -0.0019189930 -0.0389471369 -0.0235951381 -0.052156854 -1.743289e-02
## 2016-01-29  0.0123300213 -0.0516367002 -0.0567577056 -0.060306641 -5.106904e-02
## 2016-02-29  0.0088316786 -0.0082115378 -0.0339138310  0.020605212 -8.261509e-04
## 2016-03-31  0.0087087767  0.1218790966  0.0637456621  0.089910057  6.510025e-02
## 2016-04-29  0.0025461178  0.0040792408  0.0219750163  0.021044553  3.933602e-03
## 2016-05-31  0.0001360457 -0.0376284587 -0.0008561716  0.004397027  1.686808e-02
## 2016-06-30  0.0191664444  0.0445820115 -0.0244915294  0.008292246  3.469846e-03
## 2016-07-29  0.0054295068  0.0524423053  0.0390003306  0.049348280  3.582217e-02
## 2016-08-31 -0.0021562660  0.0087987266  0.0053270996  0.011261344  1.196811e-03
## 2016-09-30  0.0005161298  0.0248724178  0.0132789926  0.008614451  5.827063e-05
## 2016-10-31 -0.0082057180 -0.0083117032 -0.0224038355 -0.038134886 -1.748914e-02
## 2016-11-30 -0.0259892699 -0.0451616839 -0.0179743146  0.125246531  3.617567e-02
## 2016-12-30  0.0025379669 -0.0025302457  0.0267028154  0.031491676  2.006930e-02
## 2017-01-31  0.0021259474  0.0644313559  0.0323819116 -0.012143957  1.773640e-02
## 2017-02-28  0.0064384981  0.0172579587  0.0118362689  0.013428835  3.853933e-02
## 2017-03-31 -0.0005532173  0.0361889731  0.0318058334 -0.006532870  1.249344e-03
## 2017-04-28  0.0090294342  0.0168664077  0.0239520989  0.005107514  9.877006e-03
## 2017-05-31  0.0068471806  0.0280601231  0.0348104463 -0.022862421  1.401420e-02
## 2017-06-30 -0.0001826531  0.0092235478  0.0029558517  0.029151638  6.354794e-03
## 2017-07-31  0.0033344052  0.0565944241  0.0261878079  0.007481652  2.034587e-02
## 2017-08-31  0.0093690704  0.0232439210 -0.0004483592 -0.027564835  2.913498e-03
## 2017-09-29 -0.0057315665 -0.0004463619  0.0233426736  0.082321737  1.994886e-02
## 2017-10-31  0.0009773904  0.0322786990  0.0166539327  0.005916215  2.329075e-02
## 2017-11-30 -0.0014839725 -0.0038970180  0.0068698242  0.036912920  3.010834e-02
## 2017-12-29  0.0047399892  0.0369253201  0.0133984810 -0.003730741  1.205462e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398441e-05 0.0001042091 4.178434e-05 -7.811854e-05 -9.030723e-06
## EEM  1.042091e-04 0.0017547079 1.039016e-03  6.437715e-04  6.795434e-04
## EFA  4.178434e-05 0.0010390164 1.064239e-03  6.490298e-04  6.975421e-04
## IJS -7.811854e-05 0.0006437715 6.490298e-04  1.565448e-03  8.290239e-04
## SPY -9.030723e-06 0.0006795434 6.975421e-04  8.290239e-04  7.408306e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874187 0.009257132 0.005815641 0.005684463 0.002330252
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062305130 -0.0029352592  0.0366063129  0.052133096  4.992271e-02
## 2013-02-28  0.0058902835 -0.0231049967 -0.0129695690  0.016175558  1.267836e-02
## 2013-03-28  0.0009847199 -0.0102354628  0.0129695690  0.040258086  3.726842e-02
## 2013-04-30  0.0096397717  0.0120848940  0.0489676215  0.001222024  1.902938e-02
## 2013-05-31 -0.0202141789 -0.0494834017 -0.0306555009  0.041976604  2.333572e-02
## 2013-06-28 -0.0157785266 -0.0547280833 -0.0271445280 -0.001402903 -1.343419e-02
## 2013-07-31  0.0026873100  0.0131590314  0.0518603956  0.063541427  5.038559e-02
## 2013-08-30 -0.0082974867 -0.0257051958 -0.0197465144 -0.034743478 -3.045134e-02
## 2013-09-30  0.0111443285  0.0695885897  0.0753387023  0.063873622  3.115615e-02
## 2013-10-31  0.0082916040  0.0408613628  0.0320817394  0.034234167  4.526662e-02
## 2013-11-29 -0.0025095221 -0.0025940764  0.0054495994  0.041661243  2.920658e-02
## 2013-12-31 -0.0055835318 -0.0040741220  0.0215280075  0.012892129  2.559637e-02
## 2014-01-31  0.0152914006 -0.0903224612 -0.0534133526 -0.035775390 -3.588455e-02
## 2014-02-28  0.0037577123  0.0332203512  0.0595051668  0.045257180  4.451065e-02
## 2014-03-31 -0.0014821344  0.0380216363 -0.0046027323  0.013315314  8.260999e-03
## 2014-04-30  0.0081833579  0.0077724951  0.0165294236 -0.023184192  6.927457e-03
## 2014-05-30  0.0117214589  0.0290914298  0.0158282903  0.006205286  2.294155e-02
## 2014-06-30 -0.0005758403  0.0237338294  0.0091658006  0.037718971  2.043435e-02
## 2014-07-31 -0.0025121562  0.0135556888 -0.0263799645 -0.052009324 -1.352860e-02
## 2014-08-29  0.0114310019  0.0279048239  0.0018004766  0.043657693  3.870468e-02
## 2014-09-30 -0.0061673533 -0.0808568785 -0.0395984549 -0.061260812 -1.389237e-02
## 2014-10-31  0.0105844580  0.0140965713 -0.0026547696  0.068875138  2.327789e-02
## 2014-11-28  0.0065489891 -0.0155414412  0.0006250021  0.004773416  2.710132e-02
## 2014-12-31  0.0014748790 -0.0404419346 -0.0407463100  0.025295913 -2.539647e-03
## 2015-01-30  0.0203157216 -0.0068959413  0.0062261953 -0.054627809 -3.007746e-02
## 2015-02-27 -0.0089888475  0.0431360857  0.0614506677  0.056914605  5.468215e-02
## 2015-03-31  0.0037408990 -0.0150863626 -0.0143888736  0.010156389 -1.583032e-02
## 2015-04-30 -0.0032328671  0.0662814194  0.0358165820 -0.018417724  9.785962e-03
## 2015-05-29 -0.0043837166 -0.0419106929  0.0019526337  0.007509938  1.277442e-02
## 2015-06-30 -0.0108258754 -0.0297469392 -0.0316789252  0.004171359 -2.052141e-02
## 2015-07-31  0.0085848680 -0.0651780220  0.0201146561 -0.027375267  2.233793e-02
## 2015-08-31 -0.0033641534 -0.0925122563 -0.0771525048 -0.047268098 -6.288681e-02
## 2015-09-30  0.0080815304 -0.0318252450 -0.0451948496 -0.038464823 -2.584726e-02
## 2015-10-30  0.0006855448  0.0618083560  0.0640259951  0.063589505  8.163508e-02
## 2015-11-30 -0.0038984430 -0.0255603366 -0.0075558957  0.024414879  3.648162e-03
## 2015-12-31 -0.0019189930 -0.0389471369 -0.0235951381 -0.052156854 -1.743289e-02
## 2016-01-29  0.0123300213 -0.0516367002 -0.0567577056 -0.060306641 -5.106904e-02
## 2016-02-29  0.0088316786 -0.0082115378 -0.0339138310  0.020605212 -8.261509e-04
## 2016-03-31  0.0087087767  0.1218790966  0.0637456621  0.089910057  6.510025e-02
## 2016-04-29  0.0025461178  0.0040792408  0.0219750163  0.021044553  3.933602e-03
## 2016-05-31  0.0001360457 -0.0376284587 -0.0008561716  0.004397027  1.686808e-02
## 2016-06-30  0.0191664444  0.0445820115 -0.0244915294  0.008292246  3.469846e-03
## 2016-07-29  0.0054295068  0.0524423053  0.0390003306  0.049348280  3.582217e-02
## 2016-08-31 -0.0021562660  0.0087987266  0.0053270996  0.011261344  1.196811e-03
## 2016-09-30  0.0005161298  0.0248724178  0.0132789926  0.008614451  5.827063e-05
## 2016-10-31 -0.0082057180 -0.0083117032 -0.0224038355 -0.038134886 -1.748914e-02
## 2016-11-30 -0.0259892699 -0.0451616839 -0.0179743146  0.125246531  3.617567e-02
## 2016-12-30  0.0025379669 -0.0025302457  0.0267028154  0.031491676  2.006930e-02
## 2017-01-31  0.0021259474  0.0644313559  0.0323819116 -0.012143957  1.773640e-02
## 2017-02-28  0.0064384981  0.0172579587  0.0118362689  0.013428835  3.853933e-02
## 2017-03-31 -0.0005532173  0.0361889731  0.0318058334 -0.006532870  1.249344e-03
## 2017-04-28  0.0090294342  0.0168664077  0.0239520989  0.005107514  9.877006e-03
## 2017-05-31  0.0068471806  0.0280601231  0.0348104463 -0.022862421  1.401420e-02
## 2017-06-30 -0.0001826531  0.0092235478  0.0029558517  0.029151638  6.354794e-03
## 2017-07-31  0.0033344052  0.0565944241  0.0261878079  0.007481652  2.034587e-02
## 2017-08-31  0.0093690704  0.0232439210 -0.0004483592 -0.027564835  2.913498e-03
## 2017-09-29 -0.0057315665 -0.0004463619  0.0233426736  0.082321737  1.994886e-02
## 2017-10-31  0.0009773904  0.0322786990  0.0166539327  0.005916215  2.329075e-02
## 2017-11-30 -0.0014839725 -0.0038970180  0.0068698242  0.036912920  3.010834e-02
## 2017-12-29  0.0047399892  0.0369253201  0.0133984810 -0.003730741  1.205462e-02
calculate_component_contribution <- function(.data, w){
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    rowSums(component_contribution)
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

column chart of component contribution

plot_data <- asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
    #transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")
plot_data %>%
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Portfolio Volatility")

column chart of component contribution and weight

plot_data <- asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
    #transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    # add weight
    add_column(weight = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
    # transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")


plot_data %>%
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq()+
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "Percent",
         x = NULL)

6 Rolling Component Contribution